
MC100-64 Processor Certification Requirements
Document

CRD Revision History
History of documentation changes that eventually lead to releases.

Date Revision Changes

2025-10-29 0.9.0 • Made Zicntr from mandatory to optional since recent published ISA manuals have it as
"recommended"

2025-01-19 0.8.0 • Updated so that content can apply equally to all certificate-related documents such as CRDs
(Certification Requirement Documents) and CTPs (Certification Test Plans).

2024-07-29 0.7.0 • First version after moving non-microcontroller content in this document to a new document called
"RISC-V CRDs (Certification Requirement Documents)"

• Change MC100 Unpriv ISA spec from "riscv-spec-v2.1, May 31, 2016" to github.com/riscv/riscv-isa-
manual/releases/tag/Ratified-IMAFDQC since the former isn’t ratified by the latter is the oldest ratified
version.

• Added requirements for WFI instruction

• Added requirements related to msip memory-mapped register

2024-07-11 0.6.0 • Supporting multiple MC versions to support customers wanting to certify existing microcontrollers
not using the latest version of ratified standards.

• Changed versioning scheme to use major.minor.patch instead of 3-digit major & minor.

• Added a table showing the mapping from MC version to ISA manuals.

• Reluctantly made interrupts OUT OF SCOPE for MC100 since only the CLINT interrupt controller was
ratified at that time and isn’t anticipated to be the interrupt controller used by MC100
implementations.

• Clarified MANDATORY behaviors for mie and mip CSRs

• Removed canonical discovery recipe because the OPT-* options directly inform the certification tests
and certification reference model of the status of the various options. Also, canonical discovery
recipes (e.g., probing for CLIC) violate the certification approach of avoiding writing potentially illegal
values to CSR fields.

• Added more options for interrupts

• Moved non-microcontroller content in this document to a new document called "RISC-V Certification
Plans"

2024-06-03 0.5.0 • Renamed to "RISC-V Microcontroller Certification Plan" based on Jason’s recommendation

• Added mvendorid, marchid, mimpid, and mhardid read-only priv CSRs because Allen pointed out
these are mandatory in M-mode v1.13 (probably older versions too, haven’t looked yet).

• Added table showing mapping of MC versions to associated RISC-V specifications

Table of Contents
CRD Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Typographic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

2. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

3. Implementation-dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

4. Instruction Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

5. CSR Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Appendix A: Extension Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Appendix B: Instruction Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

Appendix C: CSR Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117

Appendix D: IDL Function Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186

1

https://riscv.org/wp-content/uploads/2016/06/riscv-spec-v2.1.pdf
https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC
https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC


Date Revision Changes

2024-06-03 0.4.0 • Added M-mode instruction requirements

• Made Zicntr MANDATORY due to very low cost for implementations to support (in the spirit of
minimizing options).

• Removed OPT-CNTR-PREC since minstret and mcycle must be a full 64 bits to be standard-compliant.

2024-05-25 0.3.0 • Includes Zicntr as OPTIONAL and then has only 32-bit counters for instret and cycle.

2024-05-20 0.2.0 • Very early draft

2024-05-16 0.1.0 • Initial version

Typographic Conventions
CSR field colors

• Grey fields are reserved (WPRI)

• Green fields are present

• Red fields are defined by the RISC-V ISA but not present

CSR field types

Abbreviatio
n

Description

RO Read-Only

Field has a hardwired value that does not change. Writes to an RO field are ignored.

RO-H Read-Only with Hardware update

Writes are ignored. Reads reflect a value dynamically generated by hardware.

RW Read-Write

Field is writable by software. Any value that fits in the field is acceptable and shall be retained for subsequent reads.

RW-R Read-Write Restricted

Field is writable by software. Only certain values are legal. Writing an illegal value into the field is ignored, and the field retains its
prior state.

RW-H Read-Write with Hardware update

Field is writable by software. Any value that fits in the field is acceptable. Hardware also updates the field without an explicit
software write.

RW-RH Read-Write Restricted with Hardware update

Field is writable by software. Only certain values are legal. Writing an illegal value into the field is ignored, such that the field retains
its prior state. Hardware also updates the field without an explicit software write.)

Glossary
Table 1. Glossary

Term Meaning

RISC-V (Reduced Instruction Set Computer) architecture, version 5

RVI RISC-V International (organization that oversees RISC-V)

RVCP RISC-V Certification Program

TSC Technical Steering Committee (branch of RVI that creates standards)

CSC Certification Steering Committee (branch of RVI that oversees the RVCP)

CRD Certification Requirements Document

CTP Certification Test Plan

CSR Control & Status Register (located inside processor, not memory-mapped)

TBD To Be Determined

N/A “Not Applicable”

AKA “Also Known As”

Must Indicates a mandatory requirement

2



Term Meaning

Should Indicates a recommended requirement

May Indicates an optional requirement

1. Introduction
The MC100 Processor Certificate targets basic RISC-V microcontrollers. It supports either a 32-bit (MC100-32) or 64-bit (MC100-64) base ISA. MC100 is
not intended for the smallest possible microcontrollers but rather for applications benefiting from a minimal but standardized microcontroller. It
consists of:

• Unprivileged ISA: RV32I for MC100-32 and RV64I for MC100-64 with a few extensions suitable for a basic microcontroller.

• Privileged ISA: Only the M-mode features listed as mandatory in the RISC-V Privileged ISA manual

The MC (Microcontroller Class) targets processors running low-level software on an RTOS or bare-metal.

1.1. What’s a CRD?
Certification Requirements Documents (CRDs) list requirements an implementation must meet to obtain an associated RVI (RISC-V International)
certificate. CRDs are developed by the RVI CSC (Certification Steering Committee) organization in collaboration with the RVI TSC (Technical Steering
Committee) organization who creates RISC-V standards.

The CRDs refer to and augment information provided in existing ratified RVI standards.

There are a variety of certificates offered by RVI to accomodate the various RVI standards. There are certificates for processors, non-processor
system IP (e.g., IOMMU), and system platforms (processor + system IP) hardware standards. There are multiple classes of processor certificates
available to accomodate the wide range of RISC-V implementations from basic microcontrollers to advanced Applications-class processors.

Each CRD has a list of mandatory behaviors along with a list of optional behaviors. Note that not all behaviors allowed in RISC-V standards are
supported by a particular CRD.

1.2. Naming Scheme

1.2.1. CRD Naming

All components of the RVCP share the following naming scheme:

Format: <name>[v<version>]

Where:

• Left & right square braces denote optional.

• Less-than & greater-than signs just separate fields (i.e., they aren’t present in the CRD name).

• <name> identifies the type of RISC-V standard (processor, non-processor system IP, or platform) along with any other information required to
identify the variant of that standard.

• <version> identifies a particular release

◦ Format is <major>[.<minor>[.<patch>]]

◦ Inspired by semantic versioning scheme (semver.org/) but doesn’t follow it exactly

The rules for updating <major>, <minor>, and <patch> are defined by the type of RVCP component. However, the follow these general guidelines:

• A <major> release of 0 is used for pre-release versions and release versions start with 1.

• The <major> release number is updated when mandatory changes are made.

• The <minor> release number is updated when optional changes are made.

• The <patch> release number is updated for documentation fixes/improvements that don’t affect certificates already obtained for a particular
implementation.

The specific rules for updating the version number of a CRD are as follows:

• The <major> release number is updated for changes that could cause a previously certified implementation to no longer meet requirements. An
example is requiring a new version of a standard.

• The <minor> release number is updated for increased support of optional behaviors.

• The <patch> release number is updated for documentation fixes/improvements. These changes cannot cause a previously certified
implementation to no longer meet requirements.

3

https://semver.org/


1.2.2. Processor Naming

RVCP components for processors have the following format for their <name>:

<class><model>[<-base>]

Where:

• <class> is MC for Microcontroller Class and AC for Apps-processor Class

• <model> is 3-digit integer defined as follows:

◦ The hundreds’s digit indicates the series

◦ The ten’s digit identifies large differences in mandatory extensions (e.g., V, H) within the series

◦ The one’s digit indentifies small/medium differences in mandatory extensions (e.g., Zicond, PMP) within the series

• <base> is optional and is 32 for RV32I, 64 for RV64I, and 32E for RV32E

◦ If multiple bases are supported and <base> is omitted in a reference, the reference applies to all bases

◦ If only one base is supported then <base> is generally omitted

1.3. Requirements Terminology
Table 2. Requirement Types

Term Meaning

MANDATORY You have to implement it to get a certificate and the certificate tests will cover it

OPTIONAL It’s up to you if you implement or not. If you claim to implement it, certificate tests will cover it

IN-SCOPE Either MANDATORY or OPTIONAL

OUT-OF-SCOPE It’s up to you if you implement or not. If you implement it, it won’t be certified but make sure you don’t mess up anything we are
certifying.

INCOMPATIBL
E

If you implement it you won’t get a certificate

Table 3. Definition of CSR Fields

Field
Type

Read Value After
Writing Illegal
Value

Read Value Function
Of

Illegal
Instruction
Exception

Priv ISA Manual Quote

WLRL Any deterministic
legal or illegal value

Value before write and
illegal value written

Optional Implementations are permitted but not required to raise an illegal-
instruction exception if an instruction attempts to write a non-supported
value to a WLRL field. Implementations can return arbitrary bit patterns on
the read of a WLRL field when the last write was of an illegal value, but the
value returned should deterministically depend on the illegal written value
and the value of the field prior to the write.

WARL Any deterministic
legal value

Any architectural hart
state

Prohibited Implementations will not raise an exception on writes of unsupported
values to a WARL field. Implementations can return any legal value on the
read of a WARL field when the last write was of an illegal value, but the
legal value returned should deterministically depend on the illegal written
value and the architectural state of the hart.

WPRI 0 Nothing Not specified Some whole read/write fields are reserved for future use. Implementations
that do not furnish these fields must make them read-only zero.

WARL (Write Anything, Read Legal):

The Priv ISA requires reads of WARL fields to return some implementation-dependent deterministic legal value after the field is written with an
illegal value. Certifying such behaviors is expensive and provides low value for a certificate since software can’t rely on a particular behavior from
one implementation to another.

Processor CRDs define writes to WARL fields of illegal values to be OUT-OF-SCOPE unless otherwise stated (i.e., certification tests will only ever write
legal values to WARL fields except for the special cases listed below). When not OUT-OF-SCOPE, the required behavior is defined as this might be
more constrained in implementations than in the standard.

The following special cases for WARL are supported when explicitly listed in the corresponding CRD CSR field requirements:

1. Probing for Field Width

◦ Some WARL fields are variable length such as the ASID field in the virtual memory extension.

◦ Here’s the algorithm recommended to discover the ASID width:

4



▪ The number of implemented ASID bits, termed ASIDLEN, may be determined by writing one to every bit position in the ASID field, then
reading back the value in the satp CSR to see which bit positions in the ASID field hold a one.

◦ The RVCP-provided certification materials (certification tests, certification reference models) can map writes of illegal values to the ASID field
to the corresponding read value as long as they are provided the ASIDLEN value for an implementation.

2. Probing for Options

◦ E.g., Writable misa bits

3. Allowed values are a function of extension presence and/or their parameters

◦ E.g., satp.mode legal write values

WLRL (Write Legal, Read Legal):

The Priv ISA requires reads of WLRL fields to return some implementation-dependent deterministic arbitrary value after the field is written with an
illegal value. Certifying such behaviors is expensive and provides low value for a certificate since software can’t rely on a particular behavior.
Processor CRDs define writes to WLRL fields of illegal values to be OUT-OF-SCOPE unless otherwise stated (i.e., certification tests will only ever write
legal values to WLRL fields).

WPRI (Write Preserve, Read Ignore):

The Priv ISA requires reads of WPRI fields to return a value of 0. Such WPRI fields are always unimplemented by definition. Certification tests are
aware of which fields in the CSRs are WPRI and normally write them with 0 but will also write them with ~0 (all ones) and ensure that reads return 0
in both cases. It is OUT-OF-SCOPE for certification tests to write all possible values of WPRI fields (especially if they are more than just a few bits) and
certification tests aren’t intended to be comprehensive verification test suites anyways.

1.4. Related Specifications

Certificate Model TSC Profile Unpriv ISA Manual Priv ISA Manual Debug Manual

MC100-64 No profile 20191213 20190608-Priv-MSU-Ratified 0.13.2

1.5. Privileged Modes

M S U HS VS VU

IN-SCOPE OUT-OF-SCOPE OUT-OF-SCOPE OUT-OF-SCOPE OUT-OF-SCOPE OUT-OF-SCOPE

5



2. Extensions
Any RISC-V extensions not listed in this section are OUT-OF-SCOPE. The MC100-64 certificate doesn’t cover their behaviors.

2.1. Mandatory Extensions
The MC100-64 certificate has 4 mandatory extensions.

Requirement ID Extension Version Long Name Note

REQ-EXT-C C ~> 2.2 Compressed instructions

REQ-EXT-I I ~> 2.1 Base integer ISA (RV32I or RV64I)

REQ-EXT-Sm Sm ~> 1.11.0 Machine mode

REQ-EXT-Zicsr Zicsr ~> 2.0 Control and status register instructions

2.2. Optional Extensions
The MC100-64 certificate has 2 optional extensions.

Requirement ID Extension Version Long Name Note

REQ-EXT-M M ~> 2.0 Integer multiply and divide

REQ-EXT-Zicntr Zicntr ~> 2.0 Base Counters and Timers

6



3. Implementation-dependencies
RISC-V standards support many implementation-defined parameters. In many cases, there are no names associated with these parameters. Names
are defined in this section when not provided in the associated standard.

3.1. IN-SCOPE Parameters
These implementation-dependent options defined by MANDATORY or OPTIONAL extensions are IN-SCOPE. An implementation must abide by the
"Allowed Value(s)" to obtain a certificate. If the "Allowed Value(s)" is "Any" then any value allowed by the type is acceptable.

The MC100-64 certificate has 21 IN-SCOPE parameters.

Parameter Type Allowed
Value(s)

Extension(s) Note

ARCH_ID_VALUE 64-bit integer, ≠ 0 or
0x8000000000000000

Any

IMP_ID_VALUE 64-bit integer Any

MISALIGNED_LDST boolean Any

MISALIGNED_LDST_EXCEPTION_PRIORITY [low, high] Any

MISALIGNED_MAX_ATOMICITY_GRANULE_SIZE [0, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096]

Any

MISALIGNED_SPLIT_STRATEGY [sequential_bytes, custom] sequential_by
tes

MISA_CSR_IMPLEMENTED boolean Any

MTVAL_WIDTH 0 to 64 Any

MTVEC_BASE_ALIGNMENT_DIRECT [4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4095, 8192,
16384, 32768, 65536, 131072,
262144, 524288, 1048576,
2097152, 4194304, 8388608,
16777216, 33554432,
67108864, 134217728,
268435456, 536870912,
1073741824, 2147483648,
4294967296, 8589934592,
17179869184, 34359738368,
68719476736, 137438953472,
274877906944,
549755813888,
1099511627776,
2199023255552,
4398046511104,
8796093022208,
17592186044416,
35184372088832,
70368744177664,
140737488355328,
281474976710656,
562949953421312,
1125899906842624,
2251799813685248,
4503599627370496,
9007199254740992,
18014398509481984,
36028797018963968,
72057594037927936,
144115188075855872,
288230376151711744,
576460752303423488,
1152921504606846976,
2305843009213693952,
4611686018427387904,
9223372036854775808]

Any

7



Parameter Type Allowed
Value(s)

Extension(s) Note

MTVEC_BASE_ALIGNMENT_VECTORED [4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4095, 8192,
16384, 32768, 65536, 131072,
262144, 524288, 1048576,
2097152, 4194304, 8388608,
16777216, 33554432,
67108864, 134217728,
268435456, 536870912,
1073741824, 2147483648,
4294967296, 8589934592,
17179869184, 34359738368,
68719476736, 137438953472,
274877906944,
549755813888,
1099511627776,
2199023255552,
4398046511104,
8796093022208,
17592186044416,
35184372088832,
70368744177664,
140737488355328,
281474976710656,
562949953421312,
1125899906842624,
2251799813685248,
4503599627370496,
9007199254740992,
18014398509481984,
36028797018963968,
72057594037927936,
144115188075855872,
288230376151711744,
576460752303423488,
1152921504606846976,
2305843009213693952,
4611686018427387904,
9223372036854775808]

Any

MTVEC_MODES 1-element to 2-element
array of [0, 1]

Any

MXLEN [32, 64] 64

MXLEN [32, 64] 64

M_MODE_ENDIANNESS [little, big, dynamic] little

PHYS_ADDR_WIDTH 1 to 64 Any

PRECISE_SYNCHRONOUS_EXCEPTIONS boolean true

TIME_CSR_IMPLEMENTED boolean Any

TRAP_ON_EBREAK boolean true

TRAP_ON_ECALL_FROM_M boolean true

VENDOR_ID_BANK 25-bit integer Any

VENDOR_ID_OFFSET 7-bit integer Any

3.2. OUT-OF-SCOPE Parameters
These implementation-dependent options defined by MANDATORY or OPTIONAL extensions are OUT-OF-SCOPE. There are no restrictions on their
values for certification purposes because the certificate doesn’t cover the behavior of the associated RISC-V standard as a function of these
parameters.

The MC100-64 certificate has 18 OUT-OF-SCOPE parameters.

8



Parameters Type Extension(s)

COUNTINHIBIT_EN 32-element array where:
  [0] is boolean
  [1] is false
  [2] is boolean
additional items are:
  boolean

MARCHID_IMPLEMENTED boolean

MIMPID_IMPLEMENTED boolean

MTVEC_ACCESS [ro, rw]

MTVEC_ILLEGAL_WRITE_BEHAVIOR [retain, custom]

PMA_GRANULARITY 2 to 66

REPORT_ENCODING_IN_MTVAL_ON_ILLEGAL_INSTRUCTION boolean

REPORT_VA_IN_MTVAL_ON_BREAKPOINT boolean

REPORT_VA_IN_MTVAL_ON_INSTRUCTION_ACCESS_FAULT boolean

REPORT_VA_IN_MTVAL_ON_INSTRUCTION_MISALIGNED boolean

REPORT_VA_IN_MTVAL_ON_LOAD_ACCESS_FAULT boolean

REPORT_VA_IN_MTVAL_ON_LOAD_MISALIGNED boolean

REPORT_VA_IN_MTVAL_ON_STORE_AMO_ACCESS_FAULT boolean

REPORT_VA_IN_MTVAL_ON_STORE_AMO_MISALIGNED boolean

TRAP_ON_ILLEGAL_WLRL boolean

TRAP_ON_RESERVED_INSTRUCTION boolean

TRAP_ON_UNIMPLEMENTED_CSR boolean

TRAP_ON_UNIMPLEMENTED_INSTRUCTION boolean

4. Instruction Summary
The MC100-64 certificate has up to 59 instructions (exact number depends on an implementation’s options).

Name Long Name

add Integer add

addi Add immediate

and And

andi And immediate

auipc Add upper immediate to pc

beq Branch if equal

bge Branch if greater than or equal

bgeu Branch if greater than or equal unsigned

blt Branch if less than

bltu Branch if less than unsigned

bne Branch if not equal

csrrc Atomic Read and Clear Bits in CSR

csrrci Atomic Read and Clear Bits in CSR with Immediate

csrrs Atomic Read and Set Bits in CSR

csrrsi Atomic Read and Set Bits in CSR with Immediate

csrrw Atomic Read/Write CSR

csrrwi Atomic Read/Write CSR Immediate

div Signed division

divu Unsigned division

ebreak Breakpoint exception

ecall Environment call

fence Memory ordering fence

fence.tso Memory ordering fence, total store ordering

9



Name Long Name

jal Jump and link

jalr Jump and link register

lb Load byte

lbu Load byte unsigned

ld Load doubleword

lh Load halfword

lhu Load halfword unsigned

lui Load upper immediate

lw Load word

mret Machine-mode Return from Trap

mul Signed multiply

mulh Signed multiply high

mulhsu Signed/unsigned multiply high

mulhu Unsigned multiply high

or Or

ori Or immediate

rem Signed remainder

remu Unsigned remainder

sb Store byte

sd Store doubleword

sh Store halfword

sll Shift left logical

slli Shift left logical immediate

slt Set on less than

slti Set on less than immediate

sltiu Set on less than immediate unsigned

sltu Set on less than unsigned

sra Shift right arithmetic

srai Shift right arithmetic immediate

srl Shift right logical

srli Shift right logical immediate

sub Subtract

sw Store word

wfi Wait for interrupt

xor Exclusive Or

xori Exclusive Or immediate

5. CSR Summary
The MC100-64 certificate has up to 19 CSRs (exact number depends on an implementation’s options).

5.1. By Name

Name Long Name Address Mode Defining Extension(s)

cycle Cycle counter for RDCYCLE Instruction 0xc00 U Zicntr any

instret Instructions retired counter for RDINSTRET Instruction 0xc02 U Zicntr any

marchid Machine Architecture ID 0xf12 M Sm any

mcause Machine Cause 0x342 M Sm any

mcountinhibit Machine Counter Inhibit 0x320 M Sm any

mcycle Machine Cycle Counter 0xb00 M Sm any

mepc Machine Exception Program Counter 0x341 M Sm any

10



Name Long Name Address Mode Defining Extension(s)

mhartid Machine Hart ID 0xf14 M Sm any

mie Machine Interrupt Enable 0x304 M Sm any

mimpid Machine Implementation ID 0xf13 M Sm any

minstret Machine Instructions Retired Counter 0xb02 M Sm any

mip Machine Interrupt Pending 0x344 M Sm any

misa Machine ISA Control 0x301 M Sm any

mscratch Machine Scratch Register 0x340 M Sm any

mstatus Machine Status 0x300 M Sm any

mtval Machine Trap Value 0x343 M Sm any

mtvec Machine Trap Vector Control 0x305 M Sm any

mvendorid Machine Vendor ID 0xf11 M Sm any

time Timer for RDTIME Instruction 0xc01 U Zicntr any

5.2. By Address

Address Mode Name Long Name Primary Extension

0x300 M mstatus Machine Status Sm any

0x301 M misa Machine ISA Control Sm any

0x304 M mie Machine Interrupt Enable Sm any

0x305 M mtvec Machine Trap Vector Control Sm any

0x320 M mcountinhibit Machine Counter Inhibit Sm any

0x340 M mscratch Machine Scratch Register Sm any

0x341 M mepc Machine Exception Program Counter Sm any

0x342 M mcause Machine Cause Sm any

0x343 M mtval Machine Trap Value Sm any

0x344 M mip Machine Interrupt Pending Sm any

0xb00 M mcycle Machine Cycle Counter Sm any

0xb02 M minstret Machine Instructions Retired Counter Sm any

0xc00 U cycle Cycle counter for RDCYCLE Instruction Zicntr any

0xc01 U time Timer for RDTIME Instruction Zicntr any

0xc02 U instret Instructions retired counter for RDINSTRET Instruction Zicntr any

0xf11 M mvendorid Machine Vendor ID Sm any

0xf12 M marchid Machine Architecture ID Sm any

0xf13 M mimpid Machine Implementation ID Sm any

0xf14 M mhartid Machine Hart ID Sm any

11



Appendix A: Extension Details

A.1. Extension C
Long Name: Compressed instructions
Version Requirement: ~> 2.2

A.1.1. Available Versions

Version 2.0.0

State ratified

Ratification date 2019-12

A.1.2. Synopsis

The C extension reduces static and dynamic code size by adding short 16-bit instruction encodings for common operations. The C extension can be
added to any of the base ISAs (RV32, RV64, RV128), and we use the generic term "RVC" to cover any of these. Typically, 50%-60% of the RISC-V
instructions in a program can be replaced with RVC instructions, resulting in a 25%-30% code-size reduction.

A.1.3. Overview

RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V instructions when:

• the immediate or address offset is small, or

• one of the registers is the zero register (x0), the ABI link register (x1), or the ABI stack pointer (x2), or

• the destination register and the first source register are identical, or

• the registers used are the 8 most popular ones.

The C extension is compatible with all other standard instruction extensions. The C extension allows 16-bit instructions to be freely intermixed with
32-bit instructions, with the latter now able to start on any 16-bit boundary, i.e., IALIGN=16. With the addition of the C extension, no instructions can
raise instruction-address-misaligned exceptions.

 Removing the 32-bit alignment constraint on the original 32-bit instructions allows significantly greater code density.

The compressed instruction encodings are mostly common across RV32C, RV64C, and RV128C, but as shown in Table 34, a few opcodes are used for
different purposes depending on base ISA. For example, the wider address-space RV64C and RV128C variants require additional opcodes to compress
loads and stores of 64-bit integer values, while RV32C uses the same opcodes to compress loads and stores of single-precision floating-point values.
Similarly, RV128C requires additional opcodes to capture loads and stores of 128-bit integer values, while these same opcodes are used for loads and
stores of double-precision floating-point values in RV32C and RV64C. If the C extension is implemented, the appropriate compressed floating-point
load and store instructions must be provided whenever the relevant standard floating-point extension (F and/or D) is also implemented. In addition,
RV32C includes a compressed jump and link instruction to compress short-range subroutine calls, where the same opcode is used to compress
ADDIW for RV64C and RV128C.



Double-precision loads and stores are a significant fraction of static and dynamic instructions, hence the motivation to include them
in the RV32C and RV64C encoding.

Although single-precision loads and stores are not a significant source of static or dynamic compression for benchmarks compiled
for the currently supported ABIs, for microcontrollers that only provide hardware single-precision floating-point units and have an
ABI that only supports single-precision floating-point numbers, the single-precision loads and stores will be used at least as
frequently as double-precision loads and stores in the measured benchmarks. Hence, the motivation to provide compressed support
for these in RV32C.

Short-range subroutine calls are more likely in small binaries for microcontrollers, hence the motivation to include these in RV32C.

Although reusing opcodes for different purposes for different base ISAs adds some complexity to documentation, the impact on
implementation complexity is small even for designs that support multiple base ISAs. The compressed floating-point load and store
variants use the same instruction format with the same register specifiers as the wider integer loads and stores.

RVC was designed under the constraint that each RVC instruction expands into a single 32-bit instruction in either the base ISA (RV32I/E, RV64I/E, or
RV128I) or the F and D standard extensions where present. Adopting this constraint has two main benefits:

• Hardware designs can simply expand RVC instructions during decode, simplifying verification and minimizing modifications to existing
microarchitectures.

• Compilers can be unaware of the RVC extension and leave code compression to the assembler and linker, although a compression-aware
compiler will generally be able to produce better results.


We felt the multiple complexity reductions of a simple one-one mapping between C and base IFD instructions far outweighed the
potential gains of a slightly denser encoding that added additional instructions only supported in the C extension, or that allowed

12



encoding of multiple IFD instructions in one C instruction.

It is important to note that the C extension is not designed to be a stand-alone ISA, and is meant to be used alongside a base ISA.



Variable-length instruction sets have long been used to improve code density. For example, the IBM Stretch cite:[stretch], developed
in the late 1950s, had an ISA with 32-bit and 64-bit instructions, where some of the 32-bit instructions were compressed versions of
the full 64-bit instructions. Stretch also employed the concept of limiting the set of registers that were addressable in some of the
shorter instruction formats, with short branch instructions that could only refer to one of the index registers. The later IBM 360
architecture cite:[ibm360] supported a simple variable-length instruction encoding with 16-bit, 32-bit, or 48-bit instruction formats.

In 1963, CDC introduced the Cray-designed CDC 6600 cite:[cdc6600], a precursor to RISC architectures, that introduced a register-rich
load-store architecture with instructions of two lengths, 15-bits and 30-bits. The later Cray-1 design used a very similar instruction
format, with 16-bit and 32-bit instruction lengths.

The initial RISC ISAs from the 1980s all picked performance over code size, which was reasonable for a workstation environment,
but not for embedded systems. Hence, both ARM and MIPS subsequently made versions of the ISAs that offered smaller code size by
offering an alternative 16-bit wide instruction set instead of the standard 32-bit wide instructions. The compressed RISC ISAs
reduced code size relative to their starting points by about 25-30%, yielding code that was significantly smaller than 80x86. This
result surprised some, as their intuition was that the variable-length CISC ISA should be smaller than RISC ISAs that offered only 16-
bit and 32-bit formats.

Since the original RISC ISAs did not leave sufficient opcode space free to include these unplanned compressed instructions, they
were instead developed as complete new ISAs. This meant compilers needed different code generators for the separate compressed
ISAs. The first compressed RISC ISA extensions (e.g., ARM Thumb and MIPS16) used only a fixed 16-bit instruction size, which gave
good reductions in static code size but caused an increase in dynamic instruction count, which led to lower performance compared
to the original fixed-width 32-bit instruction size. This led to the development of a second generation of compressed RISC ISA
designs with mixed 16-bit and 32-bit instruction lengths (e.g., ARM Thumb2, microMIPS, PowerPC VLE), so that performance was
similar to pure 32-bit instructions but with significant code size savings. Unfortunately, these different generations of compressed
ISAs are incompatible with each other and with the original uncompressed ISA, leading to significant complexity in documentation,
implementations, and software tools support.

Of the commonly used 64-bit ISAs, only PowerPC and microMIPS currently supports a compressed instruction format. It is
surprising that the most popular 64-bit ISA for mobile platforms (ARM v8) does not include a compressed instruction format given
that static code size and dynamic instruction fetch bandwidth are important metrics. Although static code size is not a major
concern in larger systems, instruction fetch bandwidth can be a major bottleneck in servers running commercial workloads, which
often have a large instruction working set.

Benefiting from 25 years of hindsight, RISC-V was designed to support compressed instructions from the outset, leaving enough
opcode space for RVC to be added as a simple extension on top of the base ISA (along with many other extensions). The philosophy
of RVC is to reduce code size for embedded applications and to improve performance and energy-efficiency for all applications due
to fewer misses in the instruction cache. Waterman shows that RVC fetches 25%-30% fewer instruction bits, which reduces
instruction cache misses by 20%-25%, or roughly the same performance impact as doubling the instruction cache size.
cite:[waterman-ms]

A.1.4. Compressed Instruction Formats

Table 4 shows the nine compressed instruction formats. CR, CI, and CSS can use any of the 32 RVI registers, but CIW, CL, CS, CA, and CB are limited to
just 8 of them. Table 5 lists these popular registers, which correspond to registers x8 to x15. Note that there is a separate version of load and store
instructions that use the stack pointer as the base address register, since saving to and restoring from the stack are so prevalent, and that they use
the CI and CSS formats to allow access to all 32 data registers. CIW supplies an 8-bit immediate for the ADDI4SPN instruction.


The RISC-V ABI was changed to make the frequently used registers map to registers 'x8-x15'. This simplifies the decompression
decoder by having a contiguous naturally aligned set of register numbers, and is also compatible with the RV32E and RV64E base
ISAs, which only have 16 integer registers.

Compressed register-based floating-point loads and stores also use the CL and CS formats respectively, with the eight registers mapping to f8 to f15.


The standard RISC-V calling convention maps the most frequently used floating-point registers to registers f8 to f15, which allows the
same register decompression decoding as for integer register numbers.

The formats were designed to keep bits for the two register source specifiers in the same place in all instructions, while the destination register field
can move. When the full 5-bit destination register specifier is present, it is in the same place as in the 32-bit RISC-V encoding. Where immediates are
sign-extended, the sign extension is always from bit 12. Immediate fields have been scrambled, as in the base specification, to reduce the number of
immediate muxes required.


The immediate fields are scrambled in the instruction formats instead of in sequential order so that as many bits as possible are in
the same position in every instruction, thereby simplifying implementations.

For many RVC instructions, zero-valued immediates are disallowed and x0 is not a valid 5-bit register specifier. These restrictions free up encoding

13



space for other instructions requiring fewer operand bits.

Table 4. Compressed 16-bit RVC instruction formats

Format Meaning

CR Register

CI Immediate

CSS Stack-relative Store

CIW Wide Immediate

CL Load

CS Store

CA Arithmetic

CB Branch/Arithmetic

CJ Jump

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

funct4 rd/rs1 rs2 op

funct3 imm rd/rs1 imm op

funct3 imm rs2 op

funct3 imm rd′ op

funct3 imm rs1′ imm rd′ op

funct3 imm rs1′ imm rs2′ op

funct6 rd′/rs1′ funct2 rs2′ op

funct3 offset rd′/rs1′ offset op

funct3 jump target op

Table 5. Registers specified by the three-bit rs1′, rs2′, and rd′ fields of the CIW, CL, CS, CA, and CB formats.

RVC Register Number

Integer Register Number

Integer Register ABI Name

Floating-Point Register Number

Floating-Point Register ABI Name

000 001 010 011 100 101 110 111

x8 x9 x10 x11 x12 x13 x14 x15

s0 s1 a0 a1 a2 a3 a4 a5

f8 f9 f10 f11 f12 f13 f14 f15

fs0 fs1 fa0 fa1 fa2 fa3 fa4 fa5

A.2. Extension I
Long Name: Base integer ISA (RV32I or RV64I)
Version Requirement: ~> 2.1

A.2.1. Available Versions

Version 2.1.0

State ratified

Ratification date 2019-06

Changes • ratified RVWMO memory model and exclusion of FENCE.I, counters, and CSR instructions that were in
previous base ISA

A.2.2. Synopsis

Base integer instructions — TODO

A.2.3. Instructions

The following 43 instructions are added by extension version 2.1.0 (the minimum version of this extension that satifies the extension requirement).

add Integer add

addi Add immediate

and And

andi And immediate

auipc Add upper immediate to pc

beq Branch if equal

bge Branch if greater than or equal

bgeu Branch if greater than or equal unsigned

blt Branch if less than

bltu Branch if less than unsigned

bne Branch if not equal

ebreak Breakpoint exception

ecall Environment call

fence.tso Memory ordering fence, total store ordering

14



fence Memory ordering fence

jal Jump and link

jalr Jump and link register

lb Load byte

lbu Load byte unsigned

ld Load doubleword

lh Load halfword

lhu Load halfword unsigned

lui Load upper immediate

lw Load word

or Or

ori Or immediate

sb Store byte

sd Store doubleword

sh Store halfword

sll Shift left logical

slli Shift left logical immediate

slt Set on less than

slti Set on less than immediate

sltiu Set on less than immediate unsigned

sltu Set on less than unsigned

sra Shift right arithmetic

srai Shift right arithmetic immediate

srl Shift right logical

srli Shift right logical immediate

sub Subtract

sw Store word

xor Exclusive Or

xori Exclusive Or immediate

A.3. Extension M
Long Name: Integer multiply and divide
Version Requirement: ~> 2.0

A.3.1. Available Versions

Version 2.0.0

State ratified

Ratification date 2019-12

A.3.2. Synopsis

This chapter describes the standard integer multiplication and division instruction extension, which is named M and contains instructions that
multiply or divide values held in two integer registers.


We separate integer multiply and divide out from the base to simplify low-end implementations, or for applications where integer
multiply and divide operations are either infrequent or better handled in attached accelerators.

A.3.3. Instructions

The following 8 instructions are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

div Signed division

divu Unsigned division

mul Signed multiply

15



mulh Signed multiply high

mulhsu Signed/unsigned multiply high

mulhu Unsigned multiply high

rem Signed remainder

remu Unsigned remainder

A.4. Extension Sm
Long Name: Machine mode
Version Requirement: ~> 1.11.0

A.4.1. Available Versions

Version 1.11.0

State ratified

Ratification date 2019-12

Changes • Moved Machine spec to Ratified status.

• Improvements to the description and commentary.

• Specified which interrupt sources are reserved for standard use.

• Allocated some synchronous exception causes for custom use.

• Specified the priority ordering of synchronous exceptions.

• Added specification that xRET instructions may, but are not required to, clear LR reservations if A
extension present.

• Made the mstatus.MPP field WARL, rather than WLRL.

• Made the unused xip fields WPRI, rather than WIRI.

• Made the unused misa fields WARL, rather than WIRI.

• Rectified an editing error that misdescribed the mechanism by which mstatus is written upon an
exception.

• Described scheme for emulating misaligned AMOs.

• Specified the behavior of the misa and xepc registers in systems with variable IALIGN.

• Specified the behavior of writing self-contradictory values to the misa register.

• Specified contents of CSRs across XLEN modification.

• Moved PLIC chapter into its own document.

Version 1.12.0

State ratified

Ratification date 2021-12

16



Version 1.12.0

Changes • Changed MRET to clear mstatus.MPRV when leaving M-mode.

• Relaxed I/O regions have been specified to follow RVWMO. The previous specification implied that PPO
rules other than fences and acquire/release annotations did not apply.

• Constrained the LR/SC reservation set size and shape when using page-based virtual memory.

• PMP changes require an SFENCE.VMA on any hart that implements page-based virtual memory, even if VM
is not currently enabled.

• Removed the N extension.

• Defined the mandatory RV32-only CSR mstatush, which contains most of the same fields as the upper 32
bits of RV64’s mstatus.

• Defined the mandatory CSR mconfigptr, which if nonzero contains the address of a configuration data
structure.

• Defined mseccfg and mseccfgh CSRs, which control the machine’s security configuration.

• Defined menvcfg CSR (and RV32-only menvcfgh), which control various characteristics of the execution
environment.

• Designated part of SYSTEM major opcode for custom use.

• Permitted the unconditional delegation of less-privileged interrupts.

• Added optional big-endian and bi-endian support.

• Made priority of load/store/AMO address-misaligned exceptions implementation-defined relative to
load/store/AMO page-fault and access-fault exceptions.

• Software breakpoint exceptions are permitted to write either 0 or the pc to xtval.

• Specified relaxed constraints for implicit reads of non-idempotent regions.

Version 1.13.0

State frozen

Changes • Redefined misa.MXL to be read-only, making MXLEN a constant.

• Defined the misa.B field to reflect that the B extension has been implemented.

• Defined the misa.V field to reflect that the V extension has been implemented.

• Defined the RV32-only medelegh CSR.

• Defined the misaligned atomicity granule PMA, superseding the proposed Zam extension.

• Defined hardware error and software check exception codes.

• Specified synchronization requirements when changing the PBMTE fields in menvcfg and henvcfg.

• Exposed count-overflow interrupts to VS-mode via the Shlcofideleg extension.

• Relaxed behavior of some HINTs when MXLEN > XLEN.

• Transliterated the document from LaTeX into AsciiDoc.

• Included all ratified extensions through March 2024.

• Clarified that "platform- or custom-use" interrupts are actually "platform-use interrupts", where the
platform can choose to make some custom.

• Clarified semantics of explicit accesses to CSRs wider than XLEN bits.

• Clarified that MXLEN≥SXLEN.

• Clarified that WFI is not a HINT instruction.

• Clarified that, for a given exception cause, xtval might sometimes be set to a nonzero value but sometimes
not.

• Clarified exception behavior of unimplemented or inaccessible CSRs.

• Replaced the concept of vacant memory regions with inaccessible memory or I/O regions.

• Clarified that timer and count-overflow interrupts' arrival in interrupt-pending registers is not immediate.

• Clarified that MXR affects only explicit memory accesses.

A.4.2. Synopsis

This chapter describes the machine-level operations available in machine-mode (M-mode), which is the highest privilege mode in a RISC-V hart. M-
mode is used for low-level access to a hardware platform and is the first mode entered at reset. M-mode can also be used to implement features that
are too difficult or expensive to implement in hardware directly. The RISC-V machine-level ISA contains a common core that is extended depending
on which other privilege levels are supported and other details of the hardware implementation. This chapter describes the RISC-V machine-level
architecture, which contains a common core that is used with various supervisor-level address translation and protection schemes.

17



A.4.3. Instructions

The following 2 instructions are added by extension version 1.11.0 (the minimum version of this extension that satifies the extension requirement).

mret Machine-mode Return from Trap

wfi Wait for interrupt

A.4.4. CSRs

The following 16 CSRs are added by extension version 1.11.0 (the minimum version of this extension that satifies the extension requirement).

Name Long Name Address Mode

marchid Machine Architecture ID 0xf12 M

mcause Machine Cause 0x342 M

mcountinhibit Machine Counter Inhibit 0x320 M

mcycle Machine Cycle Counter 0xb00 M

mepc Machine Exception Program Counter 0x341 M

mhartid Machine Hart ID 0xf14 M

mie Machine Interrupt Enable 0x304 M

mimpid Machine Implementation ID 0xf13 M

minstret Machine Instructions Retired Counter 0xb02 M

mip Machine Interrupt Pending 0x344 M

misa Machine ISA Control 0x301 M

mscratch Machine Scratch Register 0x340 M

mstatus Machine Status 0x300 M

mtval Machine Trap Value 0x343 M

mtvec Machine Trap Vector Control 0x305 M

mvendorid Machine Vendor ID 0xf11 M

A.4.5. OUT-OF-SCOPE Parameters

COUNTINHIBIT_EN ⇒ 32-element array where:
  [0] is boolean
  [1] is false
  [2] is boolean
additional items are:
  boolean::

+

Indicates which hardware performance monitor counters can be disabled from mcountinhibit.

An unimplemented counter cannot be specified, i.e., if HPM_COUNTER_EN[3] is false, it would be illegal to set COUNTINHIBIT_EN[3] to true.

COUNTINHIBIT_EN[1] can never be true, since it corresponds to mcountinhibit, which is always read-only-0.

MARCHID_IMPLEMENTED ⇒ boolean

• false: marchid is not implemented, and must be read-only-0

• true: marchid is implemented, and the value is determined by ARCH_ID_VALUE

MIMPID_IMPLEMENTED ⇒ boolean

• false: mimpid is not implemented, and must be read-only-0

• true: mimpid is implemented, and the value is determined by IMP_ID_VALUE

MTVEC_ACCESS ⇒ [ro, rw]

Options:

ro

mtvec is read-only.

rw

mtvec is read-write, but may not accept all values.

18



MTVEC_ILLEGAL_WRITE_BEHAVIOR ⇒ [retain, custom]

Options:

retain

When either mtvec.MODE or mtvec.BASE is illegal, mtvec will retain its current value

custom

When either mtvec.MODE or mtvec.BASE is illegal, mtvec will obtain an unpredictable value

Other values may be added over time once other common behaviors are identified.

PMA_GRANULARITY ⇒ 2 to 66

Generally, for systems with an MMU, should not be smaller than 12, as that would preclude caching PMA results in the TLB along with virtual
memory translations

REPORT_ENCODING_IN_MTVAL_ON_ILLEGAL_INSTRUCTION ⇒ boolean

Options:

• true: mtval is written with the encoding of an instruction causing an IllegalInstruction exception

• false: mtval is written with 0 when an instruction causes an IllegalInstruction exception.

REPORT_VA_IN_MTVAL_ON_BREAKPOINT ⇒ boolean

Options:

• true: mtval is written with the virtual PC of an EBREAK instruction (same information as mepc).

• false: mtval is written with 0 on an EBREAK instruction.

Regardless, mtval is always written with a virtual PC when an external breakpoint is generated

REPORT_VA_IN_MTVAL_ON_INSTRUCTION_ACCESS_FAULT ⇒ boolean

Options:

• true: mtval is written with the virtual address of a fetch causing the access fault

• false: mtval is written with 0 when a fetch causes an access fault

REPORT_VA_IN_MTVAL_ON_INSTRUCTION_MISALIGNED ⇒ boolean

Options:

• true: mtval is written with the virtual address of a trapping misaligned fetch

• false: mtval is written with 0 when a misaligned fetch traps

REPORT_VA_IN_MTVAL_ON_LOAD_ACCESS_FAULT ⇒ boolean

Options:

• true: mtval is written with the virtual address of a load causing the access fault

• false: mtval is written with 0 when a load causes an access fault

REPORT_VA_IN_MTVAL_ON_LOAD_MISALIGNED ⇒ boolean

Options:

• true: mtval is written with the virtual address of a trapping misaligned load.

• false: mtval is written with 0 when a misaligned load traps.

REPORT_VA_IN_MTVAL_ON_STORE_AMO_ACCESS_FAULT ⇒ boolean

Options:

• true: mtval is written with the virtual address of a store or AMO causing the access fault

• false: mtval is written with 0 when a store or AMO causes an access fault

REPORT_VA_IN_MTVAL_ON_STORE_AMO_MISALIGNED ⇒ boolean

Options:

• true: mtval is written with the virtual address of a trapping misaligned store or AMO.

• false: mtval is written with 0 when a misaligned store or AMO traps.

TRAP_ON_ILLEGAL_WLRL ⇒ boolean

Options:

• true: Writing an illegal value to a WLRL CSR field will cause an IllegalInstruction exception.

19



• false: Writing an illegal value to a WLRL CSR field causes unpredictable behavior.

TRAP_ON_RESERVED_INSTRUCTION ⇒ boolean

Options:

• true: Fetching an unimplemented and/or undefined instruction from the standard/reserved opcode space will cause an IllegalInstruction
exception.

• false: Fetching an unimplemented and/or undefined instruction from the standard/reserved opcose space causes unpredictable behavior.

TRAP_ON_RESERVED_INSTRUCTION may be false while TRAP_ON_UNIMPLEMENTED_INSTRUCTION is true when a custom instruction is
implemented in the standard/reserved opcode space.

TRAP_ON_UNIMPLEMENTED_CSR ⇒ boolean

Options:

• true: Accessing an unimplemented CSR (via a Zicsr instruction) will cause an IllegalInstruction exception.

• false: Accessing an unimplemented CSR (via a Zicsr instruction) will cause unpredictable behavior.

TRAP_ON_UNIMPLEMENTED_INSTRUCTION ⇒ boolean

Options:

• true: Fetching an unimplemented instruction will cause an IllegalInstruction exception.

• false: Fetching an unimplemented instruction causes unpredictable behavior.

An unimplemented instruction is any instruction encoding that is not defined by the implementation. Custom instructions are considered
implemented.

A.5. Extension Zicntr
Long Name: Base Counters and Timers
Version Requirement: ~> 2.0

A.5.1. Available Versions

Version 2.0.0

State ratified

Ratification date 2019-12

A.5.2. Synopsis

The CYCLE, TIME, and INSTRET counters, which have dedicated functions (cycle count, real-time clock, and instructions retired, respectively).

A.5.3. CSRs

The following 3 CSRs are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

Name Long Name Address Mode

cycle Cycle counter for RDCYCLE Instruction 0xc00 U

instret Instructions retired counter for RDINSTRET Instruction 0xc02 U

time Timer for RDTIME Instruction 0xc01 U

A.5.4. Parameters

The following parameters (implementation options) may affect the operation of this extension:

TIME_CSR_IMPLEMENTED

Whether or not a real hardware time CSR exists. Implementations can either provide a real CSR or emulate access at M-mode.

Possible values:

true

time/timeh exists, and accessing it will not cause an IllegalInstruction trap

false

time/timeh does not exist. Accessing the CSR will cause an IllegalInstruction trap or enter an unpredictable state, depending on
TRAP_ON_UNIMPLEMENTED_CSR. Privileged software may emulate the time CSR, or may pass the exception to a lower level.

20



A.6. Extension Zicsr
Long Name: Control and status register instructions
Version Requirement: ~> 2.0

A.6.1. Available Versions

Version 2.0.0

State ratified

Ratification date 2019-04

A.6.2. Synopsis

Control and status register instructions

A.6.3. Instructions

The following 6 instructions are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

csrrc Atomic Read and Clear Bits in CSR

csrrci Atomic Read and Clear Bits in CSR with Immediate

csrrs Atomic Read and Set Bits in CSR

csrrsi Atomic Read and Set Bits in CSR with Immediate

csrrw Atomic Read/Write CSR

csrrwi Atomic Read/Write CSR Immediate

21



Appendix B: Instruction Details

22



B.1. add
Integer add

This instruction is defined by:

I

B.1.1. Encoding

067111214151920242531

0110011xd000xs1xs20000000

B.1.2. Description

Add the value in xs1 to xs2, and store the result in xd. Any overflow is thrown away.

B.1.3. Access

M

Always

B.1.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.1.5. IDL Operation

X[xd] = X[xs1] + X[xs2];

B.1.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let result : xlenbits = match op {
    RISCV_ADD  => xs1_val + xs2_val,
    RISCV_SLT  => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
    RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
    RISCV_AND  => xs1_val & xs2_val,
    RISCV_OR   => xs1_val | xs2_val,
    RISCV_XOR  => xs1_val ^ xs2_val,
    RISCV_SLL  => if   sizeof(xlen) == 32
                  then xs1_val << (xs2_val[4..0])
                  else xs1_val << (xs2_val[5..0]),
    RISCV_SRL  => if   sizeof(xlen) == 32
                  then xs1_val >> (xs2_val[4..0])
                  else xs1_val >> (xs2_val[5..0]),
    RISCV_SUB  => xs1_val - xs2_val,
    RISCV_SRA  => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, xs2_val[4..0])
                  else shift_right_arith64(xs1_val, xs2_val[5..0])
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.1.7. Exceptions

This instruction does not generate synchronous exceptions.

23



B.2. addi
Add immediate

This instruction is defined by:

I

B.2.1. Encoding

06711121415192031

0010011xd000xs1imm

B.2.2. Description

Adds an immediate value to the value in xs1, and store the result in xd

B.2.3. Access

M

Always

B.2.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.2.5. IDL Operation

X[xd] = X[xs1] + $signed(imm);

B.2.6. Sail Operation

{
  let xs1_val = X(xs1);
  let immext : xlenbits = sign_extend(imm);
  let result : xlenbits = match op {
    RISCV_ADDI  => xs1_val + immext,
    RISCV_SLTI  => zero_extend(bool_to_bits(xs1_val <_s immext)),
    RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
    RISCV_ANDI  => xs1_val & immext,
    RISCV_ORI   => xs1_val | immext,
    RISCV_XORI  => xs1_val ^ immext
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.2.7. Exceptions

This instruction does not generate synchronous exceptions.

24



B.3. and
And

This instruction is defined by:

I

B.3.1. Encoding

067111214151920242531

0110011xd111xs1xs20000000

B.3.2. Description

And xs1 with xs2, and store the result in xd

B.3.3. Access

M

Always

B.3.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.3.5. IDL Operation

X[xd] = X[xs1] & X[xs2];

B.3.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let result : xlenbits = match op {
    RISCV_ADD  => xs1_val + xs2_val,
    RISCV_SLT  => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
    RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
    RISCV_AND  => xs1_val & xs2_val,
    RISCV_OR   => xs1_val | xs2_val,
    RISCV_XOR  => xs1_val ^ xs2_val,
    RISCV_SLL  => if   sizeof(xlen) == 32
                  then xs1_val << (xs2_val[4..0])
                  else xs1_val << (xs2_val[5..0]),
    RISCV_SRL  => if   sizeof(xlen) == 32
                  then xs1_val >> (xs2_val[4..0])
                  else xs1_val >> (xs2_val[5..0]),
    RISCV_SUB  => xs1_val - xs2_val,
    RISCV_SRA  => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, xs2_val[4..0])
                  else shift_right_arith64(xs1_val, xs2_val[5..0])
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.3.7. Exceptions

This instruction does not generate synchronous exceptions.

25



B.4. andi
And immediate

This instruction is defined by:

I

B.4.1. Encoding

06711121415192031

0010011xd111xs1imm

B.4.2. Description

And an immediate to the value in xs1, and store the result in xd

B.4.3. Access

M

Always

B.4.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.4.5. IDL Operation

X[xd] = X[xs1] & $signed(imm);

B.4.6. Sail Operation

{
  let xs1_val = X(xs1);
  let immext : xlenbits = sign_extend(imm);
  let result : xlenbits = match op {
    RISCV_ADDI  => xs1_val + immext,
    RISCV_SLTI  => zero_extend(bool_to_bits(xs1_val <_s immext)),
    RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
    RISCV_ANDI  => xs1_val & immext,
    RISCV_ORI   => xs1_val | immext,
    RISCV_XORI  => xs1_val ^ immext
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.4.7. Exceptions

This instruction does not generate synchronous exceptions.

26



B.5. auipc
Add upper immediate to pc

This instruction is defined by:

I

B.5.1. Encoding

067111231

0010111xdimm[31:12]

B.5.2. Description

Add an immediate to the current PC.

B.5.3. Access

M

Always

B.5.4. Decode Variables

Bits<32> imm = {$encoding[31:12], 12'd0};
Bits<5> xd = $encoding[11:7];

B.5.5. IDL Operation

X[xd] = $pc + $signed(imm);

B.5.6. Sail Operation

{
  let off : xlenbits = sign_extend(imm @ 0x000);
  let ret : xlenbits = match op {
    RISCV_LUI   => off,
    RISCV_AUIPC => get_arch_pc() + off
  };
  X(xd) = ret;
  RETIRE_SUCCESS
}

B.5.7. Exceptions

This instruction does not generate synchronous exceptions.

27



B.6. beq
Branch if equal

This instruction is defined by:

I

B.6.1. Encoding

067111214151920242531

1100011imm[4:1|11]000xs1xs2imm[12|10:5]

B.6.2. Description

Branch to PC + imm if the value in register xs1 is equal to the value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

B.6.3. Access

M

Always

B.6.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

B.6.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if (lhs == rhs) {
  jump_halfword($pc + $signed(imm));
}

B.6.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let taken : bool = match op {
    RISCV_BEQ  => xs1_val == xs2_val,
    RISCV_BNE  => xs1_val != xs2_val,
    RISCV_BLT  => xs1_val <_s xs2_val,
    RISCV_BGE  => xs1_val >=_s xs2_val,
    RISCV_BLTU => xs1_val <_u xs2_val,
    RISCV_BGEU => xs1_val >=_u xs2_val
  };
  let t : xlenbits = PC + sign_extend(imm);
  if taken then {
    /* Extensions get the first checks on the prospective target address. */
    match ext_control_check_pc(t) {
      Ext_ControlAddr_Error(e) => {
        ext_handle_control_check_error(e);
        RETIRE_FAIL
      },
      Ext_ControlAddr_OK(target) => {
        if bit_to_bool(target[1]) & not(extension("C")) then {
          handle_mem_exception(target, E_Fetch_Addr_Align());
          RETIRE_FAIL;
        } else {
          set_next_pc(target);
          RETIRE_SUCCESS
        }
      }

28



    }
  } else RETIRE_SUCCESS
}

B.6.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

29



B.7. bge
Branch if greater than or equal

This instruction is defined by:

I

B.7.1. Encoding

067111214151920242531

1100011imm[4:1|11]101xs1xs2imm[12|10:5]

B.7.2. Description

Branch to PC + imm if the signed value in register xs1 is greater than or equal to the signed value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

B.7.3. Access

M

Always

B.7.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

B.7.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if ($signed(lhs) >= $signed(rhs)) {
  jump_halfword($pc + $signed(imm));
}

B.7.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let taken : bool = match op {
    RISCV_BEQ  => xs1_val == xs2_val,
    RISCV_BNE  => xs1_val != xs2_val,
    RISCV_BLT  => xs1_val <_s xs2_val,
    RISCV_BGE  => xs1_val >=_s xs2_val,
    RISCV_BLTU => xs1_val <_u xs2_val,
    RISCV_BGEU => xs1_val >=_u xs2_val
  };
  let t : xlenbits = PC + sign_extend(imm);
  if taken then {
    /* Extensions get the first checks on the prospective target address. */
    match ext_control_check_pc(t) {
      Ext_ControlAddr_Error(e) => {
        ext_handle_control_check_error(e);
        RETIRE_FAIL
      },
      Ext_ControlAddr_OK(target) => {
        if bit_to_bool(target[1]) & not(extension("C")) then {
          handle_mem_exception(target, E_Fetch_Addr_Align());
          RETIRE_FAIL;
        } else {
          set_next_pc(target);
          RETIRE_SUCCESS
        }
      }

30



    }
  } else RETIRE_SUCCESS
}

B.7.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

31



B.8. bgeu
Branch if greater than or equal unsigned

This instruction is defined by:

I

B.8.1. Encoding

067111214151920242531

1100011imm[4:1|11]111xs1xs2imm[12|10:5]

B.8.2. Description

Branch to PC + imm if the unsigned value in register xs1 is greater than or equal to the unsigned value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

B.8.3. Access

M

Always

B.8.4. Decode Variables

Bits<13> imm = {$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

B.8.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if (lhs >= rhs) {
  jump_halfword($pc + $signed(imm));
}

B.8.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let taken : bool = match op {
    RISCV_BEQ  => xs1_val == xs2_val,
    RISCV_BNE  => xs1_val != xs2_val,
    RISCV_BLT  => xs1_val <_s xs2_val,
    RISCV_BGE  => xs1_val >=_s xs2_val,
    RISCV_BLTU => xs1_val <_u xs2_val,
    RISCV_BGEU => xs1_val >=_u xs2_val
  };
  let t : xlenbits = PC + sign_extend(imm);
  if taken then {
    /* Extensions get the first checks on the prospective target address. */
    match ext_control_check_pc(t) {
      Ext_ControlAddr_Error(e) => {
        ext_handle_control_check_error(e);
        RETIRE_FAIL
      },
      Ext_ControlAddr_OK(target) => {
        if bit_to_bool(target[1]) & not(extension("C")) then {
          handle_mem_exception(target, E_Fetch_Addr_Align());
          RETIRE_FAIL;
        } else {
          set_next_pc(target);
          RETIRE_SUCCESS
        }
      }

32



    }
  } else RETIRE_SUCCESS
}

B.8.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

33



B.9. blt
Branch if less than

This instruction is defined by:

I

B.9.1. Encoding

067111214151920242531

1100011imm[4:1|11]100xs1xs2imm[12|10:5]

B.9.2. Description

Branch to PC + imm if the signed value in register xs1 is less than the signed value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

B.9.3. Access

M

Always

B.9.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

B.9.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if ($signed(lhs) < $signed(rhs)) {
  jump_halfword($pc + $signed(imm));
}

B.9.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let taken : bool = match op {
    RISCV_BEQ  => xs1_val == xs2_val,
    RISCV_BNE  => xs1_val != xs2_val,
    RISCV_BLT  => xs1_val <_s xs2_val,
    RISCV_BGE  => xs1_val >=_s xs2_val,
    RISCV_BLTU => xs1_val <_u xs2_val,
    RISCV_BGEU => xs1_val >=_u xs2_val
  };
  let t : xlenbits = PC + sign_extend(imm);
  if taken then {
    /* Extensions get the first checks on the prospective target address. */
    match ext_control_check_pc(t) {
      Ext_ControlAddr_Error(e) => {
        ext_handle_control_check_error(e);
        RETIRE_FAIL
      },
      Ext_ControlAddr_OK(target) => {
        if bit_to_bool(target[1]) & not(extension("C")) then {
          handle_mem_exception(target, E_Fetch_Addr_Align());
          RETIRE_FAIL;
        } else {
          set_next_pc(target);
          RETIRE_SUCCESS
        }
      }

34



    }
  } else RETIRE_SUCCESS
}

B.9.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

35



B.10. bltu
Branch if less than unsigned

This instruction is defined by:

I

B.10.1. Encoding

067111214151920242531

1100011imm[4:1|11]110xs1xs2imm[12|10:5]

B.10.2. Description

Branch to PC + imm if the unsigned value in register xs1 is less than the unsigned value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

B.10.3. Access

M

Always

B.10.4. Decode Variables

Bits<13> imm = {$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

B.10.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if (lhs < rhs) {
  jump_halfword($pc + $signed(imm));
}

B.10.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let taken : bool = match op {
    RISCV_BEQ  => xs1_val == xs2_val,
    RISCV_BNE  => xs1_val != xs2_val,
    RISCV_BLT  => xs1_val <_s xs2_val,
    RISCV_BGE  => xs1_val >=_s xs2_val,
    RISCV_BLTU => xs1_val <_u xs2_val,
    RISCV_BGEU => xs1_val >=_u xs2_val
  };
  let t : xlenbits = PC + sign_extend(imm);
  if taken then {
    /* Extensions get the first checks on the prospective target address. */
    match ext_control_check_pc(t) {
      Ext_ControlAddr_Error(e) => {
        ext_handle_control_check_error(e);
        RETIRE_FAIL
      },
      Ext_ControlAddr_OK(target) => {
        if bit_to_bool(target[1]) & not(extension("C")) then {
          handle_mem_exception(target, E_Fetch_Addr_Align());
          RETIRE_FAIL;
        } else {
          set_next_pc(target);
          RETIRE_SUCCESS
        }
      }

36



    }
  } else RETIRE_SUCCESS
}

B.10.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

37



B.11. bne
Branch if not equal

This instruction is defined by:

I

B.11.1. Encoding

067111214151920242531

1100011imm[4:1|11]001xs1xs2imm[12|10:5]

B.11.2. Description

Branch to PC + imm if the value in register xs1 is not equal to the value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

B.11.3. Access

M

Always

B.11.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

B.11.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if (lhs != rhs) {
  jump_halfword($pc + $signed(imm));
}

B.11.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let taken : bool = match op {
    RISCV_BEQ  => xs1_val == xs2_val,
    RISCV_BNE  => xs1_val != xs2_val,
    RISCV_BLT  => xs1_val <_s xs2_val,
    RISCV_BGE  => xs1_val >=_s xs2_val,
    RISCV_BLTU => xs1_val <_u xs2_val,
    RISCV_BGEU => xs1_val >=_u xs2_val
  };
  let t : xlenbits = PC + sign_extend(imm);
  if taken then {
    /* Extensions get the first checks on the prospective target address. */
    match ext_control_check_pc(t) {
      Ext_ControlAddr_Error(e) => {
        ext_handle_control_check_error(e);
        RETIRE_FAIL
      },
      Ext_ControlAddr_OK(target) => {
        if bit_to_bool(target[1]) & not(extension("C")) then {
          handle_mem_exception(target, E_Fetch_Addr_Align());
          RETIRE_FAIL;
        } else {
          set_next_pc(target);
          RETIRE_SUCCESS
        }
      }

38



    }
  } else RETIRE_SUCCESS
}

B.11.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

39



B.12. csrrc
Atomic Read and Clear Bits in CSR

This instruction is defined by:

Zicsr

B.12.1. Encoding

06711121415192031

1110011xd011xs1csr

B.12.2. Description

The CSRRC (Atomic Read and Clear Bits in CSR) instruction reads the value of the CSR, zero-extends the value to XLEN bits, and writes it to integer
register xd. The initial value in integer register xs1 is treated as a bit mask that specifies bit positions to be cleared in the CSR. Any bit that is high in
xs1 will cause the corresponding bit to be cleared in the CSR, if that CSR bit is writable.

For CSRRC, if xs1=x0, then the instruction will not write to the CSR at all, and so shall not cause any of the side effects that might otherwise occur on a
CSR write, nor raise illegal- instruction exceptions on accesses to read-only CSRs. CSRRC always reads the addressed CSR and cause any read side
effects regardless of xs1 and xd fields. Note that if xs1 specifies a register other than x0, and that register holds a zero value, the instruction will not
action any attendant per-field side effects, but will action any side effects caused by writing to the entire CSR.

B.12.3. Access

M

Always

B.12.4. Decode Variables

Bits<12> csr = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.12.5. IDL Operation

Csr csr_handle = direct_csr_lookup(csr);
Boolean will_write = xs1 != 0;
if (csr_handle.valid == false) {
  unimplemented_csr($encoding);
} else if (!compatible_mode?(csr_handle.mode, mode())) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
} else if (will_write && csr_handle.writable == false) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg initial_csr_value = csr_sw_read(csr_handle);
if (xs1 != 0) {
  XReg mask = X[xs1];
  csr_sw_write(csr_handle, initial_csr_value & ~mask);
}
X[xd] = initial_csr_value;

B.12.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

40



B.13. csrrci
Atomic Read and Clear Bits in CSR with Immediate

This instruction is defined by:

Zicsr

B.13.1. Encoding

06711121415192031

1110011xd111immcsr

B.13.2. Description

The CSRRCI variant is similar to CSRRC, except this updates the CSR using an XLEN-bit value obtained by zero-extending a 5-bit unsigned immediate
(imm[4:0]) field encoded in the xs1 field instead of a value from an integer register. For CSRRCI, if the imm[4:0] field is zero, then this instruction will
not write to the CSR, and shall not cause any of the side effects that might otherwise occur on a CSR write, nor raise illegal-instruction exceptions on
accesses to read-only CSRs. The CSRRCI will always read the CSR and cause any read side effects regardless of xd and xs1 fields.

B.13.3. Access

M

Always

B.13.4. Decode Variables

Bits<12> csr = $encoding[31:20];
Bits<5> imm = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.13.5. IDL Operation

Boolean will_write = imm != 0;
Csr csr_handle = direct_csr_lookup(csr);
if (csr_handle.valid == false) {
  unimplemented_csr($encoding);
} else if (!compatible_mode?(csr_handle.mode, mode())) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
} else if (will_write && csr_handle.writable == false) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg initial_csr_value = csr_sw_read(csr_handle);
if (will_write) {
  XReg mask = imm;
  csr_sw_write(csr_handle, initial_csr_value & ~mask);
}
X[xd] = initial_csr_value;

B.13.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

41



B.14. csrrs
Atomic Read and Set Bits in CSR

This instruction is defined by:

Zicsr

B.14.1. Encoding

06711121415192031

1110011xd010xs1csr

B.14.2. Description

Atomically read and set bits in a CSR.

Reads the value of the CSR, zero-extends the value to XLEN bits, and writes it to integer register xd. The initial value in integer register xs1 is treated as
a bit mask that specifies bit positions to be set in the CSR. Any bit that is high in xs1 will cause the corresponding bit to be set in the CSR, if that CSR
bit is writable. Other bits in the CSR are not explicitly written.

B.14.3. Access

M

Always

B.14.4. Decode Variables

Bits<12> csr = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.14.5. IDL Operation

Boolean will_write = xs1 != 0;
Csr csr_handle = direct_csr_lookup(csr);
if (csr_handle.valid == false) {
  unimplemented_csr($encoding);
} else if (!compatible_mode?(csr_handle.mode, mode())) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
} else if (will_write && csr_handle.writable == false) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg initial_csr_value = csr_sw_read(csr_handle);
if (will_write) {
  XReg mask = X[xs1];
  csr_sw_write(csr_handle, initial_csr_value | mask);
}
X[xd] = initial_csr_value;

B.14.6. Sail Operation

{
  let rs1_val : xlenbits = if is_imm then zero_extend(rs1) else X(rs1);
  let isWrite : bool = match op {
    CSRRW  => true,
    _      => if is_imm then unsigned(rs1_val) != 0 else unsigned(rs1) != 0
  };
  if not(check_CSR(csr, cur_privilege, isWrite))
  then { handle_illegal(); RETIRE_FAIL }
  else if not(ext_check_CSR(csr, cur_privilege, isWrite))
  then { ext_check_CSR_fail(); RETIRE_FAIL }
  else {
    let csr_val = readCSR(csr); /* could have side-effects, so technically shouldn't perform for CSRW[I] with rd == 0 */
    if isWrite then {
      let new_val : xlenbits = match op {
        CSRRW => rs1_val,
        CSRRS => csr_val | rs1_val,

42



        CSRRC => csr_val & ~(rs1_val)
      };
      writeCSR(csr, new_val)
    };
    X(rd) = csr_val;
    RETIRE_SUCCESS
  }
}

B.14.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

43



B.15. csrrsi
Atomic Read and Set Bits in CSR with Immediate

This instruction is defined by:

Zicsr

B.15.1. Encoding

06711121415192031

1110011xd110immcsr

B.15.2. Description

The CSRRSI variant is similar to CSRRS, except this updates the CSR using an XLEN-bit value obtained by zero-extending a 5-bit unsigned immediate
(imm[4:0]) field encoded in the xs1 field instead of a value from an integer register. For CSRRSI, if the imm[4:0] field is zero, then this instruction will
not write to the CSR, and shall not cause any of the side effects that might otherwise occur on a CSR write, nor raise illegal-instruction exceptions on
accesses to read-only CSRs. The CSRRSI will always read the CSR and cause any read side effects regardless of xd and xs1 fields.

B.15.3. Access

M

Always

B.15.4. Decode Variables

Bits<12> csr = $encoding[31:20];
Bits<5> imm = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.15.5. IDL Operation

Boolean will_write = imm != 0;
Csr csr_handle = direct_csr_lookup(csr);
if (csr_handle.valid == false) {
  unimplemented_csr($encoding);
} else if (!compatible_mode?(csr_handle.mode, mode())) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
} else if (will_write && csr_handle.writable == false) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg initial_csr_value = csr_sw_read(csr_handle);
if (will_write) {
  XReg mask = imm;
  csr_sw_write(csr_handle, initial_csr_value | mask);
}
X[xd] = initial_csr_value;

B.15.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

44



B.16. csrrw
Atomic Read/Write CSR

This instruction is defined by:

Zicsr

B.16.1. Encoding

06711121415192031

1110011xd001xs1csr

B.16.2. Description

Atomically swap values in the CSRs and integer registers.

Read the old value of the CSR, zero-extends the value to XLEN bits, and then write it to integer register xd. The initial value in xs1 is written to the CSR.
If xd=x0, then the instruction shall not read the CSR and shall not cause any of the side effects that might occur on a CSR read.

B.16.3. Access

M

Always

B.16.4. Decode Variables

Bits<12> csr = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.16.5. IDL Operation

Csr csr_handle = direct_csr_lookup(csr);
Bits<MXLEN> initial_value = X[xs1];
if (csr_handle.valid == false) {
  unimplemented_csr($encoding);
} else if (!compatible_mode?(csr_handle.mode, mode())) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
} else if (csr_handle.writable == false) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
if (xd != 0) {
  X[xd] = csr_sw_read(csr_handle);
}
csr_sw_write(csr_handle, initial_value);

B.16.6. Sail Operation

{
  let rs1_val : xlenbits = if is_imm then zero_extend(rs1) else X(rs1);
  let isWrite : bool = match op {
    CSRRW  => true,
    _      => if is_imm then unsigned(rs1_val) != 0 else unsigned(rs1) != 0
  };
  if not(check_CSR(csr, cur_privilege, isWrite))
  then { handle_illegal(); RETIRE_FAIL }
  else if not(ext_check_CSR(csr, cur_privilege, isWrite))
  then { ext_check_CSR_fail(); RETIRE_FAIL }
  else {
    let csr_val = readCSR(csr); /* could have side-effects, so technically shouldn't perform for CSRW[I] with rd == 0 */
    if isWrite then {
      let new_val : xlenbits = match op {
        CSRRW => rs1_val,
        CSRRS => csr_val | rs1_val,
        CSRRC => csr_val & ~(rs1_val)
      };
      writeCSR(csr, new_val)

45



    };
    X(rd) = csr_val;
    RETIRE_SUCCESS
  }
}

B.16.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

46



B.17. csrrwi
Atomic Read/Write CSR Immediate

This instruction is defined by:

Zicsr

B.17.1. Encoding

06711121415192031

1110011xd101immcsr

B.17.2. Description

Atomically write CSR using a 5-bit immediate, and load the previous value into 'xd'.

Read the old value of the CSR, zero-extends the value to XLEN bits, and then write it to integer register xd. The 5-bit uimm field is zero-extended and
written to the CSR. If xd=x0, then the instruction shall not read the CSR and shall not cause any of the side effects that might occur on a CSR read.

B.17.3. Access

M

Always

B.17.4. Decode Variables

Bits<12> csr = $encoding[31:20];
Bits<5> imm = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.17.5. IDL Operation

Csr csr_handle = direct_csr_lookup(csr);
if (csr_handle.valid == false) {
  unimplemented_csr($encoding);
} else if (!compatible_mode?(csr_handle.mode, mode())) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
} else if (csr_handle.writable == false) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
if (xd != 0) {
  X[xd] = csr_sw_read(csr_handle);
}
csr_sw_write(csr_handle, {{MXLEN - 5{1'b0}}, imm});

B.17.6. Sail Operation

{
  let rs1_val : xlenbits = if is_imm then zero_extend(rs1) else X(rs1);
  let isWrite : bool = match op {
    CSRRW  => true,
    _      => if is_imm then unsigned(rs1_val) != 0 else unsigned(rs1) != 0
  };
  if not(check_CSR(csr, cur_privilege, isWrite))
  then { handle_illegal(); RETIRE_FAIL }
  else if not(ext_check_CSR(csr, cur_privilege, isWrite))
  then { ext_check_CSR_fail(); RETIRE_FAIL }
  else {
    let csr_val = readCSR(csr); /* could have side-effects, so technically shouldn't perform for CSRW[I] with rd == 0 */
    if isWrite then {
      let new_val : xlenbits = match op {
        CSRRW => rs1_val,
        CSRRS => csr_val | rs1_val,
        CSRRC => csr_val & ~(rs1_val)
      };
      writeCSR(csr, new_val)
    };

47



    X(rd) = csr_val;
    RETIRE_SUCCESS
  }
}

B.17.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

48



B.18. div
Signed division

This instruction is defined by:

M

B.18.1. Encoding

067111214151920242531

0110011xd100xs1xs20000001

B.18.2. Description

Divide xs1 by xs2, and store the result in xd. The remainder is discarded.

Division by zero will put -1 into xd.

Division resulting in signed overflow (when most negative number is divided by -1) will put the most negative number into xd;

B.18.3. Access

M

Always

B.18.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.18.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
XReg signed_min = (xlen() == 32) ? $signed({1'b1, {31{1'b0}}}) : {1'b1, {63{1'b0}}};
if (src2 == 0) {
  X[xd] = {MXLEN{1'b1}};
} else if ((src1 == signed_min) && (src2 == {MXLEN{1'b1}})) {
  X[xd] = signed_min;
} else {
  X[xd] = $signed(src1) / $signed(src2);
}

B.18.6. Sail Operation

{
  if extension("M") then {
    let rs1_val = X(rs1);
    let rs2_val = X(rs2);
    let rs1_int : int = if s then signed(rs1_val) else unsigned(rs1_val);
    let rs2_int : int = if s then signed(rs2_val) else unsigned(rs2_val);
    let q : int = if rs2_int == 0 then -1 else quot_round_zero(rs1_int, rs2_int);
    /* check for signed overflow */
    let q': int = if s & q > xlen_max_signed then xlen_min_signed else q;
    X(rd) = to_bits(sizeof(xlen), q');
    RETIRE_SUCCESS
  } else {
    handle_illegal();
    RETIRE_FAIL
  }
}

49



B.18.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

50



B.19. divu
Unsigned division

This instruction is defined by:

M

B.19.1. Encoding

067111214151920242531

0110011xd101xs1xs20000001

B.19.2. Description

Divide unsigned values in xs1 by xs2, and store the result in xd.

The remainder is discarded.

If the value in xs2 is zero, xd gets the largest unsigned value.

B.19.3. Access

M

Always

B.19.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.19.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
if (src2 == 0) {
  X[xd] = {MXLEN{1'b1}};
} else {
  X[xd] = src1 / src2;
}

B.19.6. Sail Operation

{
  if extension("M") then {
    let rs1_val = X(rs1);
    let rs2_val = X(rs2);
    let rs1_int : int = if s then signed(rs1_val) else unsigned(rs1_val);
    let rs2_int : int = if s then signed(rs2_val) else unsigned(rs2_val);
    let q : int = if rs2_int == 0 then -1 else quot_round_zero(rs1_int, rs2_int);
    /* check for signed overflow */
    let q': int = if s & q > xlen_max_signed then xlen_min_signed else q;
    X(rd) = to_bits(sizeof(xlen), q');
    RETIRE_SUCCESS
  } else {
    handle_illegal();
    RETIRE_FAIL
  }
}

B.19.7. Exceptions

This instruction may result in the following synchronous exceptions:

51



• IllegalInstruction

52



B.20. ebreak
Breakpoint exception

This instruction is defined by:

I

B.20.1. Encoding

031

00000000000100000000000001110011

B.20.2. Description

The EBREAK instruction is used by debuggers to cause control to be transferred back to a debugging environment. Unless overridden by an external
debug environment, EBREAK raises a breakpoint exception and performs no other operation.


As described in the C Standaxd Extension for Compressed Instructions, the c.ebreak instruction performs the same operation as the
EBREAK instruction.

EBREAK causes the receiving privilege mode’s epc register to be set to the address of the EBREAK instruction itself, not the address of the following
instruction. As EBREAK causes a synchronous exception, it is not considered to retire, and should not increment the minstret CSR.

B.20.3. Access

M

Always

B.20.4. Decode Variables

B.20.5. IDL Operation

if (TRAP_ON_EBREAK) {
  raise_precise(ExceptionCode::Breakpoint, mode(), $pc);
} else {
  eei_ebreak();
}

B.20.6. Sail Operation

{
  handle_mem_exception(PC, E_Breakpoint());
  RETIRE_FAIL
}

B.20.7. Exceptions

This instruction may result in the following synchronous exceptions:

• Breakpoint

53



B.21. ecall
Environment call

This instruction is defined by:

I

B.21.1. Encoding

031

00000000000000000000000001110011

B.21.2. Description

Makes a request to the supporting execution environment. When executed in U-mode, S-mode, or M-mode, it generates an environment-call-from-U-
mode exception, environment-call-from-S-mode exception, or environment-call-from-M-mode exception, respectively, and performs no other
operation.


ECALL generates a different exception for each originating privilege mode so that environment call exceptions can be selectively
delegated. A typical use case for Unix-like operating systems is to delegate to S-mode the environment-call-from-U-mode exception
but not the others.

ECALL causes the receiving privilege mode’s epc register to be set to the address of the ECALL instruction itself, not the address of the following
instruction. As ECALL causes a synchronous exception, it is not considered to retire, and should not increment the minstret CSR.

B.21.3. Access

M

Always

B.21.4. Decode Variables

B.21.5. IDL Operation

if (mode() == PrivilegeMode::M) {
  if (TRAP_ON_ECALL_FROM_M) {
    raise_precise(ExceptionCode::Mcall, PrivilegeMode::M, 0);
  } else {
    eei_ecall_from_m();
  }
} else if (mode() == PrivilegeMode::S) {
  if (TRAP_ON_ECALL_FROM_S) {
    raise_precise(ExceptionCode::Scall, PrivilegeMode::S, 0);
  } else {
    eei_ecall_from_s();
  }
} else if (mode() == PrivilegeMode::U || mode() == PrivilegeMode::VU) {
  if (TRAP_ON_ECALL_FROM_U) {
    raise_precise(ExceptionCode::Ucall, mode(), 0);
  } else {
    eei_ecall_from_u();
  }
} else if (mode() == PrivilegeMode::VS) {
  if (TRAP_ON_ECALL_FROM_VS) {
    raise_precise(ExceptionCode::VScall, PrivilegeMode::VS, 0);
  } else {
    eei_ecall_from_vs();
  }
}

B.21.6. Sail Operation

{
  let t : sync_exception =
    struct { trap = match (cur_privilege) {

54



                      User       => E_U_EnvCall(),
                      Supervisor => E_S_EnvCall(),
                      Machine    => E_M_EnvCall()
                    },
             excinfo = (None() : option(xlenbits)),
             ext     = None() };
  set_next_pc(exception_handler(cur_privilege, CTL_TRAP(t), PC));
  RETIRE_FAIL
}

B.21.7. Exceptions

This instruction may result in the following synchronous exceptions:

• Mcall

• Scall

• Ucall

• VScall

55



B.22. fence
Memory ordering fence

This instruction is defined by:

I

B.22.1. Encoding

0671112141519202324272831

0001111xd000xs1succpredfm

B.22.2. Description

Orders memory operations.

The fence instruction is used to order device I/O and memory accesses as viewed by other RISC-V harts and external devices or coprocessors. Any
combination of device input (I), device output (O), memory reads (R), and memory writes (W) may be ordered with respect to any combination of the
same. Informally, no other RISC-V hart or external device can observe any operation in the successor set following a fence before any operation in
the predecessor set preceding the fence.

The predecessor and successor fields have the same format to specify operation types:

pred succ

27 26 25 24 23 22 21 20

PI PO PR PW SI SO SR SW

Table 6. Fence mode encoding

fm field Mnemonic Meaning

0000 none Normal Fence

1000 TSO With FENCE RW,RW: exclude write-to-read ordering; otherwise: Reserved for future use.

other Reserved for future use.

When the mode field fm is 0001 and both the predecessor and successor sets are 'RW', then the instruction acts as a special-case fence.tso. fence.tso
orders all load operations in its predecessor set before all memory operations in its successor set, and all store operations in its predecessor set
before all store operations in its successor set. This leaves non-AMO store operations in the 'fence.tso’s predecessor set unordered with non-AMO
loads in its successor set.

When mode field fm is not 0001, or when mode field fm is 0001 but the pred and succ fields are not both 'RW' (0x3), then the fence acts as a baseline
fence (e.g., fm is effectively 0000). This is unaffected by the FIOM bits, described below (implicit promotion does not change how fence.tso is decoded).

The xs1 and xd fields are unused and ignored.

In modes other than M-mode, fence is further affected by menvcfg.FIOM, senvcfg.FIOM<% if ext?(:H) %>, and/or henvcfg.FIOM<% end %> as follows:

Table 7. Effective PR/PW/SR/SW in (H)S-mode

menvcfg.FIOM pred.PI
pred.PO
succ.SI
succ.SO

→
→
→
→

effective PR
effective PW
effective SR
effective SW

0 - from encoding

1 0 from encoding

1 1 1

Table 8. Effective PR/PW/SR/SW in U-mode

menvcfg.FIOM senvcfg.FIOM pred.PI
pred.PO
succ.SI
succ.SO

→
→
→
→

effective PR
effective PW
effective SR
effective SW

0 0 - from encoding

0 1 0 from encoding

0 1 1 1

1 - 0 from encoding

56



menvcfg.FIOM senvcfg.FIOM pred.PI
pred.PO
succ.SI
succ.SO

→
→
→
→

effective PR
effective PW
effective SR
effective SW

1 - 1 1

<%- if ext?(:H) -%> .Effective PR/PW/SR/SW in VS-mode and VU-mode

menvcfg.FIOM henvcfg.FIOM pred.PI
pred.PO
succ.SI
succ.SO

→
→
→
→

effective PR
effective PW
effective SR
effective SW

0 0 - from encoding

0 1 0 from encoding

0 1 1 1

1 - 0 from encoding

1 - 1 1

<%- end -%>

B.22.3. Access

M

Always

B.22.4. Decode Variables

Bits<4> fm = $encoding[31:28];
Bits<4> pred = $encoding[27:24];
Bits<4> succ = $encoding[23:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.22.5. IDL Operation

Boolean pred_i = pred[3] == 1;
Boolean pred_o = pred[2] == 1;
Boolean pred_r = pred[1] == 1;
Boolean pred_w = pred[0] == 1;
Boolean succ_i = succ[3] == 1;
Boolean succ_o = succ[2] == 1;
Boolean succ_r = succ[1] == 1;
Boolean succ_w = succ[0] == 1;
if (mode() == PrivilegeMode::S) {
  if (CSR[menvcfg].FIOM == 1) {
    if (pred_i) {
      pred_r = true;
    }
    if (pred_o) {
      pred_w = true;
    }
    if (succ_i) {
      succ_r = true;
    }
    if (succ_o) {
      succ_w = true;
    }
  }
} else if (mode() == PrivilegeMode::U) {
  if ((CSR[menvcfg].FIOM | CSR[senvcfg].FIOM) == 1) {
    if (pred_i) {
      pred_r = true;
    }
    if (pred_o) {
      pred_w = true;
    }
    if (succ_i) {

57



      succ_r = true;
    }
    if (succ_o) {
      succ_w = true;
    }
  }
} else if (mode() == PrivilegeMode::VS || mode() == PrivilegeMode::VU) {
  if ((CSR[menvcfg].FIOM | CSR[henvcfg].FIOM) == 1) {
    if (pred_i) {
      pred_r = true;
    }
    if (pred_o) {
      pred_w = true;
    }
    if (succ_i) {
      succ_r = true;
    }
    if (succ_o) {
      succ_w = true;
    }
  }
}
fence(pred_i, pred_o, pred_r, pred_w, succ_i, succ_o, succ_r, succ_w);

B.22.6. Sail Operation

{
  // If the FIOM bit in menvcfg/senvcfg is set then the I/O bits can imply R/W.
  let fiom = is_fiom_active();
  let pred = effective_fence_set(pred, fiom);
  let succ = effective_fence_set(succ, fiom);

  match (pred, succ) {
    (_ : bits(2) @ 0b11, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_rw_rw()),
    (_ : bits(2) @ 0b10, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_r_rw()),
    (_ : bits(2) @ 0b10, _ : bits(2) @ 0b10) => __barrier(Barrier_RISCV_r_r()),
    (_ : bits(2) @ 0b11, _ : bits(2) @ 0b01) => __barrier(Barrier_RISCV_rw_w()),
    (_ : bits(2) @ 0b01, _ : bits(2) @ 0b01) => __barrier(Barrier_RISCV_w_w()),
    (_ : bits(2) @ 0b01, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_w_rw()),
    (_ : bits(2) @ 0b11, _ : bits(2) @ 0b10) => __barrier(Barrier_RISCV_rw_r()),
    (_ : bits(2) @ 0b10, _ : bits(2) @ 0b01) => __barrier(Barrier_RISCV_r_w()),
    (_ : bits(2) @ 0b01, _ : bits(2) @ 0b10) => __barrier(Barrier_RISCV_w_r()),

    (_ : bits(4)       , _ : bits(2) @ 0b00) => (),
    (_ : bits(2) @ 0b00, _ : bits(4)       ) => (),

    _ => { print("FIXME: unsupported fence");
           () }
  };
  RETIRE_SUCCESS
}

B.22.7. Exceptions

This instruction does not generate synchronous exceptions.

58



B.23. fence.tso
Memory ordering fence, total store ordering

This instruction is defined by:

I

B.23.1. Encoding

06711121415192031

0001111xd000xs1100000110011

B.23.2. Description

Orders memory operations.

fence.tso orders all load operations in its predecessor set before all memory operations in its successor set, and all store operations in its predecessor
set before all store operations in its successor set. This leaves non-AMO store operations in the 'fence.tso’s predecessor set unordered with non-AMO
loads in its successor set.

The xs1 and xd fields are unused and ignored.

In modes other than M-mode, fence.tso is further affected by menvcfg.FIOM, senvcfg.FIOM<% if ext?(:H) %>, and/or henvcfg.FIOM<% end %>.

B.23.3. Access

M

Always

B.23.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.23.5. IDL Operation

fence_tso();

B.23.6. Sail Operation

{
  match (pred, succ) {
    (_ : bits(2) @ 0b11, _ : bits(2) @ 0b11) => sail_barrier(Barrier_RISCV_tso),
    (_ : bits(2) @ 0b00, _ : bits(2) @ 0b00) => (),

    _ => { print("FIXME: unsupported fence");
           () }
  };
  RETIRE_SUCCESS
}

B.23.7. Exceptions

This instruction does not generate synchronous exceptions.

59



B.24. jal
Jump and link

This instruction is defined by:

I

B.24.1. Encoding

067111231

1101111xdimm[20|10:1|11|19:12]

B.24.2. Description

Jump to a PC-relative offset and store the return address in xd.

B.24.3. Access

M

Always

B.24.4. Decode Variables

signed Bits<21> imm = sext({$encoding[31], $encoding[19:12], $encoding[20], $encoding[30:21], 1'd0});
Bits<5> xd = $encoding[11:7];

B.24.5. IDL Operation

XReg return_addr = $pc + 4;
X[xd] = return_addr;
jump_halfword($pc + $signed(imm));

B.24.6. Sail Operation

{
  let t : xlenbits = PC + sign_extend(imm);
  /* Extensions get the first checks on the prospective target address. */
  match ext_control_check_pc(t) {
    Ext_ControlAddr_Error(e) => {
      ext_handle_control_check_error(e);
      RETIRE_FAIL
    },
    Ext_ControlAddr_OK(target) => {
      /* Perform standaxd alignment check */
      if bit_to_bool(target[1]) & not(extension("C"))
      then {
        handle_mem_exception(target, E_Fetch_Addr_Align());
        RETIRE_FAIL
      } else {
        X(xd) = get_next_pc();
        set_next_pc(target);
        RETIRE_SUCCESS
      }
    }
  }
}

B.24.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

60



B.25. jalr
Jump and link register

This instruction is defined by:

I

B.25.1. Encoding

06711121415192031

1100111xd000xs1imm

B.25.2. Description

Jump to an address formed by adding xs1 to a signed offset then clearing the least significant bit, and store the return address in xd.

B.25.3. Access

M

Always

B.25.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.25.5. IDL Operation

XReg addr = (X[xs1] + $signed(imm)) & ~MXLEN'1;
XReg returnaddr;
returnaddr = $pc + 4;
X[xd] = returnaddr;
jump(addr);

B.25.6. Sail Operation

{
/* For the sequential model, the memory-model definition doesn't work directly
 * if xs1 = xd.  We would effectively have to keep a regfile for reads and another for
 * writes, and swap on instruction completion.  This could perhaps be optimized in
 * some manner, but for now, we just keep a reoxdered definition to improve simulator
 * performance.
 */
  let t : xlenbits = X(xs1) + sign_extend(imm);
  /* Extensions get the first checks on the prospective target address. */
  match ext_control_check_addr(t) {
    Ext_ControlAddr_Error(e) => {
      ext_handle_control_check_error(e);
      RETIRE_FAIL
    },
    Ext_ControlAddr_OK(addr) => {
      let target = [addr with 0 = bitzero];  /* clear addr[0] */
      if bit_to_bool(target[1]) & not(extension("C")) then {
        handle_mem_exception(target, E_Fetch_Addr_Align());
        RETIRE_FAIL
      } else {
        X(xd) = get_next_pc();
        set_next_pc(target);
        RETIRE_SUCCESS
      }
    }
  }
}

61



B.25.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

62



B.26. lb
Load byte

This instruction is defined by:

I

B.26.1. Encoding

06711121415192031

0000011xd000xs1imm

B.26.2. Description

Load 8 bits of data into register xd from an address formed by adding xs1 to a signed offset. Sign extend the result.

B.26.3. Access

M

Always

B.26.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.26.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = sext(read_memory<8>(virtual_address, $encoding), 8);

B.26.6. Sail Operation

{
  let offset : xlenbits = sign_extend(imm);
  /* Get the address, X(xs1) + offset.
     Some extensions perform additional checks on address validity. */
  match ext_data_get_addr(xs1, offset, Read(Data), width) {
    Ext_DataAddr_Error(e)  => { ext_handle_data_check_error(e); RETIRE_FAIL },
    Ext_DataAddr_OK(vaddr) =>
      if   check_misaligned(vaddr, width)
      then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
      else match translateAddr(vaddr, Read(Data)) {
        TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
        TR_Address(paddr, _) =>
          match (width) {
            BYTE =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
            HALF =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
            WORD =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
            DOUBLE if sizeof(xlen) >= 64 =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
            _ => report_invalid_width(__FILE__, __LINE__, width, "load")
          }
      }
  }
}

B.26.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

63



• LoadAddressMisaligned

• LoadPageFault

• StoreAmoAccessFault

64



B.27. lbu
Load byte unsigned

This instruction is defined by:

I

B.27.1. Encoding

06711121415192031

0000011xd100xs1imm

B.27.2. Description

Load 8 bits of data into register xd from an address formed by adding xs1 to a signed offset. Zero extend the result.

B.27.3. Access

M

Always

B.27.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.27.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = read_memory<8>(virtual_address, $encoding);

B.27.6. Sail Operation

{
  let offset : xlenbits = sign_extend(imm);
  /* Get the address, X(xs1) + offset.
     Some extensions perform additional checks on address validity. */
  match ext_data_get_addr(xs1, offset, Read(Data), width) {
    Ext_DataAddr_Error(e)  => { ext_handle_data_check_error(e); RETIRE_FAIL },
    Ext_DataAddr_OK(vaddr) =>
      if   check_misaligned(vaddr, width)
      then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
      else match translateAddr(vaddr, Read(Data)) {
        TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
        TR_Address(paddr, _) =>
          match (width) {
            BYTE =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
            HALF =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
            WORD =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
            DOUBLE if sizeof(xlen) >= 64 =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
            _ => report_invalid_width(__FILE__, __LINE__, width, "load")
          }
      }
  }
}

B.27.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

65



• LoadAddressMisaligned

• LoadPageFault

66



B.28. ld
Load doubleword

This instruction is defined by:

(I || Zilsd)

B.28.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

06711121415192031

0000011xd != {1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31}011xs1imm

RV64

06711121415192031

0000011xd011xs1imm

B.28.2. Description

For RV64, load 64 bits of data into register xd from an address formed by adding xs1 to a signed offset.

<% if ext?(:Zilsd) %> For RV32, Loads a 64-bit value into registers xd and xd+1. The effective address is obtained by adding register xs1 to the sign-
extended 12-bit offset. <% end %>

B.28.3. Access

M

Always

B.28.4. Decode Variables

RV32

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

RV64

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.28.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
if (xlen() == 32) {
  if (implemented?(ExtensionName::Zilsd)) {
    Bits<64> data = read_memory<64>(virtual_address, $encoding);
    X[xd] = data[31:0];
    X[xd + 1] = data[63:32];
  } else {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
} else {
  X[xd] = read_memory<64>(virtual_address, $encoding);
}

67



B.28.6. Sail Operation

{
  let offset : xlenbits = sign_extend(imm);
  /* Get the address, X(xs1) + offset.
     Some extensions perform additional checks on address validity. */
  match ext_data_get_addr(xs1, offset, Read(Data), width) {
    Ext_DataAddr_Error(e)  => { ext_handle_data_check_error(e); RETIRE_FAIL },
    Ext_DataAddr_OK(vaddr) =>
      if   check_misaligned(vaddr, width)
      then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
      else match translateAddr(vaddr, Read(Data)) {
        TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
        TR_Address(paddr, _) =>
          match (width) {
            BYTE =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
            HALF =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
            WORD =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
            DOUBLE if sizeof(xlen) >= 64 =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
            _ => report_invalid_width(__FILE__, __LINE__, width, "load")
          }
      }
  }
}

B.28.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• LoadAddressMisaligned

• LoadPageFault

68



B.29. lh
Load halfword

This instruction is defined by:

I

B.29.1. Encoding

06711121415192031

0000011xd001xs1imm

B.29.2. Description

Load 16 bits of data into register xd from an address formed by adding xs1 to a signed offset. Sign extend the result.

B.29.3. Access

M

Always

B.29.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.29.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = sext(read_memory<16>(virtual_address, $encoding), 16);

B.29.6. Sail Operation

{
  let offset : xlenbits = sign_extend(imm);
  /* Get the address, X(xs1) + offset.
     Some extensions perform additional checks on address validity. */
  match ext_data_get_addr(xs1, offset, Read(Data), width) {
    Ext_DataAddr_Error(e)  => { ext_handle_data_check_error(e); RETIRE_FAIL },
    Ext_DataAddr_OK(vaddr) =>
      if   check_misaligned(vaddr, width)
      then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
      else match translateAddr(vaddr, Read(Data)) {
        TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
        TR_Address(paddr, _) =>
          match (width) {
            BYTE =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
            HALF =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
            WORD =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
            DOUBLE if sizeof(xlen) >= 64 =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
            _ => report_invalid_width(__FILE__, __LINE__, width, "load")
          }
      }
  }
}

B.29.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

69



• LoadAddressMisaligned

• LoadPageFault

70



B.30. lhu
Load halfword unsigned

This instruction is defined by:

I

B.30.1. Encoding

06711121415192031

0000011xd101xs1imm

B.30.2. Description

Load 16 bits of data into register xd from an address formed by adding xs1 to a signed offset. Zero extend the result.

B.30.3. Access

M

Always

B.30.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.30.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = read_memory<16>(virtual_address, $encoding);

B.30.6. Sail Operation

{
  let offset : xlenbits = sign_extend(imm);
  /* Get the address, X(xs1) + offset.
     Some extensions perform additional checks on address validity. */
  match ext_data_get_addr(xs1, offset, Read(Data), width) {
    Ext_DataAddr_Error(e)  => { ext_handle_data_check_error(e); RETIRE_FAIL },
    Ext_DataAddr_OK(vaddr) =>
      if   check_misaligned(vaddr, width)
      then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
      else match translateAddr(vaddr, Read(Data)) {
        TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
        TR_Address(paddr, _) =>
          match (width) {
            BYTE =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
            HALF =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
            WORD =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
            DOUBLE if sizeof(xlen) >= 64 =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
            _ => report_invalid_width(__FILE__, __LINE__, width, "load")
          }
      }
  }
}

B.30.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

71



• LoadAddressMisaligned

• LoadPageFault

72



B.31. lui
Load upper immediate

This instruction is defined by:

I

B.31.1. Encoding

067111231

0110111xdimm[31:12]

B.31.2. Description

Load the zero-extended imm into xd.

B.31.3. Access

M

Always

B.31.4. Decode Variables

Bits<32> imm = {$encoding[31:12], 12'd0};
Bits<5> xd = $encoding[11:7];

B.31.5. IDL Operation

X[xd] = $signed(imm);

B.31.6. Sail Operation

{
  let off : xlenbits = sign_extend(imm @ 0x000);
  let ret : xlenbits = match op {
    RISCV_LUI   => off,
    RISCV_AUIPC => get_arch_pc() + off
  };
  X(xd) = ret;
  RETIRE_SUCCESS
}

B.31.7. Exceptions

This instruction does not generate synchronous exceptions.

73



B.32. lw
Load word

This instruction is defined by:

I

B.32.1. Encoding

06711121415192031

0000011xd010xs1imm

B.32.2. Description

Load 32 bits of data into register xd from an address formed by adding xs1 to a signed offset. Sign extend the result.

B.32.3. Access

M

Always

B.32.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.32.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = sext(read_memory<32>(virtual_address, $encoding), 32);

B.32.6. Sail Operation

{
  let offset : xlenbits = sign_extend(imm);
  /* Get the address, X(xs1) + offset.
     Some extensions perform additional checks on address validity. */
  match ext_data_get_addr(xs1, offset, Read(Data), width) {
    Ext_DataAddr_Error(e)  => { ext_handle_data_check_error(e); RETIRE_FAIL },
    Ext_DataAddr_OK(vaddr) =>
      if   check_misaligned(vaddr, width)
      then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
      else match translateAddr(vaddr, Read(Data)) {
        TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
        TR_Address(paddr, _) =>
          match (width) {
            BYTE =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
            HALF =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
            WORD =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
            DOUBLE if sizeof(xlen) >= 64 =>
              process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
            _ => report_invalid_width(__FILE__, __LINE__, width, "load")
          }
      }
  }
}

B.32.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

74



• LoadAddressMisaligned

• LoadPageFault

75



B.33. mret
Machine-mode Return from Trap

This instruction is defined by:

Sm

B.33.1. Encoding

031

00110000001000000000000001110011

B.33.2. Description

Return from machine mode after handling a trap.

B.33.3. Access

M

Always

B.33.4. Decode Variables

B.33.5. IDL Operation

if (CSR[mstatus].MPP != 2'b11) {
  if (implemented?(ExtensionName::U)) {
    CSR[mstatus].MPRV = 0;
  }
}
if (implemented?(ExtensionName::Smdbltrp)) {
  if (xlen() == 64) {
    CSR[mstatus].MDT = 1'b0;
  } else {
    CSR[mstatush].MDT = 1'b0;
  }
}
CSR[mstatus].MIE = CSR[mstatus].MPIE;
CSR[mstatus].MPIE = 1;
if (CSR[mstatus].MPP == 2'b00) {
  set_mode(PrivilegeMode::U);
} else if (CSR[mstatus].MPP == 2'b01) {
  set_mode(PrivilegeMode::S);
} else if (CSR[mstatus].MPP == 2'b11) {
  set_mode(PrivilegeMode::M);
}
CSR[mstatus].MPP = implemented?(ExtensionName::U) ? 2'b00 : 2'b11;
$pc = $bits(CSR[CSR[mepc]]);

B.33.6. Sail Operation

{
  if   cur_privilege != Machine
  then { handle_illegal(); RETIRE_FAIL }
  else if not(ext_check_xret_priv (Machine))
  then { ext_fail_xret_priv(); RETIRE_FAIL }
  else {
    set_next_pc(exception_handler(cur_privilege, CTL_MRET(), PC));
    RETIRE_SUCCESS
  }
}

76



B.33.7. Exceptions

This instruction does not generate synchronous exceptions.

77



B.34. mul
Signed multiply

This instruction is defined by:

(M || Zmmul)

B.34.1. Encoding

067111214151920242531

0110011xd000xs1xs20000001

B.34.2. Description

MUL performs an XLEN-bitxXLEN-bit multiplication of xs1 by xs2 and places the lower XLEN bits in the destination register. Any overflow is thrown
away.


If both the high and low bits of the same product are required, then the recommended code sequence is: MULH[[S]U] xdh, xs1, xs2;
MUL xdl, xs1, xs2 (source register specifiers must be in same order and xdh cannot be the same as xs1 or xs2). Microarchitectures
can then fuse these into a single multiply operation instead of performing two separate multiplies.

B.34.3. Access

M

Always

B.34.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.34.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
X[xd] = (src1 * src2)[MXLEN - 1:0];

B.34.6. Sail Operation

{
  if extension("M") | haveZmmul() then {
    let rs1_val = X(rs1);
    let rs2_val = X(rs2);
    let rs1_int : int = if signed1 then signed(rs1_val) else unsigned(rs1_val);
    let rs2_int : int = if signed2 then signed(rs2_val) else unsigned(rs2_val);
    let result_wide = to_bits(2 * sizeof(xlen), rs1_int * rs2_int);
    let result = if   high
                 then result_wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
                 else result_wide[(sizeof(xlen) - 1) .. 0];
    X(rd) = result;
    RETIRE_SUCCESS
  } else {
    handle_illegal();
    RETIRE_FAIL
  }
}

B.34.7. Exceptions

This instruction may result in the following synchronous exceptions:

78



• IllegalInstruction

79



B.35. mulh
Signed multiply high

This instruction is defined by:

(M || Zmmul)

B.35.1. Encoding

067111214151920242531

0110011xd001xs1xs20000001

B.35.2. Description

Multiply the signed values in xs1 to xs2, and store the upper half of the result in xd. The lower half is thrown away.

If both the upper and lower halves are needed, it suggested to use the sequence:

  mulh xdh, xs1, xs2
  mul  xdl, xs1, xs2
---

Microarchitectures may look for that sequence and fuse the operations.

B.35.3. Access

M

Always

B.35.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.35.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
Bits<1> xs1_sign_bit = X[xs1][xlen() - 1];
Bits<MXLEN `* 2> src1 = {{xlen(){xs1_sign_bit}}, X[xs1]};
Bits<1> xs2_sign_bit = X[xs2][xlen() - 1];
Bits<MXLEN `* 2> src2 = {{xlen(){xs2_sign_bit}}, X[xs2]};
X[xd] = (src1 * src2)[(xlen() * 8'd2) - 1:xlen()];

B.35.6. Sail Operation

{
  if extension("M") | haveZmmul() then {
    let rs1_val = X(rs1);
    let rs2_val = X(rs2);
    let rs1_int : int = if signed1 then signed(rs1_val) else unsigned(rs1_val);
    let rs2_int : int = if signed2 then signed(rs2_val) else unsigned(rs2_val);
    let result_wide = to_bits(2 * sizeof(xlen), rs1_int * rs2_int);
    let result = if   high
                 then result_wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
                 else result_wide[(sizeof(xlen) - 1) .. 0];
    X(rd) = result;
    RETIRE_SUCCESS
  } else {
    handle_illegal();
    RETIRE_FAIL
  }

80



}

B.35.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

81



B.36. mulhsu
Signed/unsigned multiply high

This instruction is defined by:

(M || Zmmul)

B.36.1. Encoding

067111214151920242531

0110011xd010xs1xs20000001

B.36.2. Description

Multiply the signed value in xs1 by the unsigned value in xs2, and store the upper half of the result in xd. The lower half is thrown away.

If both the upper and lower halves are needed, it suggested to use the sequence:

  mulhsu xdh, xs1, xs2
  mul    xdl, xs1, xs2
---

Microarchitectures may look for that sequence and fuse the operations.

B.36.3. Access

M

Always

B.36.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.36.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
Bits<1> xs1_sign_bit = X[xs1][MXLEN - 1];
Bits<MXLEN * 8'd2> src1 = {{MXLEN{xs1_sign_bit}}, X[xs1]};
Bits<MXLEN * 8'd2> src2 = {{MXLEN{1'b0}}, X[xs2]};
X[xd] = (src1 * src2)[(MXLEN * 8'd2) - 1:MXLEN];

B.36.6. Sail Operation

{
  if extension("M") | haveZmmul() then {
    let rs1_val = X(rs1);
    let rs2_val = X(rs2);
    let rs1_int : int = if signed1 then signed(rs1_val) else unsigned(rs1_val);
    let rs2_int : int = if signed2 then signed(rs2_val) else unsigned(rs2_val);
    let result_wide = to_bits(2 * sizeof(xlen), rs1_int * rs2_int);
    let result = if   high
                 then result_wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
                 else result_wide[(sizeof(xlen) - 1) .. 0];
    X(rd) = result;
    RETIRE_SUCCESS
  } else {
    handle_illegal();
    RETIRE_FAIL
  }

82



}

B.36.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

83



B.37. mulhu
Unsigned multiply high

This instruction is defined by:

(M || Zmmul)

B.37.1. Encoding

067111214151920242531

0110011xd011xs1xs20000001

B.37.2. Description

Multiply the unsigned values in xs1 to xs2, and store the upper half of the result in xd. The lower half is thrown away.

If both the upper and lower halves are needed, it suggested to use the sequence:

  mulhu xdh, xs1, xs2
  mul   xdl, xs1, xs2
---

Microarchitectures may look for that sequence and fuse the operations.

B.37.3. Access

M

Always

B.37.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.37.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
Bits<MXLEN * 8'd2> src1 = {{MXLEN{1'b0}}, X[xs1]};
Bits<MXLEN * 8'd2> src2 = {{MXLEN{1'b0}}, X[xs2]};
X[xd] = (src1 * src2)[(MXLEN * 8'd2) - 1:MXLEN];

B.37.6. Sail Operation

{
  if extension("M") | haveZmmul() then {
    let rs1_val = X(rs1);
    let rs2_val = X(rs2);
    let rs1_int : int = if signed1 then signed(rs1_val) else unsigned(rs1_val);
    let rs2_int : int = if signed2 then signed(rs2_val) else unsigned(rs2_val);
    let result_wide = to_bits(2 * sizeof(xlen), rs1_int * rs2_int);
    let result = if   high
                 then result_wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
                 else result_wide[(sizeof(xlen) - 1) .. 0];
    X(rd) = result;
    RETIRE_SUCCESS
  } else {
    handle_illegal();
    RETIRE_FAIL
  }
}

84



B.37.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

85



B.38. or
Or

This instruction is defined by:

I

B.38.1. Encoding

067111214151920242531

0110011xd110xs1xs20000000

B.38.2. Description

Or xs1 with xs2, and store the result in xd

B.38.3. Access

M

Always

B.38.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.38.5. IDL Operation

X[xd] = X[xs1] | X[xs2];

B.38.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let result : xlenbits = match op {
    RISCV_ADD  => xs1_val + xs2_val,
    RISCV_SLT  => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
    RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
    RISCV_AND  => xs1_val & xs2_val,
    RISCV_OR   => xs1_val | xs2_val,
    RISCV_XOR  => xs1_val ^ xs2_val,
    RISCV_SLL  => if   sizeof(xlen) == 32
                  then xs1_val << (xs2_val[4..0])
                  else xs1_val << (xs2_val[5..0]),
    RISCV_SRL  => if   sizeof(xlen) == 32
                  then xs1_val >> (xs2_val[4..0])
                  else xs1_val >> (xs2_val[5..0]),
    RISCV_SUB  => xs1_val - xs2_val,
    RISCV_SRA  => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, xs2_val[4..0])
                  else shift_right_arith64(xs1_val, xs2_val[5..0])
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.38.7. Exceptions

This instruction does not generate synchronous exceptions.

86



B.39. ori
Or immediate

This instruction is defined by:

I

B.39.1. Encoding

06711121415192031

0010011xd110xs1imm

B.39.2. Description

Or an immediate to the value in xs1, and store the result in xd

B.39.3. Access

M

Always

B.39.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.39.5. IDL Operation

X[xd] = X[xs1] | $signed(imm);

B.39.6. Sail Operation

{
  let xs1_val = X(xs1);
  let immext : xlenbits = sign_extend(imm);
  let result : xlenbits = match op {
    RISCV_ADDI  => xs1_val + immext,
    RISCV_SLTI  => zero_extend(bool_to_bits(xs1_val <_s immext)),
    RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
    RISCV_ANDI  => xs1_val & immext,
    RISCV_ORI   => xs1_val | immext,
    RISCV_XORI  => xs1_val ^ immext
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.39.7. Exceptions

This instruction does not generate synchronous exceptions.

87



B.40. rem
Signed remainder

This instruction is defined by:

M

B.40.1. Encoding

067111214151920242531

0110011xd110xs1xs20000001

B.40.2. Description

Calculate the remainder of signed division of xs1 by xs2, and store the result in xd.

If the value in register xs2 is zero, write the value in xs1 into xd;

If the result of the division overflows, write zero into xd;

B.40.3. Access

M

Always

B.40.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.40.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
if (src2 == 0) {
  X[xd] = src1;
} else if ((src1 == {1'b1, {MXLEN - 1{1'b0}}}) && (src2 == {MXLEN{1'b1}})) {
  X[xd] = 0;
} else {
  X[xd] = $signed(src1) % $signed(src2);
}

B.40.6. Sail Operation

{
  if extension("M") then {
    let rs1_val = X(rs1);
    let rs2_val = X(rs2);
    let rs1_int : int = if s then signed(rs1_val) else unsigned(rs1_val);
    let rs2_int : int = if s then signed(rs2_val) else unsigned(rs2_val);
    let r : int = if rs2_int == 0 then rs1_int else rem_round_zero(rs1_int, rs2_int);
    /* signed overflow case returns zero naturally as required due to -1 divisor */
    X(rd) = to_bits(sizeof(xlen), r);
    RETIRE_SUCCESS
  } else {
    handle_illegal();
    RETIRE_FAIL
  }
}

88



B.40.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

89



B.41. remu
Unsigned remainder

This instruction is defined by:

M

B.41.1. Encoding

067111214151920242531

0110011xd111xs1xs20000001

B.41.2. Description

Calculate the remainder of unsigned division of xs1 by xs2, and store the result in xd.

B.41.3. Access

M

Always

B.41.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.41.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
if (src2 == 0) {
  X[xd] = src1;
} else {
  X[xd] = src1 % src2;
}

B.41.6. Sail Operation

{
  if extension("M") then {
    let rs1_val = X(rs1);
    let rs2_val = X(rs2);
    let rs1_int : int = if s then signed(rs1_val) else unsigned(rs1_val);
    let rs2_int : int = if s then signed(rs2_val) else unsigned(rs2_val);
    let r : int = if rs2_int == 0 then rs1_int else rem_round_zero(rs1_int, rs2_int);
    /* signed overflow case returns zero naturally as required due to -1 divisor */
    X(rd) = to_bits(sizeof(xlen), r);
    RETIRE_SUCCESS
  } else {
    handle_illegal();
    RETIRE_FAIL
  }
}

B.41.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

90



B.42. sb
Store byte

This instruction is defined by:

I

B.42.1. Encoding

067111214151920242531

0100011imm[4:0]000xs1xs2imm[11:5]

B.42.2. Description

Store 8 bits of data from register xs2 to an address formed by adding xs1 to a signed offset.

B.42.3. Access

M

Always

B.42.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:7]};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

B.42.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
write_memory<8>(virtual_address, X[xs2][7:0], $encoding);

B.42.6. Sail Operation

{
  let offset : xlenbits = sign_extend(imm);
  /* Get the address, X(xs1) + offset.
     Some extensions perform additional checks on address validity. */
  match ext_data_get_addr(xs1, offset, Write(Data), width) {
    Ext_DataAddr_Error(e)  => { ext_handle_data_check_error(e); RETIRE_FAIL },
    Ext_DataAddr_OK(vaddr) =>
      if   check_misaligned(vaddr, width)
      then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
      else match translateAddr(vaddr, Write(Data)) {
        TR_Failure(e, _)    => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
        TR_Address(paddr, _) => {
          let eares : MemoryOpResult(unit) = match width {
            BYTE   => mem_write_ea(paddr, 1, aq, rl, false),
            HALF   => mem_write_ea(paddr, 2, aq, rl, false),
            WORD   => mem_write_ea(paddr, 4, aq, rl, false),
            DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
          };
          match (eares) {
            MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
            MemValue(_) => {
              let xs2_val = X(xs2);
              let res : MemoryOpResult(bool) = match (width) {
                BYTE => mem_write_value(paddr, 1, xs2_val[7..0],  aq, rl, false),
                HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
                WORD => mem_write_value(paddr, 4, xs2_val[31..0], aq, rl, false),
                DOUBLE if sizeof(xlen) >= 64
                     => mem_write_value(paddr, 8, xs2_val,        aq, rl, false),
                _    => report_invalid_width(__FILE__, __LINE__, width, "store"),
              };
              match (res) {
                MemValue(true)  => RETIRE_SUCCESS,
                MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),

91



                MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }
              }
            }
          }
        }
      }
  }
}

B.42.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

92



B.43. sd
Store doubleword

This instruction is defined by:

(I || Zilsd)

B.43.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

067111214151920242531

0100011imm[4:0]011xs1xs2 != {1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31}imm[11:5]

RV64

067111214151920242531

0100011imm[4:0]011xs1xs2imm[11:5]

B.43.2. Description

For RV64, store 64 bits of data from register xs2 to an address formed by adding xs1 to a signed offset. <% if ext?(:Zilsd) %> For RV32, store
doubleword from even/odd register pair. <% end %>

B.43.3. Access

M

Always

B.43.4. Decode Variables

RV32

Bits<12> imm = {$encoding[31:25], $encoding[11:7]};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

RV64

signed Bits<12> imm = sext({$encoding[31:25], $encoding[11:7]});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

B.43.5. IDL Operation

Bits<64> data;
XReg virtual_address = X[xs1] + $signed(imm);
if (xlen() == 32) {
  if (implemented?(ExtensionName::Zclsd)) {
    data = {X[xs2 + 1], X[xs2]};
  } else {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
} else {
  data = X[xs2];
}
write_memory<64>(virtual_address, data, $encoding);

B.43.6. Sail Operation

{
  let offset : xlenbits = sign_extend(imm);

93



  /* Get the address, X(xs1) + offset.
     Some extensions perform additional checks on address validity. */
  match ext_data_get_addr(xs1, offset, Write(Data), width) {
    Ext_DataAddr_Error(e)  => { ext_handle_data_check_error(e); RETIRE_FAIL },
    Ext_DataAddr_OK(vaddr) =>
      if   check_misaligned(vaddr, width)
      then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
      else match translateAddr(vaddr, Write(Data)) {
        TR_Failure(e, _)    => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
        TR_Address(paddr, _) => {
          let eares : MemoryOpResult(unit) = match width {
            BYTE   => mem_write_ea(paddr, 1, aq, rl, false),
            HALF   => mem_write_ea(paddr, 2, aq, rl, false),
            WORD   => mem_write_ea(paddr, 4, aq, rl, false),
            DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
          };
          match (eares) {
            MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
            MemValue(_) => {
              let xs2_val = X(xs2);
              let res : MemoryOpResult(bool) = match (width) {
                BYTE => mem_write_value(paddr, 1, xs2_val[7..0],  aq, rl, false),
                HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
                WORD => mem_write_value(paddr, 4, xs2_val[31..0], aq, rl, false),
                DOUBLE if sizeof(xlen) >= 64
                     => mem_write_value(paddr, 8, xs2_val,        aq, rl, false),
                _    => report_invalid_width(__FILE__, __LINE__, width, "store"),
              };
              match (res) {
                MemValue(true)  => RETIRE_SUCCESS,
                MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),
                MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }
              }
            }
          }
        }
      }
  }
}

B.43.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

94



B.44. sh
Store halfword

This instruction is defined by:

I

B.44.1. Encoding

067111214151920242531

0100011imm[4:0]001xs1xs2imm[11:5]

B.44.2. Description

Store 16 bits of data from register xs2 to an address formed by adding xs1 to a signed offset.

B.44.3. Access

M

Always

B.44.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:7]};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

B.44.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
write_memory<16>(virtual_address, X[xs2][15:0], $encoding);

B.44.6. Sail Operation

{
  let offset : xlenbits = sign_extend(imm);
  /* Get the address, X(xs1) + offset.
     Some extensions perform additional checks on address validity. */
  match ext_data_get_addr(xs1, offset, Write(Data), width) {
    Ext_DataAddr_Error(e)  => { ext_handle_data_check_error(e); RETIRE_FAIL },
    Ext_DataAddr_OK(vaddr) =>
      if   check_misaligned(vaddr, width)
      then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
      else match translateAddr(vaddr, Write(Data)) {
        TR_Failure(e, _)    => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
        TR_Address(paddr, _) => {
          let eares : MemoryOpResult(unit) = match width {
            BYTE   => mem_write_ea(paddr, 1, aq, rl, false),
            HALF   => mem_write_ea(paddr, 2, aq, rl, false),
            WORD   => mem_write_ea(paddr, 4, aq, rl, false),
            DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
          };
          match (eares) {
            MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
            MemValue(_) => {
              let xs2_val = X(xs2);
              let res : MemoryOpResult(bool) = match (width) {
                BYTE => mem_write_value(paddr, 1, xs2_val[7..0],  aq, rl, false),
                HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
                WORD => mem_write_value(paddr, 4, xs2_val[31..0], aq, rl, false),
                DOUBLE if sizeof(xlen) >= 64
                     => mem_write_value(paddr, 8, xs2_val,        aq, rl, false),
                _    => report_invalid_width(__FILE__, __LINE__, width, "store"),
              };
              match (res) {
                MemValue(true)  => RETIRE_SUCCESS,
                MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),

95



                MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }
              }
            }
          }
        }
      }
  }
}

B.44.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

96



B.45. sll
Shift left logical

This instruction is defined by:

I

B.45.1. Encoding

067111214151920242531

0110011xd001xs1xs20000000

B.45.2. Description

Shift the value in xs1 left by the value in the lower 6 bits of xs2, and store the result in xd.

B.45.3. Access

M

Always

B.45.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.45.5. IDL Operation

if (xlen() == 64) {
  X[xd] = X[xs1] << X[xs2][5:0];
} else {
  X[xd] = X[xs1] << X[xs2][4:0];
}

B.45.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let result : xlenbits = match op {
    RISCV_ADD  => xs1_val + xs2_val,
    RISCV_SLT  => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
    RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
    RISCV_AND  => xs1_val & xs2_val,
    RISCV_OR   => xs1_val | xs2_val,
    RISCV_XOR  => xs1_val ^ xs2_val,
    RISCV_SLL  => if   sizeof(xlen) == 32
                  then xs1_val << (xs2_val[4..0])
                  else xs1_val << (xs2_val[5..0]),
    RISCV_SRL  => if   sizeof(xlen) == 32
                  then xs1_val >> (xs2_val[4..0])
                  else xs1_val >> (xs2_val[5..0]),
    RISCV_SUB  => xs1_val - xs2_val,
    RISCV_SRA  => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, xs2_val[4..0])
                  else shift_right_arith64(xs1_val, xs2_val[5..0])
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.45.7. Exceptions

This instruction does not generate synchronous exceptions.

97



B.46. slli
Shift left logical immediate

This instruction is defined by:

I

B.46.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

067111214151920242531

0010011xd001xs1shamt0000000

RV64

067111214151920252631

0010011xd001xs1shamt000000

B.46.2. Description

Shift the value in xs1 left by shamt, and store the result in xd

B.46.3. Access

M

Always

B.46.4. Decode Variables

RV32

Bits<5> shamt = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

RV64

Bits<6> shamt = $encoding[25:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.46.5. IDL Operation

X[xd] = X[xs1] << shamt;

B.46.6. Sail Operation

{
  let xs1_val = X(xs1);
  /* the decoder guaxd should ensure that shamt[5] = 0 for RV32 */
  let result : xlenbits = match op {
    RISCV_SLLI => if   sizeof(xlen) == 32
                  then xs1_val << shamt[4..0]
                  else xs1_val << shamt,
    RISCV_SRLI => if   sizeof(xlen) == 32
                  then xs1_val >> shamt[4..0]
                  else xs1_val >> shamt,
    RISCV_SRAI => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, shamt[4..0])
                  else shift_right_arith64(xs1_val, shamt)
  };

98



  X(xd) = result;
  RETIRE_SUCCESS
}

B.46.7. Exceptions

This instruction does not generate synchronous exceptions.

99



B.47. slt
Set on less than

This instruction is defined by:

I

B.47.1. Encoding

067111214151920242531

0110011xd010xs1xs20000000

B.47.2. Description

Places the value 1 in register xd if register xs1 is less than the value in register xs2, where both sources are treated as signed numbers, else 0 is
written to xd.

B.47.3. Access

M

Always

B.47.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.47.5. IDL Operation

XReg src1 = X[xs1];
XReg src2 = X[xs2];
X[xd] = ($signed(src1) < $signed(src2)) ? '1 : '0;

B.47.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let result : xlenbits = match op {
    RISCV_ADD  => xs1_val + xs2_val,
    RISCV_SLT  => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
    RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
    RISCV_AND  => xs1_val & xs2_val,
    RISCV_OR   => xs1_val | xs2_val,
    RISCV_XOR  => xs1_val ^ xs2_val,
    RISCV_SLL  => if   sizeof(xlen) == 32
                  then xs1_val << (xs2_val[4..0])
                  else xs1_val << (xs2_val[5..0]),
    RISCV_SRL  => if   sizeof(xlen) == 32
                  then xs1_val >> (xs2_val[4..0])
                  else xs1_val >> (xs2_val[5..0]),
    RISCV_SUB  => xs1_val - xs2_val,
    RISCV_SRA  => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, xs2_val[4..0])
                  else shift_right_arith64(xs1_val, xs2_val[5..0])
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.47.7. Exceptions

This instruction does not generate synchronous exceptions.

100



B.48. slti
Set on less than immediate

This instruction is defined by:

I

B.48.1. Encoding

06711121415192031

0010011xd010xs1imm

B.48.2. Description

Places the value 1 in register xd if register xs1 is less than the sign-extended immediate when both are treated as signed numbers, else 0 is written to
xd.

B.48.3. Access

M

Always

B.48.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.48.5. IDL Operation

X[xd] = ($signed(X[xs1]) < $signed(imm)) ? '1 : '0;

B.48.6. Sail Operation

{
  let xs1_val = X(xs1);
  let immext : xlenbits = sign_extend(imm);
  let result : xlenbits = match op {
    RISCV_ADDI  => xs1_val + immext,
    RISCV_SLTI  => zero_extend(bool_to_bits(xs1_val <_s immext)),
    RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
    RISCV_ANDI  => xs1_val & immext,
    RISCV_ORI   => xs1_val | immext,
    RISCV_XORI  => xs1_val ^ immext
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.48.7. Exceptions

This instruction does not generate synchronous exceptions.

101



B.49. sltiu
Set on less than immediate unsigned

This instruction is defined by:

I

B.49.1. Encoding

06711121415192031

0010011xd011xs1imm

B.49.2. Description

Places the value 1 in register xd if register xs1 is less than the sign-extended immediate when both are treated as unsigned numbers (i.e., the
immediate is first sign-extended to XLEN bits then treated as an unsigned number), else 0 is written to xd.

 sltiu xd, xs1, 1 sets xd to 1 if xs1 equals zero, otherwise sets xd to 0 (assembler pseudoinstruction SEQZ xd, rs).

B.49.3. Access

M

Always

B.49.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.49.5. IDL Operation

Bits<MXLEN> sign_extend_imm = $signed(imm);
X[xd] = (X[xs1] < sign_extend_imm) ? 1 : 0;

B.49.6. Sail Operation

{
  let xs1_val = X(xs1);
  let immext : xlenbits = sign_extend(imm);
  let result : xlenbits = match op {
    RISCV_ADDI  => xs1_val + immext,
    RISCV_SLTI  => zero_extend(bool_to_bits(xs1_val <_s immext)),
    RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
    RISCV_ANDI  => xs1_val & immext,
    RISCV_ORI   => xs1_val | immext,
    RISCV_XORI  => xs1_val ^ immext
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.49.7. Exceptions

This instruction does not generate synchronous exceptions.

102



B.50. sltu
Set on less than unsigned

This instruction is defined by:

I

B.50.1. Encoding

067111214151920242531

0110011xd011xs1xs20000000

B.50.2. Description

Places the value 1 in register xd if register xs1 is less than the value in register xs2, where both sources are treated as unsigned numbers, else 0 is
written to xd.

B.50.3. Access

M

Always

B.50.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.50.5. IDL Operation

X[xd] = (X[xs1] < X[xs2]) ? 1 : 0;

B.50.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let result : xlenbits = match op {
    RISCV_ADD  => xs1_val + xs2_val,
    RISCV_SLT  => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
    RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
    RISCV_AND  => xs1_val & xs2_val,
    RISCV_OR   => xs1_val | xs2_val,
    RISCV_XOR  => xs1_val ^ xs2_val,
    RISCV_SLL  => if   sizeof(xlen) == 32
                  then xs1_val << (xs2_val[4..0])
                  else xs1_val << (xs2_val[5..0]),
    RISCV_SRL  => if   sizeof(xlen) == 32
                  then xs1_val >> (xs2_val[4..0])
                  else xs1_val >> (xs2_val[5..0]),
    RISCV_SUB  => xs1_val - xs2_val,
    RISCV_SRA  => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, xs2_val[4..0])
                  else shift_right_arith64(xs1_val, xs2_val[5..0])
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.50.7. Exceptions

This instruction does not generate synchronous exceptions.

103



B.51. sra
Shift right arithmetic

This instruction is defined by:

I

B.51.1. Encoding

067111214151920242531

0110011xd101xs1xs20100000

B.51.2. Description

Arithmetic shift the value in xs1 right by the value in the lower 5 bits of xs2, and store the result in xd.

B.51.3. Access

M

Always

B.51.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.51.5. IDL Operation

if (xlen() == 64) {
  X[xd] = X[xs1] >>> X[xs2][5:0];
} else {
  X[xd] = X[xs1] >>> X[xs2][4:0];
}

B.51.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let result : xlenbits = match op {
    RISCV_ADD  => xs1_val + xs2_val,
    RISCV_SLT  => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
    RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
    RISCV_AND  => xs1_val & xs2_val,
    RISCV_OR   => xs1_val | xs2_val,
    RISCV_XOR  => xs1_val ^ xs2_val,
    RISCV_SLL  => if   sizeof(xlen) == 32
                  then xs1_val << (xs2_val[4..0])
                  else xs1_val << (xs2_val[5..0]),
    RISCV_SRL  => if   sizeof(xlen) == 32
                  then xs1_val >> (xs2_val[4..0])
                  else xs1_val >> (xs2_val[5..0]),
    RISCV_SUB  => xs1_val - xs2_val,
    RISCV_SRA  => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, xs2_val[4..0])
                  else shift_right_arith64(xs1_val, xs2_val[5..0])
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.51.7. Exceptions

This instruction does not generate synchronous exceptions.

104



B.52. srai
Shift right arithmetic immediate

This instruction is defined by:

I

B.52.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

067111214151920242531

0010011xd101xs1shamt0100000

RV64

067111214151920252631

0010011xd101xs1shamt010000

B.52.2. Description

Arithmetic shift (the original sign bit is copied into the vacated upper bits) the value in xs1 right by shamt, and store the result in xd.

B.52.3. Access

M

Always

B.52.4. Decode Variables

RV32

Bits<5> shamt = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

RV64

Bits<6> shamt = $encoding[25:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.52.5. IDL Operation

X[xd] = X[xs1] >>> shamt;

B.52.6. Sail Operation

{
  let xs1_val = X(xs1);
  /* the decoder guaxd should ensure that shamt[5] = 0 for RV32 */
  let result : xlenbits = match op {
    RISCV_SLLI => if   sizeof(xlen) == 32
                  then xs1_val << shamt[4..0]
                  else xs1_val << shamt,
    RISCV_SRLI => if   sizeof(xlen) == 32
                  then xs1_val >> shamt[4..0]
                  else xs1_val >> shamt,
    RISCV_SRAI => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, shamt[4..0])
                  else shift_right_arith64(xs1_val, shamt)
  };

105



  X(xd) = result;
  RETIRE_SUCCESS
}

B.52.7. Exceptions

This instruction does not generate synchronous exceptions.

106



B.53. srl
Shift right logical

This instruction is defined by:

I

B.53.1. Encoding

067111214151920242531

0110011xd101xs1xs20000000

B.53.2. Description

Logical shift the value in xs1 right by the value in the lower bits of xs2, and store the result in xd.

B.53.3. Access

M

Always

B.53.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.53.5. IDL Operation

if (xlen() == 64) {
  X[xd] = X[xs1] >> X[xs2][5:0];
} else {
  X[xd] = X[xs1] >> X[xs2][4:0];
}

B.53.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let result : xlenbits = match op {
    RISCV_ADD  => xs1_val + xs2_val,
    RISCV_SLT  => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
    RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
    RISCV_AND  => xs1_val & xs2_val,
    RISCV_OR   => xs1_val | xs2_val,
    RISCV_XOR  => xs1_val ^ xs2_val,
    RISCV_SLL  => if   sizeof(xlen) == 32
                  then xs1_val << (xs2_val[4..0])
                  else xs1_val << (xs2_val[5..0]),
    RISCV_SRL  => if   sizeof(xlen) == 32
                  then xs1_val >> (xs2_val[4..0])
                  else xs1_val >> (xs2_val[5..0]),
    RISCV_SUB  => xs1_val - xs2_val,
    RISCV_SRA  => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, xs2_val[4..0])
                  else shift_right_arith64(xs1_val, xs2_val[5..0])
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.53.7. Exceptions

This instruction does not generate synchronous exceptions.

107



B.54. srli
Shift right logical immediate

This instruction is defined by:

I

B.54.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

067111214151920242531

0010011xd101xs1shamt0000000

RV64

067111214151920252631

0010011xd101xs1shamt000000

B.54.2. Description

Shift the value in xs1 right by shamt, and store the result in xd

B.54.3. Access

M

Always

B.54.4. Decode Variables

RV32

Bits<5> shamt = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

RV64

Bits<6> shamt = $encoding[25:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.54.5. IDL Operation

X[xd] = X[xs1] >> shamt;

B.54.6. Sail Operation

{
  let xs1_val = X(xs1);
  /* the decoder guaxd should ensure that shamt[5] = 0 for RV32 */
  let result : xlenbits = match op {
    RISCV_SLLI => if   sizeof(xlen) == 32
                  then xs1_val << shamt[4..0]
                  else xs1_val << shamt,
    RISCV_SRLI => if   sizeof(xlen) == 32
                  then xs1_val >> shamt[4..0]
                  else xs1_val >> shamt,
    RISCV_SRAI => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, shamt[4..0])
                  else shift_right_arith64(xs1_val, shamt)
  };

108



  X(xd) = result;
  RETIRE_SUCCESS
}

B.54.7. Exceptions

This instruction does not generate synchronous exceptions.

109



B.55. sub
Subtract

This instruction is defined by:

I

B.55.1. Encoding

067111214151920242531

0110011xd000xs1xs20100000

B.55.2. Description

Subtract the value in xs2 from xs1, and store the result in xd

B.55.3. Access

M

Always

B.55.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.55.5. IDL Operation

XReg t0 = X[xs1];
XReg t1 = X[xs2];
X[xd] = t0 - t1;

B.55.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let result : xlenbits = match op {
    RISCV_ADD  => xs1_val + xs2_val,
    RISCV_SLT  => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
    RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
    RISCV_AND  => xs1_val & xs2_val,
    RISCV_OR   => xs1_val | xs2_val,
    RISCV_XOR  => xs1_val ^ xs2_val,
    RISCV_SLL  => if   sizeof(xlen) == 32
                  then xs1_val << (xs2_val[4..0])
                  else xs1_val << (xs2_val[5..0]),
    RISCV_SRL  => if   sizeof(xlen) == 32
                  then xs1_val >> (xs2_val[4..0])
                  else xs1_val >> (xs2_val[5..0]),
    RISCV_SUB  => xs1_val - xs2_val,
    RISCV_SRA  => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, xs2_val[4..0])
                  else shift_right_arith64(xs1_val, xs2_val[5..0])
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.55.7. Exceptions

This instruction does not generate synchronous exceptions.

110



B.56. sw
Store word

This instruction is defined by:

I

B.56.1. Encoding

067111214151920242531

0100011imm[4:0]010xs1xs2imm[11:5]

B.56.2. Description

Store 32 bits of data from register xs2 to an address formed by adding xs1 to a signed offset.

B.56.3. Access

M

Always

B.56.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:7]};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

B.56.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
write_memory<32>(virtual_address, X[xs2][31:0], $encoding);

B.56.6. Sail Operation

{
  let offset : xlenbits = sign_extend(imm);
  /* Get the address, X(xs1) + offset.
     Some extensions perform additional checks on address validity. */
  match ext_data_get_addr(xs1, offset, Write(Data), width) {
    Ext_DataAddr_Error(e)  => { ext_handle_data_check_error(e); RETIRE_FAIL },
    Ext_DataAddr_OK(vaddr) =>
      if   check_misaligned(vaddr, width)
      then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
      else match translateAddr(vaddr, Write(Data)) {
        TR_Failure(e, _)    => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
        TR_Address(paddr, _) => {
          let eares : MemoryOpResult(unit) = match width {
            BYTE   => mem_write_ea(paddr, 1, aq, rl, false),
            HALF   => mem_write_ea(paddr, 2, aq, rl, false),
            WORD   => mem_write_ea(paddr, 4, aq, rl, false),
            DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
          };
          match (eares) {
            MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
            MemValue(_) => {
              let xs2_val = X(xs2);
              let res : MemoryOpResult(bool) = match (width) {
                BYTE => mem_write_value(paddr, 1, xs2_val[7..0],  aq, rl, false),
                HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
                WORD => mem_write_value(paddr, 4, xs2_val[31..0], aq, rl, false),
                DOUBLE if sizeof(xlen) >= 64
                     => mem_write_value(paddr, 8, xs2_val,        aq, rl, false),
                _    => report_invalid_width(__FILE__, __LINE__, width, "store"),
              };
              match (res) {
                MemValue(true)  => RETIRE_SUCCESS,
                MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),

111



                MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }
              }
            }
          }
        }
      }
  }
}

B.56.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

112



B.57. wfi
Wait for interrupt

This instruction is defined by:

Sm

B.57.1. Encoding

031

00010000010100000000000001110011

B.57.2. Description

Can causes the processor to enter a low-power state until the next interrupt occurs.

<%- if ext?(:H) -%> The behavior of wfi is affected by the mstatus.TW and hstatus.VTW bits, as summarized below.

mstatus.TW hstatus.VTW wfi behavior

HS-mode U-mode VS-mode in VU-mode

0 0 Wait Trap (I) Wait Trap (V)

0 1 Wait Trap (I) Trap (V) Trap (V)

1 - Trap (I) Trap (I) Trap (I) Trap (I)

Trap (I) - Trap with Illegal Instruction code
Trap (V) - Trap with Virtual Instruction code

<%- else -%> The wfi instruction is also affected by mstatus.TW, as shown below:

mstatus.TW wfi behavior

S-mode U-mode

0 Wait Trap (I)

1 Trap (I) Trap (I)

Trap (I) - Trap with Illegal Instruction code

<%- end -%>

When wfi is marked as causing a trap above, the implementation is allowed to wait for an unspecified period of time to see if an interrupt occurs
before raising the trap. That period of time can be zero (i.e., wfi always causes a trap in the cases identified above).

B.57.3. Access

M

Always

<%- if ext?(:H) -%> The behavior of wfi is affected by the mstatus.TW and hstatus.VTW bits, as summarized below.

mstatus.TW hstatus.VTW wfi behavior

HS-mode U-mode VS-mode in VU-mode

0 0 Wait Trap (I) Wait Trap (V)

0 1 Wait Trap (I) Trap (V) Trap (V)

1 - Trap (I) Trap (I) Trap (I) Trap (I)

Trap (I) - Trap with Illegal Instruction code
Trap (V) - Trap with Virtual Instruction code

<%- else -%> The wfi instruction is also affected by mstatus.TW, as shown below:

mstatus.TW wfi behavior

S-mode U-mode

0 Wait Trap (I)

1 Trap (I) Trap (I)

Trap (I) - Trap with Illegal Instruction code

113



<%- end -%>

B.57.4. Decode Variables

B.57.5. IDL Operation

if (mode() == PrivilegeMode::U) {
  raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
if ((CSR[misa].S == 1) && (CSR[mstatus].TW == 1'b1)) {
  if (mode() != PrivilegeMode::M) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
}
if (CSR[misa].H == 1) {
  if (CSR[hstatus].VTW == 1'b0) {
    if (mode() == PrivilegeMode::VU) {
      raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
    }
  } else if (CSR[hstatus].VTW == 1'b1) {
    if ((mode() == PrivilegeMode::VS) || (mode() == PrivilegeMode::VU)) {
      raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
    }
  }
}
wfi();

B.57.6. Sail Operation

match cur_privilege {
    Machine    => { platform_wfi(); RETIRE_SUCCESS },
    Supervisor => if   mstatus.TW() == 0b1
                  then { handle_illegal(); RETIRE_FAIL }
                  else { platform_wfi(); RETIRE_SUCCESS },
    User       => { handle_illegal(); RETIRE_FAIL }
  }

B.57.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• VirtualInstruction

114



B.58. xor
Exclusive Or

This instruction is defined by:

I

B.58.1. Encoding

067111214151920242531

0110011xd100xs1xs20000000

B.58.2. Description

Exclusive or xs1 with xs2, and store the result in xd

B.58.3. Access

M

Always

B.58.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.58.5. IDL Operation

X[xd] = X[xs1] ^ X[xs2];

B.58.6. Sail Operation

{
  let xs1_val = X(xs1);
  let xs2_val = X(xs2);
  let result : xlenbits = match op {
    RISCV_ADD  => xs1_val + xs2_val,
    RISCV_SLT  => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
    RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
    RISCV_AND  => xs1_val & xs2_val,
    RISCV_OR   => xs1_val | xs2_val,
    RISCV_XOR  => xs1_val ^ xs2_val,
    RISCV_SLL  => if   sizeof(xlen) == 32
                  then xs1_val << (xs2_val[4..0])
                  else xs1_val << (xs2_val[5..0]),
    RISCV_SRL  => if   sizeof(xlen) == 32
                  then xs1_val >> (xs2_val[4..0])
                  else xs1_val >> (xs2_val[5..0]),
    RISCV_SUB  => xs1_val - xs2_val,
    RISCV_SRA  => if   sizeof(xlen) == 32
                  then shift_right_arith32(xs1_val, xs2_val[4..0])
                  else shift_right_arith64(xs1_val, xs2_val[5..0])
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.58.7. Exceptions

This instruction does not generate synchronous exceptions.

115



B.59. xori
Exclusive Or immediate

This instruction is defined by:

I

B.59.1. Encoding

06711121415192031

0010011xd100xs1imm

B.59.2. Description

Exclusive or an immediate to the value in xs1, and store the result in xd

B.59.3. Access

M

Always

B.59.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

B.59.5. IDL Operation

X[xd] = X[xs1] ^ $signed(imm);

B.59.6. Sail Operation

{
  let xs1_val = X(xs1);
  let immext : xlenbits = sign_extend(imm);
  let result : xlenbits = match op {
    RISCV_ADDI  => xs1_val + immext,
    RISCV_SLTI  => zero_extend(bool_to_bits(xs1_val <_s immext)),
    RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
    RISCV_ANDI  => xs1_val & immext,
    RISCV_ORI   => xs1_val | immext,
    RISCV_XORI  => xs1_val ^ immext
  };
  X(xd) = result;
  RETIRE_SUCCESS
}

B.59.7. Exceptions

This instruction does not generate synchronous exceptions.

116



Appendix C: CSR Details

117



C.1. cycle
Cycle counter for RDCYCLE Instruction

Alias for M-mode CSR mcycle.

Privilege mode access is controlled with mcounteren.CY, scounteren.CY, and hcounteren.CY as follows:

mcounteren.CY scounteren.CY hcounteren.CY cycle behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

C.1.1. Attributes

CSR Address 0xc00

Defining
extension

Zicntr

Length 64-bit

Privilege Mode U

C.1.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 1. cycle format

C.1.3. Field Summary

Nam
e

Location Type Reset Value

cycle
.COU
NT

63:0 RO-H UNDEFINED_LEGAL

C.1.4. Fields

cycle.COUNT Field

Location:

63:0

Description:

Alias of mcycle.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

118



C.1.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
  if (CSR[mcounteren].CY == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
} else if (mode() == PrivilegeMode::U) {
  if (CSR[misa].S == 1'b1) {
    if ((CSR[mcounteren].CY & CSR[scounteren].CY) == 1'b0) {
      raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
    }
  } else if (CSR[mcounteren].CY == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
} else if (mode() == PrivilegeMode::VS) {
  if (CSR[hcounteren].CY == 1'b0 && CSR[mcounteren].CY == 1'b1) {
    raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
  } else if (CSR[mcounteren].CY == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
} else if (mode() == PrivilegeMode::VU) {
  if (CSR[hcounteren].CY & CSR[scounteren].CY) == 1'b0) && (CSR[mcounteren].CY == 1'b1 {
    raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
  } else if (CSR[mcounteren].CY == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
}
return read_mcycle();

119



C.2. instret
Instructions retired counter for RDINSTRET Instruction

Alias for M-mode CSR minstret.

Privilege mode access is controlled with mcounteren.IR, scounteren.IR, and hcounteren.IR as follows:

mcounteren.IR scounteren.IR hcounteren.IR instret behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

C.2.1. Attributes

CSR Address 0xc02

Defining
extension

Zicntr

Length 64-bit

Privilege Mode U

C.2.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 2. instret format

C.2.3. Field Summary

Nam
e

Location Type Reset Value

instre
t.COU

NT

63:0 RO-H 0

C.2.4. Fields

instret.COUNT Field

Location:

63:0

Description:

Alias of minstret.COUNT.

Type:

RO-H

Reset value:

0

120



C.2.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
  if (CSR[mcounteren].IR == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
} else if (mode() == PrivilegeMode::U) {
  if (CSR[misa].S == 1'b1) {
    if ((CSR[mcounteren].IR & CSR[scounteren].IR) == 1'b0) {
      raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
    }
  } else if (CSR[mcounteren].IR == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
} else if (mode() == PrivilegeMode::VS) {
  if (CSR[hcounteren].IR == 1'b0 && CSR[mcounteren].IR == 1'b1) {
    raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
  } else if (CSR[mcounteren].IR == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
} else if (mode() == PrivilegeMode::VU) {
  if (CSR[hcounteren].IR & CSR[scounteren].IR) == 1'b0) && (CSR[mcounteren].IR == 1'b1 {
    raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
  } else if (CSR[mcounteren].IR == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
}
return CSR[minstret].COUNT;

121



C.3. marchid
Machine Architecture ID

The marchid CSR is an MXLEN-bit read-only register encoding the base microarchitecture of the hart. This register must be readable in any
implementation, but a value of 0 can be returned to indicate the field is not implemented. The combination of mvendorid and marchid should
uniquely identify the type of hart microarchitecture that is implemented.

Open-source project architecture IDs are allocated globally by RISC-V International, and have non-zero architecture IDs with a zero most-significant-
bit (MSB). Commercial architecture IDs are allocated by each commercial vendor independently, but must have the MSB set and cannot contain zero
in the remaining MXLEN-1 bits.



The intent is for the architecture ID to represent the microarchitecture associated with the repo around which development occurs
rather than a particular organization. Commercial fabrications of open-source designs should (and might be required by the license
to) retain the original architecture ID. This will aid in reducing fragmentation and tool support costs, as well as provide attribution.
Open-source architecture IDs are administered by RISC-V International and should only be allocated to released, functioning open-
source projects. Commercial architecture IDs can be managed independently by any registered vendor but are required to have IDs
disjoint from the open-source architecture IDs (MSB set) to prevent collisions if a vendor wishes to use both closed-source and open-
source microarchitectures.

The convention adopted within the following Implementation field can be used to segregate branches of the same architecture
design, including by organization. The misa register also helps distinguish different variants of a design.

C.3.1. Attributes

CSR Address 0xf12

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.3.2. Format

015

Architecture

1631

Architecture

3247

4863

Figure 3. marchid format

C.3.3. Field Summary

Name Location Type Reset Value

marchi
d.Archi
tecture

63:0 RO UNDEFINED_LEGAL

C.3.4. Fields

marchid.Architecture Field

Location:

63:0

Description:

Vendor-specific microarchitecture ID.

Type:

RO

122



Reset value:

UNDEFINED_LEGAL

123



C.4. mcause
Machine Cause

Reports the cause of the latest exception.

C.4.1. Attributes

CSR Address 0x342

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.4.2. Format

015

CODE

163031

CODEINT

3247

4863

Figure 4. mcause format

C.4.3. Field Summary

Nam
e

Location Type Reset Value

mcau
se.IN

T

63 RW-RH 0

mcau
se.CO

DE

62:0 RW-RH 0

C.4.4. Fields

mcause.INT Field

Location:

63

Description:

Written by hardware when a trap is taken into M-mode.

When set, the last exception was caused by an asynchronous Interrupt.

mcause.INT is writable.

[when,"TRAP_ON_ILLEGAL_WLRL == true"]
If mcause is written with an undefined cause (combination of mcause.INT and mcause.CODE), an Illegal Instruction exception occurs.

[when,"TRAP_ON_ILLEGAL_WLRL == false"]
If mcause is written with an undefined cause (combination of mcause.INT and mcause.CODE), neither mcause.INT nor mcause.CODE are
modified.

Type:

RW-RH

124



Reset value:

0

mcause.CODE Field

Location:

62:0

Description:

Written by hardware when a trap is taken into M-mode.

Holds the interrupt or exception code for the last taken trap.

mcause.CODE is writable.

[when,"TRAP_ON_ILLEGAL_WLRL == true"]
If mcause is written with an undefined cause (combination of mcause.INT and mcause.CODE), an Illegal Instruction exception occurs.

[when,"TRAP_ON_ILLEGAL_WLRL == false"]
If mcause is written with an undefined cause (combination of mcause.INT and mcause.CODE), neither mcause.INT nor mcause.CODE are
modified.

Valid interrupt codes are:
[separator="!"]
!===
<%- implemented_interrupt_codes.sort_by{ |code| code.num }.each do |code| -%>
! <%= code.num %> ! <%= code.name %>
<%- end -%>
!===

Valid exception codes are:
[separator="!"]
!===
<%- implemented_exception_codes.sort_by{ |code| code.num }.each do |code| -%>
! <%= code.num %> ! <%= code.name %>
<%- end -%>
!===

Type:

RW-RH

Reset value:

0

C.4.5. Software write

This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

INT = # the write only holds if the INT/CODE combination is valid
if (csr_value.INT == 1) {
  if (valid_interrupt_code?(csr_value.CODE)) {
    return 1;
  }
  return ILLEGAL_WLRL;
} else {
  if (valid_exception_code?(csr_value.CODE)) {
    return 1;
  }
  return ILLEGAL_WLRL;
}

CODE = # the write only holds if the INT/CODE combination is valid
if (csr_value.INT == 1) {
  if (valid_interrupt_code?(csr_value.CODE)) {
    return csr_value.CODE;
  }
  return ILLEGAL_WLRL;

125



} else {
  if (valid_exception_code?(csr_value.CODE)) {
    return csr_value.CODE;
  }
  return ILLEGAL_WLRL;
}

126



C.5. mcountinhibit
Machine Counter Inhibit

Bits to inhibit (stops counting) performance counters.

The counter-inhibit register mcountinhibit is a WARL register that controls which of the hardware performance-monitoring counters increment. The
settings in this register only control whether the counters increment; their accessibility is not affected by the setting of this register.

When the CY, IR, or HPMn bit in the mcountinhibit register is clear, the mcycle, minstret, or mhpmcountern register increments as usual. When the CY,
IR, or HPM_n_ bit is set, the corresponding counter does not increment.

The mcycle CSR may be shared between harts on the same core, in which case the mcountinhibit.CY field is also shared between those harts, and so
writes to mcountinhibit.CY will be visible to those harts.

If the mcountinhibit register is not implemented, the implementation behaves as though the register were set to zero.



When the mcycle and minstret counters are not needed, it is desirable to conditionally inhibit them to reduce energy consumption.
Providing a single CSR to inhibit all counters also allows the counters to be atomically sampled.

Because the mtime counter can be shared between multiple cores, it cannot be inhibited with the mcountinhibit mechanism.

C.5.1. Attributes

CSR Address 0x320

Defining
extension

Sm

Length 32-bit

Privilege Mode M

C.5.2. Format

0123456789101112131415

CYIRHPM3HPM4HPM5HPM6HPM7HPM8HPM9HPM10HPM11HPM12HPM13HPM14HPM15

16171819202122232425262728293031

HPM16HPM17HPM18HPM19HPM20HPM21HPM22HPM23HPM24HPM25HPM26HPM27HPM28HPM29HPM30HPM31

Figure 5. mcountinhibit format

C.5.3. Field Summary

Name Location Type Reset Value

mcount
inhibit.

CY

0 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.I

R

2 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM3

3 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM4

4 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM5

5 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM6

6 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM7

7 RW

RO

UNDEFINED_LEGAL

127



Name Location Type Reset Value

mcount
inhibit.
HPM8

8 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM9

9 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM10

10 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM11

11 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM12

12 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM13

13 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM14

14 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM15

15 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM16

16 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM17

17 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM18

18 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM19

19 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM20

20 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM21

21 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM22

22 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM23

23 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM24

24 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM25

25 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM26

26 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM27

27 RW

RO

UNDEFINED_LEGAL

128



Name Location Type Reset Value

mcount
inhibit.
HPM28

28 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM29

29 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM30

30 RW

RO

UNDEFINED_LEGAL

mcount
inhibit.
HPM31

31 RW

RO

UNDEFINED_LEGAL

C.5.4. Fields

mcountinhibit.CY Field

Location:

0

Description:

When set, mcycle.COUNT stops counting in all privilege modes.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.IR Field

Location:

2

Description:

When set, minstret.COUNT stops counting in all privilege modes.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM3 Field

Location:

3

Description:

[when="COUNTINHIBIT_EN[3] == true"]
When set, hpmcounter3.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[3] == false"]
Since hpmcounter3 is not implemented, this field is read-only zero.

Type:

RW

RO

129



Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM4 Field

Location:

4

Description:

[when="COUNTINHIBIT_EN[4] == true"]
When set, hpmcounter4.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[4] == false"]
Since hpmcounter4 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM5 Field

Location:

5

Description:

[when="COUNTINHIBIT_EN[5] == true"]
When set, hpmcounter5.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[5] == false"]
Since hpmcounter5 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM6 Field

Location:

6

Description:

[when="COUNTINHIBIT_EN[6] == true"]
When set, hpmcounter6.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[6] == false"]
Since hpmcounter6 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

130



mcountinhibit.HPM7 Field

Location:

7

Description:

[when="COUNTINHIBIT_EN[7] == true"]
When set, hpmcounter7.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[7] == false"]
Since hpmcounter7 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM8 Field

Location:

8

Description:

[when="COUNTINHIBIT_EN[8] == true"]
When set, hpmcounter8.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[8] == false"]
Since hpmcounter8 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM9 Field

Location:

9

Description:

[when="COUNTINHIBIT_EN[9] == true"]
When set, hpmcounter9.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[9] == false"]
Since hpmcounter9 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM10 Field

Location:

10

131



Description:

[when="COUNTINHIBIT_EN[10] == true"]
When set, hpmcounter10.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[10] == false"]
Since hpmcounter10 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM11 Field

Location:

11

Description:

[when="COUNTINHIBIT_EN[11] == true"]
When set, hpmcounter11.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[11] == false"]
Since hpmcounter11 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM12 Field

Location:

12

Description:

[when="COUNTINHIBIT_EN[12] == true"]
When set, hpmcounter12.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[12] == false"]
Since hpmcounter12 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM13 Field

Location:

13

Description:

[when="COUNTINHIBIT_EN[13] == true"]
When set, hpmcounter13.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[13] == false"]

132



Since hpmcounter13 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM14 Field

Location:

14

Description:

[when="COUNTINHIBIT_EN[14] == true"]
When set, hpmcounter14.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[14] == false"]
Since hpmcounter14 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM15 Field

Location:

15

Description:

[when="COUNTINHIBIT_EN[15] == true"]
When set, hpmcounter15.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[15] == false"]
Since hpmcounter15 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM16 Field

Location:

16

Description:

[when="COUNTINHIBIT_EN[16] == true"]
When set, hpmcounter16.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[16] == false"]
Since hpmcounter16 is not implemented, this field is read-only zero.

Type:

RW

133



RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM17 Field

Location:

17

Description:

[when="COUNTINHIBIT_EN[17] == true"]
When set, hpmcounter17.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[17] == false"]
Since hpmcounter17 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM18 Field

Location:

18

Description:

[when="COUNTINHIBIT_EN[18] == true"]
When set, hpmcounter18.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[18] == false"]
Since hpmcounter18 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM19 Field

Location:

19

Description:

[when="COUNTINHIBIT_EN[19] == true"]
When set, hpmcounter19.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[19] == false"]
Since hpmcounter19 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

134



mcountinhibit.HPM20 Field

Location:

20

Description:

[when="COUNTINHIBIT_EN[20] == true"]
When set, hpmcounter20.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[20] == false"]
Since hpmcounter20 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM21 Field

Location:

21

Description:

[when="COUNTINHIBIT_EN[21] == true"]
When set, hpmcounter21.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[21] == false"]
Since hpmcounter21 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM22 Field

Location:

22

Description:

[when="COUNTINHIBIT_EN[22] == true"]
When set, hpmcounter22.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[22] == false"]
Since hpmcounter22 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM23 Field

Location:

23

135



Description:

[when="COUNTINHIBIT_EN[23] == true"]
When set, hpmcounter23.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[23] == false"]
Since hpmcounter23 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM24 Field

Location:

24

Description:

[when="COUNTINHIBIT_EN[24] == true"]
When set, hpmcounter24.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[24] == false"]
Since hpmcounter24 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM25 Field

Location:

25

Description:

[when="COUNTINHIBIT_EN[25] == true"]
When set, hpmcounter25.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[25] == false"]
Since hpmcounter25 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM26 Field

Location:

26

Description:

[when="COUNTINHIBIT_EN[26] == true"]
When set, hpmcounter26.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[26] == false"]

136



Since hpmcounter26 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM27 Field

Location:

27

Description:

[when="COUNTINHIBIT_EN[27] == true"]
When set, hpmcounter27.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[27] == false"]
Since hpmcounter27 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM28 Field

Location:

28

Description:

[when="COUNTINHIBIT_EN[28] == true"]
When set, hpmcounter28.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[28] == false"]
Since hpmcounter28 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM29 Field

Location:

29

Description:

[when="COUNTINHIBIT_EN[29] == true"]
When set, hpmcounter29.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[29] == false"]
Since hpmcounter29 is not implemented, this field is read-only zero.

Type:

RW

137



RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM30 Field

Location:

30

Description:

[when="COUNTINHIBIT_EN[30] == true"]
When set, hpmcounter30.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[30] == false"]
Since hpmcounter30 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mcountinhibit.HPM31 Field

Location:

31

Description:

[when="COUNTINHIBIT_EN[31] == true"]
When set, hpmcounter31.COUNT stops counting in all privilege modes.

[when="COUNTINHIBIT_EN[31] == false"]
Since hpmcounter31 is not implemented, this field is read-only zero.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

138



C.6. mcycle
Machine Cycle Counter

Counts the number of clock cycles executed by the processor core on which the hart is running. The counter has 64-bit precision on all RV32 and
RV64 harts.

The mcycle CSR may be shared between harts on the same core, in which case writes to mcycle will be visible to those harts. The platform should
provide a mechanism to indicate which harts share an mcycle CSR.

C.6.1. Attributes

CSR Address 0xb00

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.6.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 6. mcycle format

C.6.3. Field Summary

Nam
e

Location Type Reset Value

mcycl
e.COU

NT

63:0 RW-RH UNDEFINED_LEGAL

C.6.4. Fields

mcycle.COUNT Field

Location:

63:0

Description:

Cycle counter.

<%- if ext?(:Zicntr) -%>
Aliased as cycle.
<%- end -%>

Increments every cycle unless:

• mcountinhibit.CY <%- if ext?(:Smcdeleg) -%>or its alias scountinhibit.CY<%- end -%> is set
<%- if ext?(:Smcntrpmf) -%>

• mcyclecfg.MINH is set and the current privilege level is M
<%- if ext?(:S) -%>

• mcyclecfg.SINH <%- if ext?(:Ssccfg) -%>or its alias instretcfg.SINH<%- end -%> is set and the current privilege level is (H)S
<%- end -%>

139



<%- if ext?(:U) -%>

• mcyclecfg.UINH <%- if ext?(:Ssccfg) -%>or its alias instretcfg.SINH<%- end -%> is set and the current privilege level is U
<%- end -%>
<%- if ext?(:H) -%>

• mcyclecfg.VSINH <%- if ext?(:Ssccfg) -%>or its alias instretcfg.SINH<%- end -%> is set and the current privilege level is VS

• mcyclecfg.VUINH <%- if ext?(:Ssccfg) -%>or its alias instretcfg.SINH<%- end -%> is set and the current privilege level is VU
<%- end -%>
<%- end -%>

Type:

RW-RH

Reset value:

UNDEFINED_LEGAL

C.6.5. Software write

This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

COUNT = # since writes to this register may not be hart-local, it must be handled
# as a special case
if (xlen() == 32) {
  return sw_write_mcycle({read_mcycle()[63:31], csr_value.COUNT[31:0]});
} else {
  return sw_write_mcycle(csr_value.COUNT);
}

C.6.6. Software read

This CSR may return a value that is different from what is stored in hardware.

return read_mcycle();

140



C.7. mepc
Machine Exception Program Counter

Written with the PC of an instruction on an exception or interrupt taken in M-mode.

Also controls where the hart jumps on an exception return from M-mode.

C.7.1. Attributes

CSR Address 0x341

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.7.2. Format

015

PC

1631

PC

3247

4863

Figure 7. mepc format

C.7.3. Field Summary

Na
me

Location Type Reset Value

me
pc.P

C

63:0 RW-RH 0

C.7.4. Fields

mepc.PC Field

Location:

63:0

Description:

When a trap is taken into M-mode, mepc.PC is written with the virtual address of the
instruction that was interrupted or that encountered the exception.
Otherwise, mepc.PC is never written by the implementation, though it may be explicitly written
by software.

On an exception return from M-mode (from the MRET instruction),
control transfers to the virtual address read out of mepc.PC.

[when,"ext?(:C)"]
Because PCs are always halfword-aligned, bit 0 of mepc.PC is always
read-only 0.

[when,"!ext?(:C)"]
Because PCs are always word-aligned, bits 1:0 of mepc.PC are always
read-only 0.

[when,"ext?(:C) && MUTABLE_MISA_C == true"]
When misa.C is clear, bit 1 is masked to zero. Writes to bit 1 are still captured, and

141



may be visible on the next read with misa.C is set.

Type:

RW-RH

Reset value:

0

C.7.5. Software write

This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

PC = return csr_value.PC & ~64'b1;

C.7.6. Software read

This CSR may return a value that is different from what is stored in hardware.

if (implemented?(ExtensionName::C) && CSR[misa].C == 1'b1) {
  return CSR[mepc].PC & ~64'b1;
} else {
  return CSR[mepc].PC;
}

142



C.8. mhartid
Machine Hart ID

Reports the unique hart-specific ID in the system.

C.8.1. Attributes

CSR Address 0xf14

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.8.2. Format

015

ID

1631

ID

3247

4863

Figure 8. mhartid format

C.8.3. Field Summary

Na
me

Location Type Reset Value

mha
rtid.
ID

63:0 RO UNDEFINED_LEGAL

C.8.4. Fields

mhartid.ID Field

Location:

63:0

Description:

hart-specific ID.

Type:

RO

Reset value:

UNDEFINED_LEGAL

C.8.5. Software read

This CSR may return a value that is different from what is stored in hardware.

return hartid();

143



C.9. mie
Machine Interrupt Enable

mip.yaml#/description

C.9.1. Attributes

CSR Address 0x304

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.9.2. Format

0123456789101112131415

SSIEVSSIEMSIESTIEVSTIEMTIESEIEVSEIEMEIESGEIELCOFIE

1631

3247

4863

Figure 9. mie format

C.9.3. Field Summary

Nam
e

Location Type Reset Value

mie.
SSIE

1 RW 0

mie.
VSSI

E

2 RW 0

mie.
MSI

E

3 RW 0

mie.
STIE

5 RW 0

mie.
VSTI

E

6 RW 0

mie.
MTI

E

7 RW 0

mie.
SEIE

9 RW 0

mie.
VSEI

E

10 RW 0

mie.
MEI

E

11 RW 0

mie.
SGEI

E

12 RW 0

144



Nam
e

Location Type Reset Value

mie.
LCO
FIE

13 RW 0

C.9.4. Fields

mie.SSIE Field

Location:

1

Description:

Enables Supervisor Software Interrupts.

Alias of sie.SSIE when mideleg.SSI is set. Otherwise, sie.SSIE is read-only 0.

Type:

RW

Reset value:

0

mie.VSSIE Field

Location:

2

Description:

Enables Virtual Supervisor Software Interrupts.

Alias of hie.VSSIE.

Alias of vsie.SSIE when hideleg.VSSI is set. Otherwise, vseie.SSIE is read-only 0.

Alias of sie.SSIE when hideleg.VSSI is set and the current mode is VS or VU
(Because mie is inaccessible in VS or VU mode, this alias can never be observed by software).

Type:

RW

Reset value:

0

mie.MSIE Field

Location:

3

Description:

Enables Machine Software Interrupts.

Type:

RW

Reset value:

0

mie.STIE Field

Location:

5

145



Description:

Enables Supervisor Timer Interrupts.

Alias of sip when mideleg.STI is set. Otherwise, sip is read-only 0.

Type:

RW

Reset value:

0

mie.VSTIE Field

Location:

6

Description:

Enables Virtual Supervisor Timer Interrupts.

Alias of hie.VSTIE.

Alias of vsie.STIE when hideleg.VSTI is set. Otherwise, vseie.STIE is read-only 0.

Alias of sie.STIE when hideleg.VSTI is set and the current mode is VS or VU
(Because mie is inaccessible in VS or VU mode, this alias can never be observed by software).

Type:

RW

Reset value:

0

mie.MTIE Field

Location:

7

Description:

Enables Machine Timer Interrupts.

Type:

RW

Reset value:

0

mie.SEIE Field

Location:

9

Description:

Enables Supervisor External Interrupts.

Alias of sie.SEIE when mideleg.SEI is set. Otherwise, sie.SEIE is read-only 0.

Type:

RW

Reset value:

0

mie.VSEIE Field

146



Location:

10

Description:

Enables Virtual Supervisor External Interrupts.

Alias of hie.VSEIE.

Alias of vsie.SEIE when hideleg.VSEI is set. Otherwise, vseie.SEIE is read-only 0.

Alias of sie.SEIE when hideleg.VSEI is set and the current mode is VS or VU
(Because mie is inaccessible in VS or VU mode, this alias can never be observed by software).

Type:

RW

Reset value:

0

mie.MEIE Field

Location:

11

Description:

Enables Machine External Interrupts.

Type:

RW

Reset value:

0

mie.SGEIE Field

Location:

12

Description:

Enables Supervisor Guest External Interrupts

Alias of hie.SGEIE.

Type:

RW

Reset value:

0

mie.LCOFIE Field

Location:

13

Description:

Enables Local Counter Overflow Interrupts.

Alias of sie.LCOFIE when mideleg.LCOFI is set. Otherwise, sie.LCOFIE is an independent writable bit when mvien.LCOFI is set or is read-only
0.

Alias of vsip.LCOFIE when hideleg.LCOFI is set. Otherwise, vsip.LCOFIE is read-only 0.

Type:

RW

147



Reset value:

0

148



C.10. mimpid
Machine Implementation ID

Reports the vendor-specific implementation ID.

The mimpid CSR provides a unique encoding of the version of the processor implementation. This register must be readable in any implementation,
but a value of 0 can be returned to indicate that the field is not implemented. The Implementation value should reflect the design of the RISC-V
processor itself and not any surrounding system.


The format of this field is left to the provider of the architecture source code, but will often be printed by standard tools as a
hexadecimal string without any leading or trailing zeros, so the Implementation value can be left-justified (i.e., filled in from most-
significant nibble down) with subfields aligned on nibble boundaries to ease human readability.

C.10.1. Attributes

CSR Address 0xf13

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.10.2. Format

015

Implementation

1631

Implementation

3247

4863

Figure 10. mimpid format

C.10.3. Field Summary

Name Location Type Reset Value

mimpid.
Implem
entation

63:0 RO UNDEFINED_LEGAL

C.10.4. Fields

mimpid.Implementation Field

Location:

63:0

Description:

Vendor-specific implementation ID.

Type:

RO

Reset value:

UNDEFINED_LEGAL

149



C.11. minstret
Machine Instructions Retired Counter

Counts the number of instructions retired by this hart from some arbitrary start point in the past.


Instructions that cause synchronous exceptions, including ecall and ebreak, are not considered to retire and hence do not increment
the minstret CSR.

C.11.1. Attributes

CSR Address 0xb02

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.11.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 11. minstret format

C.11.3. Field Summary

Name Location Type Reset Value

minst
ret.CO
UNT

63:0 RW-H UNDEFINED_LEGAL

C.11.4. Fields

minstret.COUNT Field

Location:

63:0

Description:

Instructions retired counter.

<%- if ext?(:Zicntr) -%>
Aliased as instret.COUNT.
<%- end -%>

Increments every time an instruction retires unless:

• mcountinhibit.IR <%- if ext?(:Smcdeleg) -%>or its alias scountinhibit.IR<%- end -%> is set
<%- if ext?(:Smcntrpmf) -%>

• minstretcfg.MINH is set and the current privilege level is M
<%- if ext?(:S) -%>

• minstretcfg.SINH <%- if ext?(:Ssccfg) -%>or its alias instretcfg.SINH<%- end -%> is set and the current privilege level is (H)S
<%- end -%>
<%- if ext?(:U) -%>

• minstretcfg.UINH <%- if ext?(:Ssccfg) -%>or its alias instretcfg.SINH<%- end -%> is set and the current privilege level is U

150



<%- end -%>
<%- if ext?(:H) -%>

• minstretcfg.VSINH <%- if ext?(:Ssccfg) -%>or its alias instretcfg.SINH<%- end -%> is set and the current privilege level is VS

• minstretcfg.VUINH <%- if ext?(:Ssccfg) -%>or its alias instretcfg.SINH<%- end -%> is set and the current privilege level is VU
<%- end -%>
<%- end -%>

An instruction that causes an exception, notably including MRET/SRET,
does not retire and does not cause minstret.COUNT to increment.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

151



C.12. mip
Machine Interrupt Pending

The mie and mip CSRs are MXLEN-bit read/write registers used when the CLINT or PLIC interrupt controllers are present. Note that the CLINT refers
to an interrupt controller used by some RISC-V implementations but isn’t a ratified RISC-V International standard.

The mip CSR contains information on pending interrupts, while mie is the corresponding CSR containing interrupt enable bits. Interrupt cause
number i (as reported in the mcause CSR) corresponds to bit i in both mip and mie. Bits 15:0 are allocated to standard interrupt causes only, while
bits 16 and above are designated for platform use.

 Interrupts designated for platform use may be designated for custom use at the platform’s discretion.

An interrupt i will trap to M-mode (causing the privilege mode to change to M-mode) if all of the following are true:

• either the current privilege mode is M and the MIE bit in the mstatus register is set, or the current privilege mode has less privilege than M-mode;

• bit i is set in both mip and mie

• if register mideleg exists, bit i is not set in mideleg.

These conditions for an interrupt trap to occur must be evaluated in a bounded amount of time from when an interrupt becomes, or ceases to be,
pending in mip, and must also be evaluated immediately following the execution of an xRET instruction or an explicit write to a CSR on which these
interrupt trap conditions expressly depend (including mip, mie, mstatus, and mideleg).

Interrupts to M-mode take priority over any interrupts to lower privilege modes.

Each individual bit in register mip may be writable or may be read-only. When bit i in mip is writable, a pending interrupt i can be cleared by
writing 0 to this bit. If interrupt i can become pending but bit i in mip is read-only, the implementation must provide some other mechanism for
clearing the pending interrupt.

A bit in mie must be writable if the corresponding interrupt can ever become pending. Bits of mie that are not writable must be read-only zero.



The machine-level interrupt registers handle a few root interrupt sources which are assigned a fixed service priority for simplicity,
while separate external interrupt controllers can implement a more complex prioritization scheme over a much larger set of
interrupts that are then muxed into the machine-level interrupt sources.

The non-maskable interrupt is not made visible via the mip register as its presence is implicitly known when executing the NMI trap
handler.

If supervisor mode is implemented, bits mip.SEIP and mie.SEIE are the interrupt-pending and interrupt-enable bits for supervisor-level external
interrupts. SEIP is writable in mip, and may be written by M-mode software to indicate to S-mode that an external interrupt is pending. Additionally,
the platform-level interrupt controller may generate supervisor-level external interrupts. Supervisor-level external interrupts are made pending
based on the logical-OR of the software-writable SEIP bit and the signal from the external interrupt controller. When mip is read with a CSR
instruction, the value of the SEIP bit returned in the rd destination register is the logical-OR of the software-writable bit and the interrupt signal from
the interrupt controller, but the signal from the interrupt controller is not used to calculate the value written to SEIP. Only the software-writable SEIP
bit participates in the read-modify-write sequence of a CSRRS or CSRRC instruction.



For example, if we name the software-writable SEIP bit B and the signal from the external interrupt controller E, then if csrrs t0,
mip, t1 is executed, t0[9] is written with B || E, then B is written with B || t1[9]. If csrrw t0, mip, t1 is executed, then t0[9] is
written with B || E, and B is simply written with t1[9]. In neither case does B depend upon E.

The SEIP field behavior is designed to allow a higher privilege layer to mimic external interrupts cleanly, without losing any real
external interrupts. The behavior of the CSR instructions is slightly modified from regular CSR accesses as a result.

If supervisor mode is implemented, bits mip.STIP and mie.STIE are the interrupt-pending and interrupt-enable bits for supervisor-level timer
interrupts. STIP is writable in mip, and may be written by M-mode software to deliver timer interrupts to S-mode.

If supervisor mode is implemented, bits mip.SSIP and mie.SSIE are the interrupt-pending and interrupt-enable bits for supervisor-level software
interrupts. SSIP is writable in mip and may also be set to 1 by a platform-specific interrupt controller.

<% if ext?(:Sscofpmf) -%> bits mip.LCOFIP and mie.LCOFIE are the interrupt-pending and interrupt-enable bits for local counter-overflow interrupts.
LCOFIP is read-write in mip and reflects the occurrence of a local counter-overflow overflow interrupt request resulting from any of the mhpmevent
n.OF bits being set. <% end -%>

Multiple simultaneous interrupts destined for M-mode are handled in the following decreasing priority order: MEI, MSI, MTI, SEI, SSI, STI, LCOFI.



The machine-level interrupt fixed-priority ordering rules were developed with the following rationale.

Interrupts for higher privilege modes must be serviced before interrupts for lower privilege modes to support preemption.

The platform-specific machine-level interrupt sources in bits 16 and above have platform-specific priority, but are typically chosen

152



to have the highest service priority to support very fast local vectored interrupts.

External interrupts are handled before internal (timer/software) interrupts as external interrupts are usually generated by devices
that might require low interrupt service times.

Software interrupts are handled before internal timer interrupts, because internal timer interrupts are usually intended for time
slicing, where time precision is less important, whereas software interrupts are used for inter-processor messaging. Software
interrupts can be avoided when high-precision timing is required, or high-precision timer interrupts can be routed via a different
interrupt path. Software interrupts are located in the lowest four bits of mip as these are often written by software, and this position
allows the use of a single CSR instruction with a five-bit immediate.

Restricted views of the mip and mie registers appear as the sip and sie registers for supervisor level. If an interrupt is delegated to S-mode by setting
a bit in the mideleg register, it becomes visible in the sip register and is maskable using the sie register. Otherwise, the corresponding bits in sip and
sie are read-only zero.

C.12.1. Attributes

CSR Address 0x344

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.12.2. Format

0123456789101112131415

SSIPVSSIPMSIPSTIPVSTIPMTIPSEIPVSEIPMEIPSGEIPLCOFIP

1631

3247

4863

Figure 12. mip format

C.12.3. Field Summary

Nam
e

Location Type Reset Value

mip.
SSIP

1 RW 0

mip.
VSSI

P

2 RW 0

mip.
MSIP

3 RO 0

mip.
STIP

5 RW 0

mip.
VSTI

P

6 RO-H 0

mip.
MTI

P

7 RO-H 0

mip.
SEIP

9 RW-H 0

mip.
VSEI

P

10 RO-H 0

153



Nam
e

Location Type Reset Value

mip.
MEI

P

11 RO-H 0

mip.
SGEI

P

12 RO-H 0

mip.
LCO
FIP

13 RW-H 0

C.12.4. Fields

mip.SSIP Field

Location:

1

Description:

Supervisor Software Interrupt Pending

Reports the current pending state of an (H)S-mode software interrupt, which is generated by writing to this field.

<%- if ext?(:Smaia) -%>
When using AIA/IMSIC, IPIs are expected to be delivered as external interrupts
and SSIP is not backed by any hardware update (aside from any aliasing effects).
However, SSIP is still writable by M-mode software and, when written, can be used to
generate an S-mode Software Interrupt.
<%- end -%>

<% if ext?(:Smaia) %>_Aliases_<% else %>_Alias_<% end %>:

• sip.SSIP when mideleg.SSI is set
<%- if ext?(:Smaia) -%>

• mvip.SSIP
<%- end -%>

Type:

RW

Reset value:

0

mip.VSSIP Field

Location:

2

Description:

Virtual Supervisor Software Interrupt Pending

Reports the current pending state of a VS-mode software interrupt, which is generated by writing to this field.

<%- if ext?(:Smaia) -%>
When using AIA/IMSIC, IPIs are expected to be delivered as external interrupts and VSSIP is not backed by any hardware update (aside
from any aliased writes).
However, VSSIP is still writable by M-mode software and, when written, can be used to
generate a VS-mode Software Interrupt.
<%- end -%>

Aliases:

• hip.VSSIP

154



• hvip.VSSIP

• vsip.SSIP when hideleg.VSSI is set

Type:

RW

Reset value:

0

mip.MSIP Field

Location:

3

Description:

Machine Software Interrupt Pending

Unused field.

<%- if ext?(:Smaia) -%>
With AIA/IMSIC, IPIs are delivered as external interrupts. As a result, this bit is
unused and hardwired to 0.
<%- end -%>

Type:

RO

Reset value:

0

mip.STIP Field

Location:

5

Description:

Supervisor Timer Interrupt Pending

Reports the current pending state of an (H)S-mode timer interrupt
<%- if ext?(:Sstc) -%>
, which is normally controlled by the stimecmp CSR.
<%- else -%>
, which is generated by software by writing to mip.STIP<% if ext?(:Smaia) %>or its alias mvip.STIP<% end %>.
<%- end -%>

<%-if ext?(:Sstc) -%>
When menvcfg.STCE is set, mip.STIP is RO-H, and is completely controlled by the timer interrupt device (using stimecmp).

When menvcfg.STCE is clear, mip.STIP is RW, and M-mode software may write the bit to inject a Supervisor Timer Interrupt.
<%- end -%>

<% if ext?(:Smaia) %>_Aliases_<% else %>_Alias_<% end %>:

• sip.STIP when mideleg.STI is set (though sip.STIP is a read-only view)
<%- if ext?(:Smaia) -%>

• mvip.STIP when when menvcfg.STCE is clear
<%- end -%>

Type:

RW

Reset value:

0

155



mip.VSTIP Field

Location:

6

Description:

Virtual Supervisor Timer Interrupt Pending

Reports the current pending state of a VS-mode timer interrupt
<%- if ext?(:Sstc) -%>
, which is normally controlled by the vstimecmp CSR, but can also be injected by the hypervisor through hvip.VSTIP.
<%- else -%>
, which is generated by M-mode and/or HS-mode software by writing to hvip.VSTIP.
<%- end -%>

<%-if ext?(:Sstc) -%>
When menvcfg.STCE is set (enabling the Sstc extension), mip.VSTIP is the logical OR of hvip.VSTIP and the VS-level interrupt signal
generated by the timer device (controlled by the value of vstimecmp).

When menvcfg.STCE is clear (disabling the Sstc extension), mip.VSTIP is exactly the value of hvip.VSTIP.
<%- end -%>

mip.VSTIP is never writable. If VS-mode software wants to clear the bit, it must do so
<%- if ext?(:Sstc) -%>
by writing the vstimecmp register or
<%- end -%>
by calling into the hypervisor (which can then clear hvip.VSTIP).

Aliases:

• hip.VSTIP

• vsip.STIP when hideleg.VSTI is set

• hvip.VSTIP <% if ext?(:Sstc) %>when menvcfg.STCE is clear<% end %> (though hvip.VSTIP is writable)

Type:

RO-H

Reset value:

0

mip.MTIP Field

Location:

7

Description:

Machine Timer Interrupt Pending

Reports the current pending state of an M-mode timer interrupt.

Bit is controlled by the timer device (using mtimecmp), and is not writable.

Type:

RO-H

Reset value:

0

mip.SEIP Field

Location:

9

Description:

Supervisor External Interrupt Pending

156



Reports the current pending state of an (H)S-mode external interrupt.

This field has two parts: a software-writable shadow value and a wire from the interrupt controller.
The value presented to software in the bit on a CSR read is the logical OR of the software-writable value and the interrupt controller value.
When software writes this bit, only the shadow value is updated (the interrupt controller is not notified of the write).

<%- if ext?(:Smaia) -%>
The software-writable shadow value is aliased in mvip.SEIP (Smaia extension).
<%- end -%>

Alias:

• sip.SEIP when mideleg.SEI is set (though sip.SEIP is read-only)

Type:

RW-H

Reset value:

0

mip.VSEIP Field

Location:

10

Description:

Virtual Supervisor External Interrupt Pending

Reports the current pending state of a VS-mode external interrupt.

This field is the logical OR of hvip.VSEIP and the wire coming from the interrupt controller.

The field is not writable by software
<%- if ext?(:Smaia) -%>
(i.e., unlike the behavior of mip.SEIP/mvip.SEIP, attempted writes to mip.VSEIP do not propagate to hvip.VSEIP)
<%- end -%>

1. + 
Aliases:

◦ hip.VSEIP

◦ vsip.SEIP when hideleg.VSEI is set

Type:

RO-H

Reset value:

0

mip.MEIP Field

Location:

11

Description:

Machine External Interrupt Pending

Reports the current pending state of an M-mode external interrupt.

MEIP is controlled by the external interrupt controller <% if ext?(:Smaia) %>(AIA) <% end %>.
It is not writable by software.

Type:

RO-H

Reset value:

0

157



mip.SGEIP Field

Location:

12

Description:

Supervisor Guest External Interrupt Pending

Read-only summary of any pending Supervisor Guest External Interrupt Pending, i.e.:
the logical-OR reduction of the hgeip register.

Alias:

• hip.SGEIP

Type:

RO-H

Reset value:

0

mip.LCOFIP Field

Location:

13

Description:

Local Counter Overflow Interrupt pending

<%- if ext?(:H) -%>
When hideleg.LCOFI is set,
vsip.LCOFIP, sip.LCOFIP, and mip.LCOFIP are all aliases.
<%- end -%>

When a counter overflow interrupt occurs, a hidden sticky bit is set.

Software writes 0 to mip.LCOFIP to clear the pending interrupt.

<% if ext?(:H) %>_Aliases_<% else %>_Alias_<% end %>:

• sip.LCOFIP when mideleg.LCOFI is set
<%- if ext?(:H) -%>

• vsip.LCOFIP when hideleg.LCOFI is set
<%- end -%>

Type:

RW-H

Reset value:

0

C.12.5. Software read

This CSR may return a value that is different from what is stored in hardware.

return $bits(CSR[CSR[mip]]) | ((CSR[misa].S == 1'b1 && pending_smode_external_interrupt) ? 10'h200 : 0);

158



C.13. misa
Machine ISA Control

Reports the XLEN and "major" extensions supported by the ISA.

C.13.1. Attributes

CSR Address 0x301

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.13.2. Format

012345678911121315

ABCDFGHIM

16171819202122293031

QSUVMXL

3247

4863

Figure 13. misa format

C.13.3. Field Summary

Na
me

Location Type Reset Value

mis
a.M
XL

63:62 RO 2

mis
a.A

0 RW

RO

UNDEFINED_LEGAL

mis
a.B

1 RW

RO

UNDEFINED_LEGAL

mis
a.C

2 RW

RO

1

mis
a.D

3 RW

RO

UNDEFINED_LEGAL

mis
a.F

5 RW

RO

UNDEFINED_LEGAL

mis
a.G

6 RO-H

RO

UNDEFINED_LEGAL

mis
a.H

7 RW

RO

UNDEFINED_LEGAL

mis
a.I

8 RO 1

mis
a.M

12 RW

RO

UNDEFINED_LEGAL

159



Na
me

Location Type Reset Value

mis
a.Q

16 RW

RO

1

mis
a.S

18 RW

RO

UNDEFINED_LEGAL

mis
a.U

20 RW

RO

UNDEFINED_LEGAL

mis
a.V

21 RW

RO

UNDEFINED_LEGAL

C.13.4. Fields

misa.MXL Field

Location:

63:62

Description:

XLEN in M-mode.

Type:

RO

Reset value:

2

misa.A Field

Location:

0

Description:

Indicates support for the A (atomic) extension.

[when,"MUTABLE_MISA_A == true"]
Writing 0 to this field will cause all atomic instructions to raise an IllegalInstruction exception.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

misa.B Field

Location:

1

Description:

Indicates support for the B (bitmanip) extension.

[when,"MUTABLE_MISA_B == true"]
Writing 0 to this field will cause all bitmanip instructions to raise an IllegalInstruction exception.

Type:

RW

RO

160



Reset value:

UNDEFINED_LEGAL

misa.C Field

Location:

2

Description:

Indicates support for the C (compressed) extension.

[when,"MUTABLE_MISA_C == true"]
Writing 0 to this field will cause all compressed instructions to raise an IllegalInstruction exception.
Additionally, IALIGN becomes 32.

Type:

RW

RO

Reset value:

1

misa.D Field

Location:

3

Description:

Indicates support for the D (double precision float) extension.

[when,"MUTABLE_MISA_D == true"] + — + Writing 0 to this field will cause all double-precision floating point instructions to raise an
IllegalInstruction exception.

Additionally, the upper 32-bits of the f registers will read as zero. + — +

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

misa.F Field

Location:

5

Description:

Indicates support for the F (single precision float) extension.

[when,"MUTABLE_MISA_F == true"] + — + Writing 0 to this field will cause all floating point (single and double precision) instructions to
raise an IllegalInstruction exception.

Writing 0 to this field with misa.D set will result in UNDEFINED behavior. + — +

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

161



misa.G Field

Location:

6

Description:

Indicates support for all of the following extensions: I, A, M, F, D.

Type:

RO-H

RO

Reset value:

UNDEFINED_LEGAL

misa.H Field

Location:

7

Description:

Indicates support for the H (hypervisor) extension.

[when,"MUTABLE_MISA_H == true"]
Writing 0 to this field will cause all attempts to enter VS- or VU- mode, execute a hypervisor instruction, or access a hypervisor CSR to raise
an IllegalInstruction fault.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

misa.I Field

Location:

8

Description:

Indicates support for the I (base) extension.

Type:

RO

Reset value:

1

misa.M Field

Location:

12

Description:

Indicates support for the M (integer multiply/divide) extension.

[when,"MUTABLE_MISA_M == true"]
Writing 0 to this field will cause all attempts to execute an integer multiply or divide instruction to raise an IllegalInstruction exception.

Type:

RW

RO

162



Reset value:

UNDEFINED_LEGAL

misa.Q Field

Location:

16

Description:

Indicates support for the Q (quad precision float) extension.

[when,"MUTABLE_MISA_Q == true"] + — + Writing 0 to this field will cause all quad-precision floating point instructions to raise an
IllegalInstruction exception. + — +

Type:

RW

RO

Reset value:

1

misa.S Field

Location:

18

Description:

Indicates support for the S (supervisor mode) extension.

[when,"MUTABLE_MISA_S == true"]
Writing 0 to this field will cause all attempts to enter S-mode or access S-mode state to raise an exception.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

misa.U Field

Location:

20

Description:

Indicates support for the U (user mode) extension.

[when,"MUTABLE_MISA_U == true"]
Writing 0 to this field will cause all attempts to enter U-mode to raise an exception.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

misa.V Field

163



Location:

21

Description:

Indicates support for the V (vector) extension.

[when,"MUTABLE_MISA_V == true"]
Writing 0 to this field will cause all attempts to execute a vector instruction to raise an IllegalInstruction trap.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

C.13.5. Software write

This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

MXL = csr_value.MXL
A = csr_value.A
B = csr_value.B
C = csr_value.C
D = csr_value.D
F = if (csr_value.F == 0 && csr_value.D == 1) {
  return UNDEFINED_LEGAL_DETERMINISTIC;
}

# fall-through; write the intended value
return csr_value.F;

G = csr_value.G
H = csr_value.H
I = csr_value.I
M = csr_value.M
Q = if ((csr_value.F == 0 || csr_value.D == 0) && csr_value.Q == 1) {
  return UNDEFINED_LEGAL_DETERMINISTIC;
}

# fall-through; write the intended value
return csr_value.Q;

S = csr_value.S
U = csr_value.U
V = csr_value.V

C.13.6. Software read

This CSR may return a value that is different from what is stored in hardware.

return CSR[misa].MXL `<< (xlen() - 2 | (CSR[misa].V `<< 21) | (CSR[misa].U `<< 20) | (CSR[misa].S `<< 18) | (CSR[misa].Q `<< 16) |
(CSR[misa].M `<< 12) | (CSR[misa].I `<< 7) | (CSR[misa].H `<< 6) | ((CSR[misa].A & CSR[misa].M & CSR[misa].F & CSR[misa].D) `<< 5)
| (CSR[misa].F `<< 4) | (CSR[misa].D `<< 3) | (CSR[misa].C `<< 2) | (CSR[misa].B `<< 1) | CSR[misa].A);

164



C.14. mscratch
Machine Scratch Register

Scratch register for software use. Bits are not interpreted by hardware.

C.14.1. Attributes

CSR Address 0x340

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.14.2. Format

015

SCRATCH

1631

SCRATCH

3247

4863

Figure 14. mscratch format

C.14.3. Field Summary

Name Location Type Reset Value

mscrat
ch.SCR
ATCH

63:0 RW 0

C.14.4. Fields

mscratch.SCRATCH Field

Location:

63:0

Description:

Scratch value

Type:

RW

Reset value:

0

165



C.15. mstatus
Machine Status

The mstatus register tracks and controls the hart’s current operating state.

C.15.1. Attributes

CSR Address 0x300

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.15.2. Format

0123456789101112131415

SIEMIESPIEUBEMPIESPPVSMPPFSXS

16171819202122233031

XSMPRVSUMMXRTVMTWTSRSD

3247

4863

Figure 15. mstatus format

C.15.3. Field Summary

Nam
e

Location Type Reset Value

mstat
us.SD

63 RO-H

RO-H

RO

UNDEFINED_LEGAL

mstat
us.M
DT

42 RW-H UNDEFINED_LEGAL

mstat
us.M
PV

39 RW-H UNDEFINED_LEGAL

mstat
us.GV

A

38 RW-H 0

mstat
us.M
BE

37 RO 0

mstat
us.SB

E

36 RW

RO

UNDEFINED_LEGAL

mstat
us.SX

L

35:34 RW

RO

UNDEFINED_LEGAL

mstat
us.UX

L

33:32 RW

RO

UNDEFINED_LEGAL

mstat
us.TS

R

22 RW UNDEFINED_LEGAL

166



Nam
e

Location Type Reset Value

mstat
us.T
W

21 RW UNDEFINED_LEGAL

mstat
us.TV

M

20 RO

RW

UNDEFINED_LEGAL

mstat
us.M
XR

19 RW UNDEFINED_LEGAL

mstat
us.SU

M

18 RW

RO

UNDEFINED_LEGAL

mstat
us.M
PRV

17 RW-H

RO

0

mstat
us.XS

16:15 RO 0

mstat
us.FS

14:13 RW-H

RO

RO

RW

UNDEFINED_LEGAL

mstat
us.M

PP

12:11 RW-H 3

mstat
us.VS

10:9 RW-H

RO

RO

RW

UNDEFINED_LEGAL

mstat
us.SP

P

8 RW-H UNDEFINED_LEGAL

mstat
us.M
PIE

7 RW-H UNDEFINED_LEGAL

mstat
us.UB

E

6 RW

RO

UNDEFINED_LEGAL

mstat
us.SP

IE

5 RW-H

RO

UNDEFINED_LEGAL

mstat
us.MI

E

3 RW-H 0

mstat
us.SI

E

1 RW-H

RO

UNDEFINED_LEGAL

C.15.4. Fields

mstatus.SD Field

Location:

63

Description:

Read-only bit that summarizes whether either the FS, XS, or VS

167



fields signal the presence of some dirty state.

Type:

RO-H

RO-H

RO

Reset value:

UNDEFINED_LEGAL

mstatus.MDT Field

 MDT is only defined in RV64 (CSR[misa].MXL == 1)

Location:

42

Description:

Written to 1 when entering M-mode from an exception/interrupt.
When returning via an MRET instruction, the bit is written to 0.
On reset in set to 1, and software should write it to 0 when boot sequence is done.
When mstatus.MDT=1, direct write by CSR instruction cannot set mstatus.MIE to 1, if not written together.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

mstatus.MPV Field

 MPV is only defined in RV64 (CSR[misa].MXL == 1)

Location:

39

Description:

Written with the prior virtualization mode when entering M-mode from an exception/interrupt.
When returning via an MRET instruction, the virtualization mode becomes the value of MPV unless MPP=3, in which case the virtualization
mode is always 0.
Can also be written by software.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

mstatus.GVA Field

 GVA is only defined in RV64 (CSR[misa].MXL == 1)

Location:

38

Description:

When a trap is taken and a guest virtual address is written into mtval, GVA is set.
When a trap is taken and a guest virtual address is written into mtval, GVA is cleared.

Type:

RW-H

168



Reset value:

0

mstatus.MBE Field

 MBE is only defined in RV64 (CSR[misa].MXL == 1)

Location:

37

Description:

Controls the endianness of data M-mode (0 = little, 1 = big).
Instructions are always little endian, regardless of the data setting.

[when,"M_MODE_ENDIANNESS == little"]
Since the CPU does not support big endian, this is hardwired to 0.

[when,"M_MODE_ENDIANNESS == big"]
Since the CPU does not support little endian, this is hardwired to 1.

Type:

RO

Reset value:

0

mstatus.SBE Field

 SBE is only defined in RV64 (CSR[misa].MXL == 1)

Location:

36

Description:

Controls the endianness of S-mode (0 = little, 1 = big).
Instructions are always little endian, regardless of the data setting.

[when,"S_MODE_ENDIANNESS == little"]
Since the CPU does not support big endian, this is hardwired to 0.

[when,"S_MODE_ENDIANNESS == big"]
Since the CPU does not support little endian, this is hardwired to 1.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mstatus.SXL Field

 SXL is only defined in RV64 (CSR[misa].MXL == 1)

Location:

35:34

Description:

Sets the effective XLEN for S-mode (0 = 32-bit, 1 = 64-bit, 2 = 128-bit [reserved]).

[when,"SXLEN==32"]
Since the CPU only supports SXLEN==32, this is hardwired to 1.

[when,"SXLEN==64"]

169



Since the CPU only supports SXLEN==64, this is hardwired to 2.

[when,"SXLEN=3264"] + — + It is not valid to have SXLEN less than UXLEN.

It is UNDEFINED_LEGAL what will happen if a software sets mstatus.SXL to be greater than mstatus.UXL.

It is UNDEFINED_LEGAL to set the MSB of SXL. + — +

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mstatus.UXL Field

 UXL is only defined in RV64 (CSR[misa].MXL == 1)

Location:

33:32

Description:

U-mode XLEN.

Sets the effective XLEN for U-mode (1 = 32-bit, 2 = 64-bit, 3 = 128-bit [reserved]).

[when,"UXLEN == 32"]
Since the CPU only supports UXLEN==32, this is hardwired to 1.

[when,"UXLEN == 64"]
Since the CPU only supports UXLEN==64, this is hardwired to 2.

[when,"UXLEN == 3264"] + — + It is not valid to have SXLEN less than UXLEN.

It is UNDEFINED_LEGAL what will happen if a software sets mstatus.SXL to be greater than mstatus.UXL.

It is UNDEFINED_LEGAL to set the MSB of UXL. + — +

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mstatus.TSR Field

Location:

22

Description:

When 1, attempts to execute the sret instruction while executing in HS/S-mode
will raise an Illegal Instruction exception.

[when,"ext?(:H)"]
Does not affect the behavior of sret in VS_mode (see hstatus.VTSR).

Type:

RW

Reset value:

UNDEFINED_LEGAL

170



mstatus.TW Field

Location:

21

Description:

When 1, the WFI instruction will raise an Illegal Instruction trap after an
implementaion-defined wait period when executed in a mode other than M-mode.

When 0, the wfi instruction is permitted to wait forever in (H)S-mode but must
trap after an implementation-defined wait period in U-mode.

Type:

RW

Reset value:

UNDEFINED_LEGAL

mstatus.TVM Field

Location:

20

Description:

When 1, an Illegal Instruction trap occurs when

• writing the satp CSR, executing an sfence.vma, or executing an sinval.vma while in (H)S-mode (but not VS-mode)

• writing the hgtap CSR, executing an hfence.gvma, or executing an hinval.gvma while in HS-mode

Notably, mstatus.TVM does not cause

*hfence.vvma, sfence.w.inval, or sfence.inval.ir to trap.

• Any additional traps in VS-mode (controlled via hstatus.VTVM instead).

Type:

RO

RW

Reset value:

UNDEFINED_LEGAL

mstatus.MXR Field

Location:

19

Description:

When 1, loads from pages marked readable or executable are allowed.
When 0, loads from pages marked executable raise a Page Fault exception.

Type:

RW

Reset value:

UNDEFINED_LEGAL

mstatus.SUM Field

Location:

18

Description:

When 0, an S-mode read or an M-mode read with mstatus.MPRV=1 and mstatus.MPP=01

171



to a 'U' (user) page will cause an ILLEGAL INSTRUCTION exception.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mstatus.MPRV Field

Location:

17

Description:

When 1, loads and stores behave as if the current virtualization mode:privilege level was
mstatus.MPV:mstatus.MPP.

mstatus.MPRV is cleared on any exception return (mret or sret instruction, regardless of the trap handler privilege mode).

Type:

RW-H

RO

Reset value:

0

mstatus.XS Field

Location:

16:15

Description:

Summarizes the current state of any custom extension state.
Either 0 - Off, 1 - Initial, 2 - Clean, 3 - Dirty.
Since there are no custom extensions in the base spec, this field is read-only 0.

Type:

RO

Reset value:

0

mstatus.FS Field

Location:

14:13

Description:

When 0, floating point instructions (from F and D extensions) are disabled,
and cause ILLEGAL INSTRUCTION exceptions.
When a floating point register, or the fCSR register is written, FS obtains the value 3.
Values 1 and 2 are valid write values for software, but are not interpreted by hardware
other than to possibly enable a previously-disabled floating point unit.

Type:

RW-H

RO

RO

RW

172



Reset value:

UNDEFINED_LEGAL

mstatus.MPP Field

Location:

12:11

Description:

Written by hardware in two cases:

• Written with the prior nominal privilege level when entering M-mode from an exception/interrupt.

• Written with 0 when executing an mret instruction to return from an exception in M-mode.

Can also be written by software without immediate side-effect.

Affects execution in two cases:

• On a return from an exception from M-mode, the machine will
enter the privilege level stored in MPP before clearing the field.

• When mstatus.MPRV is set, loads and stores behave as if the current privilege level were MPP.

Type:

RW-H

Reset value:

3

mstatus.VS Field

Location:

10:9

Description:

When 0, vector instructions (from the V extension) are disabled, and cause ILLEGAL INSTRUCTION exceptions.
When a vector register or vector CSR is written, VS obtains the value 3.
Values 1 and 2 are valid write values for software, but are not interpreted by hardware
other than to possibly enable a previously-disabled vector unit.

Type:

RW-H

RO

RO

RW

Reset value:

UNDEFINED_LEGAL

mstatus.SPP Field

Location:

8

Description:

Written by hardware in two cases:

• Written with the prior nominal privilege level when entering (H)S-mode from an exception/interrupt.

• Written with 0 when executing an sret instruction to return from an exception in (H)S-mode or (unlikely) M-mode.

Can also be written by software without immediate side-effect.

173



Affects execution in one case:

• On a return from an exception using the sret instruction in (H)S-mode or (unlikely) M-mode,
the machine will enter the privilege level stored in SPP before clearing the field.

Notably, mstatus.SPP does not affect exception return in VS-mode (see vsstatus.SPP).

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

mstatus.MPIE Field

Location:

7

Description:

Written by hardware in two cases:

• Written with prior value of mstatus.MIE when entering M-mode from an exception/interrupt.

• Written with the value 1 when returning from an exception in M-mode (via the mret instruction).

Can also be written by software without immediate side effect.

Other than serving as a record of nested traps as described above, mstatus.MPIE does not affect execution.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

mstatus.UBE Field

Location:

6

Description:

Controls the endianness of U-mode (0 = little, 1 = big).
Instructions are always little endian, regardless of the data setting.

[when,"U_MODE_ENDIANNESS == 'little'"]
Since the CPU does not support big endian in U-mode, this is hardwired to 0.

[when,"U_MODE_ENDIANNESS == 'big'"]
Since the CPU does not support little endian in U-mode, this is hardwired to 1.

Type:

RW

RO

Reset value:

UNDEFINED_LEGAL

mstatus.SPIE Field

Location:

5

Description:

Written by hardware in two cases:

174



• Written with prior value of mstatus.SIE when entering (H)S-mode from an exception/interrupt.

• Written with the value 1 when returning from an exception via the sret instruction in (H)S-mode or (unlikely) M-mode.

Can also be written by software without immediate side effect.

Other than serving as a record of nested traps as described above, mstatus.SPIE does not affect execution.

Type:

RW-H

RO

Reset value:

UNDEFINED_LEGAL

mstatus.MIE Field

Location:

3

Description:

Written by hardware in two cases:

• Written with the value 0 when entering M-mode from an exception/interrupt.

• Written with the prior value of mstatus.MPIE when returning from an exception in M-mode (via mret).

Affects execution by:

• When 0, all interrupts are disabled when the current privilege level is M.

• When 1, interrupts that are not otherwise disabled with a field in mie are enabled.

Type:

RW-H

Reset value:

0

mstatus.SIE Field

Location:

1

Description:

Written by hardware in two cases:

• Written with the value 0 when entering (H)S-mode from an exception/interrupt.

• Written with the prior value of mstatus.SPIE when returning from an exception via sret in (H)S-mode or (unlikely) M-mode.

Affects execution by:

• When 0, all (H)S-mode interrupts are disabled when the current privilege level is (H)S (M-mode interrupts are still enabled).

• When 1, (H)S-mode interrupts that are not otherwise disabled with a field in sie are enabled.

Type:

RW-H

RO

Reset value:

UNDEFINED_LEGAL

175



C.15.5. Software write

This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

SD = csr_value.SD
MDT = csr_value.MDT
MPV = csr_value.MPV
GVA = csr_value.GVA
MBE = csr_value.MBE
SBE = csr_value.SBE
SXL = if (csr_value.SXL < csr_value.UXL) {
  return CSR[mstatus].SXL;
} else if (csr_value.SXL < 1 || csr_value.SXL > 2) {
  # SXL != [1, 2] is not defined (3 reserved for RV128, but that isn't ratified)
  return CSR[mstatus].SXL;
} else {
  return csr_value.SXL;
}

UXL = if (csr_value.SXL < csr_value.UXL) {
  return CSR[mstatus].UXL;
} else if (csr_value.UXL < 1 || csr_value.UXL > 2) {
  # UXL != [1, 2] is not defined (3 reserved for RV128, but that isn't ratified)
  return CSR[mstatus].UXL;
} else {
  return csr_value.UXL;
}

TSR = csr_value.TSR
TW = csr_value.TW
TVM = if (CSR[misa].S == 1'b0) {
  return 0;
} else if (MSTATUS_TVM_IMPLEMENTED) {
  return csr_value.TVM;
} else {
  return 0;
}

MXR = csr_value.MXR
SUM = csr_value.SUM
MPRV = csr_value.MPRV
XS = csr_value.XS
FS = if (MISA_CSR_IMPLEMENTED && (CSR[misa].S == 1'b0) && (CSR[misa].F == 1'b0)) {
  # must be read-only-0
  return 0;
}
return $array_includes?(MSTATUS_FS_LEGAL_VALUES, csr_value.FS) ? csr_value.FS : UNDEFINED_LEGAL_DETERMINISTIC;

MPP = if (csr_value.MPP == 2'b01 && !implemented?(ExtensionName::S)) {
  return UNDEFINED_LEGAL_DETERMINISTIC;
} else if (csr_value.MPP == 2'b00 && !implemented?(ExtensionName::U)) {
  return UNDEFINED_LEGAL_DETERMINISTIC;
} else if (csr_value.MPP == 2'b10) {
  # never a valid value
  return UNDEFINED_LEGAL_DETERMINISTIC;
} else {
  return csr_value.MPP;
}

VS = if (implemented?(ExtensionName::V) && CSR[misa].V == 1'b1){
  return $array_includes?(MSTATUS_VS_LEGAL_VALUES, csr_value.VS) ? csr_value.VS : UNDEFINED_LEGAL_DETERMINISTIC;
} else if (!implemented?(ExtensionName::S) && !implemented?(ExtensionName::V)) {
  # must be read-only-0
  return 0;
} else {
  # there will be no hardware update in this case because we know the V extension isn't implemented
  return $array_includes?(MSTATUS_VS_LEGAL_VALUES, csr_value.VS) ? csr_value.VS : UNDEFINED_LEGAL_DETERMINISTIC;
}

SPP = if (csr_value.SPP == 2'b10) {
  return UNDEFINED_LEGAL_DETERMINISTIC;
} else {

176



  return csr_value.SPP;
}

MPIE = csr_value.MPIE
UBE = csr_value.UBE
SPIE = csr_value.SPIE
MIE = csr_value.MIE
SIE = csr_value.SIE

177



C.16. mtval
Machine Trap Value

Holds trap-specific information

C.16.1. Attributes

CSR Address 0x343

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.16.2. Format

015

VALUE

1631

VALUE

3247

4863

Figure 16. mtval format

C.16.3. Field Summary

Nam
e

Location Type Reset Value

mtva
l.VAL

UE

63:0 RW-H 0

C.16.4. Fields

mtval.VALUE Field

Location:

63:0

Description:

Written with trap-specific information when a trap is taken into M-mode.

The values are:

[separator="!"]
!===
! Exception type ! Value

! [0] Instruction address misaligned ! The misaligned virtual PC (same as the value written to mepc).
! [1] Instruction access fault ! The <% if ext?(:C) %> portion of the <% end %> virtual PC causing the access fault <%- unless ext?(:C) -%>(same
as the value written to mepc)<%- end -%>.
! [2] Illegal Instruction ! The encoding of the illegal instruction.
! [3] Breakpoint
! [when,"REPORT_VA_IN_MTVAL_ON_BREAKPOINT == true"]
When caused by an EBREAK instruction, the virtual PC of the breakpoint instruction.

[when,"REPORT_VA_IN_MTVAL_ON_BREAKPOINT == false"]
When caused by an EBREAK instruction, zero.

When caused by a data address (i.e., watchpoint) breakpoint, the faulting virtual address.

178



When caused by an instruction address breakpoint, the faulting virtual PC.
! [4] Load address misaligned ! The misaligned virtual load address.
! [5] Load access fault
! The part of virtual load address causing in the access fault.

When the load is misaligned, the reported value is the smallest address on the page causing a fault
(e.g., if an 8-byte load is equally split across a page and the fault occurs on the second page,
address + 4 is reported).

(Even though the access fault arises on a physical address, the virtual address is reported)
! [6] Store/AMO address misaligned ! The misaligned virtual store/AMO address.
! [7] Store/AMO access fault
! The virtual store/AMO address causing the access fault.

When the store/AMO is misaligned, the reported value is the smallest address on the page causing a fault
(e.g., if an 8-byte store is equally split across a page and the fault occurs on the second page,
address + 4 is reported).

(Even though the access fault arises on a physical address, the virtual address is reported)
! [8] Environment call from U-mode <% if ext?(:H) %>or VU-mode<% end %> ! Zero
! [9] Environment call from (H)S-mode ! Zero
<%- if ext?(:H) -%>
! [10] Environment call from VS-mode ! Zero
<%- end -%>
! [11] Environment call from M-mode ! Zero
! [12] Instruction page fault
! The <% if ext?(:C) %> portion of the <% end %> virtual PC causing the page fault
<% unless ext?(:C) %>(same as the value written to mepc)<% end %>.
! [13] Load page fault
! The part of the virtual load address causing in the page fault.

When the load is misaligned, the reported value is the smallest address on the page causing a fault
(e.g., if an 8-byte load is equally split across a page and the fault occurs on the second page, address + 4 is reported).
! [15] Store/AMO page fault
! The virtual store/AMO address causing in the page fault.

When the store/AMO is misaligned, the reported value is the smallest address on the page causing a fault
(e.g., if an 8-byte store is equally split across a page and the fault occurs on the second page, address + 4 is reported).
<%- if ext?(:H) -%>
! [20] Instruction guest-page fault
! The <% if ext?(:C) %> portion of the <% end %> virtual PC causing the fault <% unless ext?(:C) %>(same as the value written to mepc)<%
end %>.

The guest physical address is reported in mtval2.
! [21] Load guest-page fault
! The part of the virtual address causing the fault.

When the load is misaligned, the reported value is the smallest address on the page causing a fault
(e.g., if an 8-byte load is equally split across a page and the fault occurs on the second page, address + 4 is reported).

The guest physical address is reported in mtval2.
! [22] Virtual instruction
! The encoding of the faulting virtual instruction.
! [23] Store/AMO guest-page fault
! The part of the virtual address causing the fault.

When the store/AMO is misaligned, the reported value is the smallest address on the page causing a fault
(e.g., if an 8-byte store is equally split across a page and the fault occurs on the second page, address + 4 is reported).

The guest physical address is reported in mtval2.
<%- end -%>
!===

Type:

RW-H

Reset value:

0

179



C.17. mtvec
Machine Trap Vector Control

Controls where traps jump.

C.17.1. Attributes

CSR Address 0x305

Defining
extension

Sm

Length 64-bit

Privilege Mode M

C.17.2. Format

01215

MODEBASE

1631

BASE

3247

4863

Figure 17. mtvec format

C.17.3. Field Summary

Nam
e

Location Type Reset Value

mtve
c.BA
SE

63:2 RO

RW-R

0

mtve
c.MO

DE

1:0 RO

RO

RW-R

UNDEFINED_LEGAL

C.17.4. Fields

mtvec.BASE Field

Location:

63:2

Description:

Bits [MXLEN-1:2] of the exception vector physical address for any trap taken in M-mode.

The implementation physical memory map may resitrict which values are legal in this field.

Type:

RO

RW-R

Reset value:

0

180



mtvec.MODE Field

Location:

1:0

Description:

Vectoring mode for asynchronous interrupts.

0 - Direct, 1 - Vectored

When Direct, all synchronous exceptions and asynchronous interrupts jump to (mtvec.BASE << 2).

When Vectored, asynchronous interrupts jump to (mtvec.BASE << 2 + mcause*4) while synchronous exceptions continue to jump to
(mtvec.BASE << 2).

Type:

RO

RO

RW-R

Reset value:

UNDEFINED_LEGAL

C.17.5. Software write

This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

BASE = # Base spec says that BASE must be 4-byte aligned, which will always be the case
# implementations may put further constraints on BASE when MODE != Direct
# If that is the case, stvec should have an override for the implementation

if (csr_value.MODE == 0) {
  if ($array_includes?(MTVEC_MODES, 0)) {
    return csr_value.BASE;
  }
  if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "retain") {
    return CSR[mtvec].BASE;
  }
  if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "custom") {
    return UNDEFINED_LEGAL_DETERMINISTIC;
  }
  unreachable();
} else if (csr_value.MODE == 1) {
  if ($array_includes?(MTVEC_MODES, 1)) {
    return csr_value.BASE;
  }
  if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "retain") {
    return CSR[mtvec].BASE;
  }
  if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "custom") {
    return UNDEFINED_LEGAL_DETERMINISTIC;
  }
  unreachable();
} else {
  if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "retain") {
    return CSR[mtvec].BASE;
  }
  if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "custom") {
    return UNDEFINED_LEGAL_DETERMINISTIC;
  }
  unreachable();
}

MODE = if (csr_value.MODE == 0) {
  if ($array_includes?(MTVEC_MODES, 0)) {
    return csr_value.MODE;
  } else {

181



    if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "retain") {
      return CSR[mtvec].MODE;
    } else if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "custom") {
      return UNDEFINED_LEGAL_DETERMINISTIC;
    }
  }
} else if (csr_value.MODE == 1) {
  if ($array_includes?(MTVEC_MODES, 1)) {
    return csr_value.MODE;
  } else {
    if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "retain") {
      return CSR[mtvec].MODE;
    } else if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "custom") {
      return UNDEFINED_LEGAL_DETERMINISTIC;
    }
  }
} else {
  if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "retain") {
    return CSR[mtvec].MODE;
  } else if (MTVEC_ILLEGAL_WRITE_BEHAVIOR == "custom") {
    return UNDEFINED_LEGAL_DETERMINISTIC;
  }
}
unreachable();

182



C.18. mvendorid
Machine Vendor ID

Reports the JEDEC manufacturer ID of the core.

C.18.1. Attributes

CSR Address 0xf11

Defining
extension

Sm

Length 32-bit

Privilege Mode M

C.18.2. Format

06715

OffsetBank

1631

Bank

Figure 18. mvendorid format

C.18.3. Field Summary

Name Location Type Reset Value

mven
dorid.
Bank

31:7 RO UNDEFINED_LEGAL

mven
dorid.
Offset

6:0 RO UNDEFINED_LEGAL

C.18.4. Fields

mvendorid.Bank Field

Location:

31:7

Description:

JEDEC manufacturer ID bank minus 1

Type:

RO

Reset value:

UNDEFINED_LEGAL

mvendorid.Offset Field

Location:

6:0

Description:

JEDEC manufacturer ID offset

Type:

RO

Reset value:

UNDEFINED_LEGAL

183



C.19. time
Timer for RDTIME Instruction

This CSR does not exist, and access will cause an IllegalInstruction exception.

Shadow of the memory-mapped M-mode CSR mtime.

Privilege mode access is controlled with mcounteren.TM, scounteren.TM, and hcounteren.TM as follows:

mcounteren.TM scounteren.TM scounteren.TM time behavior

S-mode U-mode VS-mode VU-mode

0 - - Illegal Instruction Illegal Instruction Illegal Instruction Illegal Instruction

1 0 0 read-only Illegal Instruction Illegal Instruction Illegal Instruction

1 1 0 read-only read-only Illegal Instruction Illegal Instruction

1 0 1 read-only Illegal Instruction read-only Illegal Instruction

1 1 1 read-only read-only read-only read-only

C.19.1. Attributes

CSR Address 0xc01

Defining
extension

Zicntr

Length 64-bit

Privilege Mode U

C.19.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 19. time format

C.19.3. Field Summary

Nam
e

Location Type Reset Value

time.
COU
NT

63:0 RO-H UNDEFINED_LEGAL

C.19.4. Fields

time.COUNT Field

Location:

63:0

Description:

Reports the current wall-clock time from the timer device.

Alias of the mtime memory-mapped CSR.

Type:

RO-H

184



Reset value:

UNDEFINED_LEGAL

C.19.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (!TIME_CSR_IMPLEMENTED) {
  unimplemented_csr($encoding);
}
if (mode() == PrivilegeMode::S) {
  if (CSR[mcounteren].TM == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
} else if (mode() == PrivilegeMode::U) {
  if (CSR[misa].S == 1'b1) {
    if ((CSR[mcounteren].TM & CSR[scounteren].TM) == 1'b0) {
      raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
    }
  } else if (CSR[mcounteren].TM == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
} else if (mode() == PrivilegeMode::VS) {
  if (CSR[hcounteren].TM == 1'b0 && CSR[mcounteren].TM == 1'b1) {
    raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
  } else if (CSR[mcounteren].TM == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
} else if (mode() == PrivilegeMode::VU) {
  if (CSR[hcounteren].TM & CSR[scounteren].TM) == 1'b0) && (CSR[mcounteren].IR == 1'b1 {
    raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
  } else if (CSR[mcounteren].TM == 1'b0) {
    raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
  }
}
return read_mtime();

185



Appendix D: IDL Function Details

D.1. implemented? (generated)
Return true if the implementation supports extension.

Return Type
Boolean

Arguments
ExtensionName extension

D.2. implemented_version? (generated)
Return true if the implementation supports extension meeting 'version_requirement'.

Return Type
Boolean

Arguments
ExtensionName extension, String version_requirement

D.3. implemented_csr? (generated)
Return true if csr_addr is an implemented CSR

Return Type
Boolean

Arguments
Bits<12> csr_addr

D.4. direct_csr_lookup (generated)
Return CSR info for a CSR with direct address csr_addr.

If no CSR exists, <return_value>.valid == false

Return Type
Csr

Arguments
Bits<12> csr_addr

D.5. indirect_csr_lookup (generated)
Return CSR info for a CSR with indirect address csr_addr at window slot window_slot.

If no CSR exists, <return_value>.valid == false

Return Type
Csr

Arguments
Bits<MXLEN> csr_addr, Bits<4> window_slot

D.6. csr_hw_read (generated)
Returns the raw value of csr

Return Type
Bits

Arguments
Csr csr

186



D.7. csr_sw_read (generated)
Returns the result of CSR[csr].sw_read(); i.e., the software view of the register

Return Type
Bits

Arguments
Csr csr

D.8. csr_sw_write (generated)
Writes value to csr, applying an WARL transformations first.

Uses the sw_write(…) functions of CSR field definitions.

Return Type
void

Arguments
Csr csr, Bits<MXLEN> value

D.9. unpredictable (builtin)
Indicate that the hart has reached a state that is unpredictable because the RISC-V spec allows multiple behaviors. Generally, this will be a fatal
condition to any emulation, since it is unclear what to do next.

The single argument why is a string describing why the hart entered an unpredictable state.

Return Type
void

Arguments
String why

D.10. unreachable (builtin)
Indicate that the IDL line should be unreachable.

If this function is called, it represents a bug in the IDL code.

Return Type
void

Arguments None

D.11. read_hpm_counter (builtin)
Returns the value of hpmcounterN.

N must be between 3..31.

hpmcounterN must be implemented.

Return Type
Bits

Arguments
Bits<5> n

D.12. hartid (builtin)
Returns the value for mhartid as seen by this hart.

Must obey the rules of the priv spec:

The mhartid CSR is an MXLEN-bit read-only register containing the integer ID of the hardware thread running the
code. This register must be readable in any implementation. Hart IDs might not necessarily be numbered

187



contiguously in a multiprocessor system, but at least one hart must have a hart ID of zero. Hart IDs must be unique
within the execution environment.

Return Type
XReg

Arguments None

D.13. read_mcycle (builtin)
Return the current value of the cycle counter.

Return Type
Bits

Arguments None

D.14. read_mtime (builtin)
Return the current value of the real time device.

Return Type
Bits

Arguments None

D.15. sw_write_mcycle (builtin)
Given a value that software is trying to write into mcycle, perform the write and return the value that will actually be written.

Return Type
Bits

Arguments
Bits<64> value

D.16. cache_block_zero (builtin)
Zero the cache block at the given physical address.

The cache block may be zeroed using 1 or more writes.

A cache-block-sized region is zeroed regardless of whether or not the memory is in a cacheable PMA region.

Return Type
void

Arguments
XReg cache_block_physical_address

D.17. eei_ecall_from_m (builtin)
When TRAP_ON_ECALL_FROM_M is false, this function will be called to emulate the EEI handling of ECALL-from-M.

If TRAP_ON_ECALL_FROM_M is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type
void

Arguments None

D.18. eei_ecall_from_s (builtin)
When TRAP_ON_ECALL_FROM_S is false, this function will be called to emulate the EEI handling of ECALL-from-S.

If TRAP_ON_ECALL_FROM_S is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

188



Return Type
void

Arguments None

D.19. eei_ecall_from_u (builtin)
When TRAP_ON_ECALL_FROM_U is false, this function will be called to emulate the EEI handling of ECALL-from-U.

If TRAP_ON_ECALL_FROM_U is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type
void

Arguments None

D.20. eei_ecall_from_vs (builtin)
When TRAP_ON_ECALL_FROM_VS is false, this function will be called to emulate the EEI handling of ECALL-from-VS.

If TRAP_ON_ECALL_FROM_VS is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type
void

Arguments None

D.21. eei_ebreak (builtin)
When TRAP_ON_EBREAK is false, this function will be called to emulate the EEI handling of EBREAK

If TRAP_ON_EBREAK is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type
void

Arguments None

D.22. memory_model_acquire (builtin)
Perform an acquire; that is, ensure that no subsequent operation in program order appears to an external observer to occur after the operation
calling this function.

Return Type
void

Arguments None

D.23. memory_model_release (builtin)
Perform a release; that is, ensure that no prior store in program order can be observed external to this hart after this function returns.

Return Type
void

Arguments None

D.24. assert (builtin)
Assert that a condition is true. Failure represents an error in the IDL model.

Return Type
void

Arguments
Boolean test, String message

189



D.25. notify_mode_change (builtin)
Called whenever the privilege mode changes. Downstream tools can use this to hook events.

Return Type
void

Arguments
PrivilegeMode new_mode, PrivilegeMode old_mode

D.26. abort_current_instruction (builtin)
Abort the current instruction, and start refetching from $pc.

Return Type
void

Arguments None

D.27. ebreak (builtin)
Raise an Environment Break exception, returning control to the debug environment.

Return Type
void

Arguments None

D.28. prefetch_instruction (builtin)
Hint to prefetch a block containing virtual_address for an upcoming fetch.

Return Type
void

Arguments
XReg virtual_address

D.29. prefetch_read (builtin)
Hint to prefetch a block containing virtual_address for an upcoming load.

Return Type
void

Arguments
XReg virtual_address

D.30. prefetch_write (builtin)
Hint to prefetch a block containing virtual_address for an upcoming store.

Return Type
void

Arguments
XReg virtual_address

D.31. fence (builtin)
Execute a memory ordering fence.(according to the FENCE instruction).

Return Type
void

190



Arguments
Boolean pi, Boolean pr, Boolean po, Boolean pw, Boolean si, Boolean sr, Boolean so,
Boolean sw

D.32. fence_tso (builtin)
Execute a TSO memory ordering fence.(according to the FENCE instruction).

Return Type
void

Arguments None

D.33. ifence (builtin)
Execute a memory ordering instruction fence (according to FENCE.I).

Return Type
void

Arguments None

D.34. pause (builtin)
Pause hart retirement for a implementation-defined period of time, which may be zero.

See Zihintpause for more.

Return Type
void

Arguments None

D.35. pow (generated)
Return value to the power exponent.

Return Type
XReg

Arguments
XReg value, XReg exponent

D.36. maybe_cache_translation (generated)
Given a translation result, potentially cache the result for later use. This function models a TLB fill operation. A valid implementation does nothing.

Return Type
void

Arguments
XReg vaddr, MemoryOperation op, TranslationResult result

D.37. cached_translation (generated)
Possibly returns a cached translation result matching vaddr.

CachedTranslationResult contains a Boolean 'valid' field. If valid, 'result' is a usable translation. Otherwise, the cache lookup failed.

Return Type
CachedTranslationResult

Arguments
XReg vaddr, MemoryOperation op

191



D.38. order_pgtbl_writes_before_vmafence (builtin)
Orders all writes prior to this call in global memory order that affect a page table in the set identified by order_type before any subsequent
sfence.vma/hfence.vma/sinval.vma/hinval.gvma/hinval.vvma in program order.

Performs the ordering function of SFENCE.VMA/HFENCE.[GV]VMA/SFENCE.W.INVAL.

A valid implementation does nothing if address caching is not used.

Return Type
void

Arguments
VmaOrderType order_type

D.39. order_pgtbl_reads_after_vmafence (builtin)
Orders all reads after to this call in global memory order to a page table in the set identified by order_type after any prior
sfence.vma/hfence.vma/sinval.vma/hinval.gvma/hinval.vvma in program order.

Performs the ordering function of SFENCE.VMA/HFENCE.[GV]VMA/SFENCE.INVAL.IR.

A valid implementation does nothing if address caching is not used.

Return Type
void

Arguments
VmaOrderType order_type

D.40. invalidate_translations (generated)
Locally invalidate the cached S-mode/VS-mode/G-stage address translations contained in the set identified by inval_type.

A valid implementation does nothing if address caching is not used.

Return Type
void

Arguments
VmaOrderType inval_type

D.41. read_physical_memory
Read from physical memory.

Return Type
Bits<len>

Arguments
XReg paddr

if (len == 8) {
  return read_physical_memory_8(paddr);
} else if (len == 16) {
  return read_physical_memory_16(paddr);
} else if (len == 32) {
  return read_physical_memory_32(paddr);
} else if (len == 64) {
  return read_physical_memory_64(paddr);
} else {
  assert(false, "Invalid len");
}

D.42. read_physical_memory_8 (builtin)
Read a byte from physical memory.

192



Return Type
Bits⑧

Arguments
XReg paddr

D.43. read_physical_memory_16 (builtin)
Read two bytes from physical memory.

Return Type
Bits⑯

Arguments
XReg paddr

D.44. read_physical_memory_32 (builtin)
Read four bytes from physical memory.

Return Type
Bits

Arguments
XReg paddr

D.45. read_physical_memory_64 (builtin)
Read eight bytes from physical memory.

Return Type
Bits

Arguments
XReg paddr

D.46. write_physical_memory
Write to physical memory.

Return Type
void

Arguments
XReg paddr, Bits<len> value

if (len == 8) {
  write_physical_memory_8(paddr, value);
} else if (len == 16) {
  write_physical_memory_16(paddr, value);
} else if (len == 32) {
  write_physical_memory_32(paddr, value);
} else if (len == 64) {
  write_physical_memory_64(paddr, value);
} else {
  assert(false, "Invalid len");
}

D.47. write_physical_memory_8 (builtin)
Write a byte to physical memory.

Return Type
void

193



Arguments
XReg paddr, Bits<8> value

D.48. write_physical_memory_16 (builtin)
Write two bytes to physical memory.

Return Type
void

Arguments
XReg paddr, Bits<16> value

D.49. write_physical_memory_32 (builtin)
Write four bytes to physical memory.

Return Type
void

Arguments
XReg paddr, Bits<32> value

D.50. write_physical_memory_64 (builtin)
Write eight bytes to physical memory.

Return Type
void

Arguments
XReg paddr, Bits<64> value

D.51. wfi (builtin)
Wait-for-interrupt: hint that the processor should enter a low power state until the next interrupt.

A valid implementation is a no-op.

The model will advance the PC; this function does not need to.

Return Type
void

Arguments None

D.52. pma_applies? (builtin)
Checks if attr is applied to the entire physical address region between [paddr, paddr + len) based on static PMA attributes.

Return Type
Boolean

Arguments
PmaAttribute          attr, Bits<PHYS_ADDR_WIDTH> paddr, U32                   len

D.53. atomic_check_then_write_32 (builtin)
Atomically:

• Reads 32-bits from paddr

• Compares the read value to compare_value

• Writes write_value to paddr if the comparison was bitwise-equal

returns true if the write occurs, and false otherwise

Preconditions:

194



• paddr will be aligned to 32-bits

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, Bits<32>              compare_value, Bits<32>
write_value

D.54. atomic_check_then_write_64 (builtin)
Atomically:

• Reads 64-bits from paddr

• Compares the read value to compare_value

• Writes write_value to paddr if the comparison was bitwise-equal

returns true if the write occurs, and false otherwise

Preconditions:

• paddr will be aligned to 64-bits

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, Bits<64>              compare_value, Bits<64>
write_value

D.55. atomically_set_pte_a (builtin)
Atomically:

• Reads the pte_len value at pte_addr

◦ If the read value does not exactly equal pte_value, returns false

• Sets the 'A' bit and writes the result to pte_addr

• return true

Preconditions:

• pte_addr will be aligned to 64-bits

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> pte_addr, Bits<MXLEN>            pte_value, U32
pte_len

D.56. atomically_set_pte_a_d (builtin)
Atomically:

• Reads the pte_len value at pte_addr

◦ If the read value does not exactly equal pte_value, returns false

• Sets the 'A' and 'D' bits and writes the result to pte_addr

• return true

Preconditions:

• pte_addr will be aligned to 64-bits

Return Type
Boolean

195



Arguments
Bits<PHYS_ADDR_WIDTH> pte_addr, Bits<MXLEN>            pte_value, U32
pte_len

D.57. atomic_read_modify_write_32 (builtin)
Atomically read-modify-write 32-bits starting at phys_address using value and op.

Return the original (unmodified) read value.

All access checks/alignment checks/etc. should be done before calling this function; it’s assumed the RMW is OK to proceed.

Return Type
Bits

Arguments
Bits<PHYS_ADDR_WIDTH>  phys_addr, Bits<32>               value, AmoOperation
op

D.58. atomic_read_modify_write_64 (builtin)
Atomically read-modify-write 64-bits starting at phys_address using value and op.

Return the original (unmodified) read value.

All access checks/alignment checks/etc. should be done before calling this function; it’s assumed the RMW is OK to proceed.

Return Type
Bits

Arguments
Bits<PHYS_ADDR_WIDTH>  phys_addr, Bits<64>               value, AmoOperation
op

D.59. set_external_interrupt
Set an external interrupt targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
  CSR[mip].MEIP = 1'b1;
} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
  pending_smode_external_interrupt = true;
} else if ((CSR[misa].H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
  CSR[mip].VSEIP = 1'b1;
} else {
  assert(false, "Invalid target_mode");
}
refresh_pending_interrupts();

D.60. clear_external_interrupt
Clear an external interrupt targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
  CSR[mip].MEIP = 1'b0;

196



} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
  pending_smode_external_interrupt = false;
} else if ((CSR[misa].H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
  CSR[mip].VSEIP = 1'b0;
} else {
  assert(false, "Invalid target_mode");
}
refresh_pending_interrupts();

D.61. set_software_interrupt
Set a software interrupt targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
  CSR[mip].MSIP = 1'b1;
} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
  CSR[mip].SSIP = 1'b1;
} else {
  assert(false, "Invalid target_mode");
}
refresh_pending_interrupts();

D.62. clear_software_interrupt
Clear a software interrupt targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
  CSR[mip].MSIP = 1'b0;
} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
  CSR[mip].SSIP = 1'b0;
} else {
  assert(false, "Invalid target_mode");
}
refresh_pending_interrupts();

D.63. set_timer_interrupt
Set a timer interrupt from the platform targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
  CSR[mip].MTIP = 1'b1;
} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
  CSR[mip].STIP = 1'b1;
} else if ((CSR[misa].H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
  pending_vsmode_timer_interrupt = true;
} else {
  assert(false, "Invalid target_mode");
}

197



refresh_pending_interrupts();

D.64. clear_timer_interrupt
Set a timer interrupt from the platform targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
  CSR[mip].MTIP = 1'b0;
} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
  CSR[mip].STIP = 1'b0;
} else if ((CSR[misa].H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
  pending_vsmode_timer_interrupt = false;
} else {
  assert(false, "Invalid target_mode");
}
refresh_pending_interrupts();

D.65. refresh_pending_interrupts
refreshes the calculation of a pending interrupt

needs to be called after any state update that could change a pending interrupt. This includes: - CSR[mip] - CSR[mie] - CSR[mstatus].MIE -
CSR[mstatus].SIE - CSR[vsstatus].SIE - CSR[mideleg] - CSR[sideleg] - CSR[hideleg] - CSR[hvip] - CSR[hgeip] - CSR[hgeie] - mode changes

Return Type
void

Arguments None

Bits<MXLEN> pending_ints = CSR[CSR[mip]].sw_read() & $bits(CSR[CSR[mie]]);
if (pending_ints == 0) {
  pending_and_enabled_interrupts = 0;
  return ;
}
Boolean HAS_MIDELEG = implemented_version?(ExtensionName::S, "<= 1.9.1") || (implemented_version?(ExtensionName::S, "> 1.9.1") &&
implemented_version?(ExtensionName::Sm, "> 1.9.1"));
Bits<MXLEN> mmode_enabled_ints = mode() == PrivilegeMode::M) && (CSR[mstatus].MIE == 1'b0 ? 0 : ($bits(CSR[CSR[mie]]) &
(HAS_MIDELEG ? ~$bits(CSR[CSR[mideleg]]) : ~MXLEN'0));
Bits<MXLEN> mmode_pending_and_enabled = pending_ints & mmode_enabled_ints;
if (mmode_pending_and_enabled != 0) {
  pending_and_enabled_interrupts = mmode_pending_and_enabled;
  return ;
}
if (CSR[misa].S == 1'b1) {
  Bits<MXLEN> smode_enabled_ints = mode() == PrivilegeMode::M) || (CSR[mstatus].SIE == 1'b0 ? 0 : $bits(CSR[CSR[mie]]) &
($bits(CSR[CSR[mideleg]]));
  Bits<MXLEN> smode_pending_and_enabled = pending_ints & smode_enabled_ints;
  if (smode_pending_and_enabled != 0) {
    pending_and_enabled_interrupts = smode_pending_and_enabled;
    return ;
  }
}
pending_and_enabled_interrupts = 0;

D.66. highest_priority_interrupt
Given a bitmask of interrupts in the format of MIE/MIP, return the highest priority interrupt code that is set

Interrupt priority is: MEI, MSI, MTI, SEI, SSI, STI, SGEI, VSEI, VSSI, VSTI, LCOFI

Return Type
InterruptCode

198



Arguments
Bits<MXLEN> int_mask

if (int_mask[$bits(InterruptCode::MachineExternal)] == 1'b1) {
  return InterruptCode::MachineExternal;
} else if (int_mask[$bits(InterruptCode::MachineSoftware)] == 1'b1) {
  return InterruptCode::MachineSoftware;
} else if (int_mask[$bits(InterruptCode::MachineTimer)] == 1'b1) {
  return InterruptCode::MachineTimer;
} else if (CSR[misa].S == 1'b1) {
  if (int_mask[$bits(InterruptCode::SupervisorExternal)] == 1'b1) {
    return InterruptCode::SupervisorExternal;
  } else if (int_mask[$bits(InterruptCode::SupervisorSoftware)] == 1'b1) {
    return InterruptCode::SupervisorSoftware;
  } else if (int_mask[$bits(InterruptCode::SupervisorTimer)] == 1'b1) {
    return InterruptCode::SupervisorTimer;
  }
} else if (implemented?(ExtensionName::Sscofpmf)) {
  if (int_mask[$bits(InterruptCode::LocalCounterOverflow)] == 1'b1) {
    return InterruptCode::LocalCounterOverflow;
  }
}
assert(false, "There is no valid interrupt");

D.67. choose_interrupt
Return the highest priority interrupt that is both pending and enabled and the mode it will be taken in

Return Type
InterruptCode, PrivilegeMode

Arguments None

InterruptCode chosen;
Boolean HAS_MIDELEG = implemented_version?(ExtensionName::S, "<= 1.9.1") || (implemented_version?(ExtensionName::S, "> 1.9.1") &&
implemented_version?(ExtensionName::Sm, "> 1.9.1"));
Bits<MXLEN> mmode_pending_and_enabled = pending_and_enabled_interrupts & ~(HAS_MIDELEG ? $bits(CSR[CSR[mideleg]]) : MXLEN'0);
if (mmode_pending_and_enabled != 0) {
  assert((mode() != PrivilegeMode::M) || (CSR[mstatus].MIE == 1'b1), "M-mode interrupts are not enabled");
  chosen = highest_priority_interrupt(mmode_pending_and_enabled);
} else if (CSR[misa].S == 1'b1) {
  Bits<MXLEN> smode_pending_and_enabled = (pending_and_enabled_interrupts & $bits(CSR[CSR[mideleg]]));
  if (smode_pending_and_enabled != 0) {
    assert((mode() == PrivilegeMode::U) || (mode() == PrivilegeMode::VU) || (mode() == PrivilegeMode::VS) || (mode() ==
PrivilegeMode::S) && (CSR[mstatus].SIE == 1'b1), "S-mode interrupt can't be triggered");
    chosen = highest_priority_interrupt(smode_pending_and_enabled);
  }
}
assert($bits(chosen) != 0, "Didn't pick interrupt?");
PrivilegeMode to_mode;
Bits<MXLEN> chosen_mask = (MXLEN'1 << $bits(chosen));
if (((HAS_MIDELEG ? $bits(CSR[CSR[mideleg]]) : MXLEN'0) & chosen_mask) == 0) {
  to_mode = PrivilegeMode::M;
} else {
  if (CSR[misa].S == 1'b1) {
    to_mode = PrivilegeMode::S;
  } else {
    to_mode = PrivilegeMode::U;
  }
}
return chosen, to_mode;

D.68. take_interrupt
Take (adjust CSRs and set PC to handler) the highest priority interrupt that is both pending and enabled

Return Type
void

199



Arguments None

PrivilegeMode to_mode;
InterruptCode code;
(code, to_mode = choose_interrupt());
if (to_mode == PrivilegeMode::M) {
  CSR[mepc].PC = $pc;
  CSR[mstatus].MPP = $bits(mode())[1:0];
  if (CSR[misa].H == 1'b1) {
    if (MXLEN == 64) {
      CSR[mstatus].MPV = $bits(mode())[2];
    } else {
      CSR[mstatush].MPV = $bits(mode())[2];
    }
    CSR[mtval2].VALUE = 0;
    CSR[mtinst].VALUE = 0;
  }
  CSR[mcause].CODE = $bits(code);
  CSR[mcause].INT = 1'b1;
  CSR[mtval].VALUE = 0;
  if (CSR[mtvec].MODE == 0) {
    $pc = {CSR[mtvec].BASE, 2'b00};
  } else if (CSR[mtvec].MODE == 1'b1) {
    $pc = {CSR[mtvec].BASE, 2'b00} + ($bits(code) * 4);
  }
} else if ((CSR[misa].S == 1'b1) && (to_mode == PrivilegeMode::S)) {
  CSR[sepc].PC = $pc;
  CSR[mstatus].SPP = $bits(mode())[0];
  if (CSR[misa].H == 1'b1) {
    CSR[hstatus].SPV = $bits(mode())[2];
  }
  CSR[scause].CODE = $bits(code);
  CSR[scause].INT = 1'b1;
  CSR[stval].VALUE = 0;
  if (CSR[stvec].MODE == 0) {
    $pc = {CSR[stvec].BASE, 2'b00};
  } else if (CSR[stvec].MODE == 1'b1) {
    $pc = {CSR[stvec].BASE, 2'b00} + ($bits(code) * 4);
  }
} else if ((CSR[misa].H == 1'b1) && (to_mode == PrivilegeMode::VS)) {
  CSR[vsepc].PC = $pc;
  CSR[vsstatus].SPP = $bits(mode())[0];
  CSR[vscause].CODE = $bits(code);
  CSR[vscause].INT = 1'b1;
  CSR[vstval].VALUE = 0;
  if (CSR[vstvec].MODE == 0) {
    $pc = {CSR[vstvec].BASE, 2'b00};
  } else if (CSR[vstvec].MODE == 1'b1) {
    $pc = {CSR[vstvec].BASE, 2'b00} + ($bits(code) * 4);
  }
}
set_mode_no_refresh(to_mode);

D.69. fetch_memory_aligned_16
Fetch 16 bits from virtual memory using a known aligned address.

Return Type
Bits⑯

Arguments
XReg virtual_address

TranslationResult result;
if (CSR[misa].S == 1) {
  result = translate(virtual_address, MemoryOperation::Fetch, mode(), virtual_address);
} else {
  result.paddr = virtual_address;
}
access_check(result.paddr, 16, virtual_address, MemoryOperation::Fetch, ExceptionCode::InstructionAccessFault, mode());

200



return read_physical_memory<16>(result.paddr);

D.70. fetch_memory_aligned_32
Fetch 32 bits from virtual memory using a known aligned address.

Return Type
Bits

Arguments
XReg virtual_address

TranslationResult result;
if (CSR[misa].S == 1) {
  result = translate(virtual_address, MemoryOperation::Fetch, mode(), virtual_address);
} else {
  result.paddr = virtual_address;
}
access_check(result.paddr, 32, virtual_address, MemoryOperation::Fetch, ExceptionCode::InstructionAccessFault, mode());
return read_physical_memory<32>(result.paddr);

D.71. power_of_2?
Returns true if value is a power of two, false otherwise

Return Type
Boolean

Arguments
Bits<N> value

return (value != 0) && value & (value - 1 == 0);

D.72. has_virt_mem?
Returns true if some virtual memory translation (Sv*) is supported in the config.

Return Type
Boolean

Arguments None

return implemented?(ExtensionName::Sv32) || implemented?(ExtensionName::Sv39) || implemented?(ExtensionName::Sv48) ||
implemented?(ExtensionName::Sv57);

D.73. max_va_size
Returns the largest possible Virtual Address width in any supported translation mode.

The max VA is determined by physical address size when in M mode or S-mode with Bare translation. Otherwise, max VA is the size of a virtual
address in the largest supported Sv* mode.

Return the largest that applies.

Return Type
Bits⑧

Arguments None

Bits<8> translated_va_size = 0;
if (implemented?(ExtensionName::Sv57)) {
  translated_va_size = 57;
} else if (implemented?(ExtensionName::Sv48)) {
  translated_va_size = 48;
} else if (implemented?(ExtensionName::Sv39)) {
  translated_va_size = 39;

201



} else if (implemented?(ExtensionName::Sv32)) {
  translated_va_size = 32;
}
if (PHYS_ADDR_WIDTH > translated_va_size) {
  if (PHYS_ADDR_WIDTH > MXLEN) {
    return MXLEN;
  } else {
    return PHYS_ADDR_WIDTH;
  }
} else {
  return translated_va_size;
}

D.74. highest_set_bit
Returns the position of the highest (nearest MSB) bit that is '1', or -1 if value is zero.

Return Type
Bits⑧

Arguments
XReg value

for (Bits<8> i = xlen() - 1; i >= 0; i--) {
  if (value[i] == 1) {
    return i;
  }
}
return -'sd1;

D.75. lowest_set_bit
Returns the position of the lowest (nearest LSB) bit that is '1', or XLEN if value is zero.

Return Type
Bits⑧

Arguments
XReg value

for (Bits<8> i = 0; i < xlen(); i++) {
  if (value[i] == 1) {
    return i;
  }
}
return xlen();

D.76. bit_length
Returns the minimum number of bits needed to represent value.

Only works on unsigned values.

The value 0 returns 1.

Return Type
XReg

Arguments
XReg value

for (XReg i = 63; i > 0; i--) {
  if (value[i] == 1) {
    return i;
  }
}
return 1;

202



D.77. count_leading_zeros
Returns the number of leading 0 bits before the most-significant 1 bit of value, or N if value is zero.

Return Type
Bits<bit_length(N)>

Arguments
Bits<N> value

for (U32 i = 0; i < N; i++) {
  if (value[N - 1 - i] == 1) {
    return i;
  }
}
return N;

D.78. sext
Sign extend value starting at first_extended_bit.

Bits [XLEN-1:`first_extended_bit`] of the return value should get the value of bit (first_extended bit - 1).

Return Type
XReg

Arguments
XReg value, XReg first_extended_bit

if (first_extended_bit == MXLEN) {
  return value;
} else {
  Bits<1> sign = value[first_extended_bit - 1];
  for (U32 i = MXLEN - 1; i >= first_extended_bit; i--) {
    value[i] = sign;
  }
  return value;
}

D.79. is_naturally_aligned
Checks if value is naturally aligned to N bits.

Return Type
Boolean

Arguments
XReg value

return true if (N == 8);
XReg Mask = (N / 8) - 1;
return (value & ~Mask) == value;

D.80. in_naturally_aligned_region?
Checks if a length-bit access starting at address lies entirely within an N-bit naturally-aligned region.

Return Type
Boolean

Arguments
XReg address, U32  length

XReg Mask = (N / 8) - 1;
return (address & ~Mask) == ((address + length - 1) & ~Mask);

203



D.81. contains?
Given a region defined by region_start, region_size, determine if a target defined by target_start, target_size is completely contained with the region.

Return Type
Boolean

Arguments
XReg region_start, U32  region_size, XReg target_start, U32  target_size

return target_start >= region_start && (target_start + target_size) <= (region_start + region_size);

D.82. set_fp_flag
Add flag to the sticky flags bits in CSR[fcsr]

Return Type
void

Arguments
FpFlag flag

if (flag == FpFlag::NX) {
  CSR[fcsr].NX = 1;
} else if (flag == FpFlag::UF) {
  CSR[fcsr].UF = 1;
} else if (flag == FpFlag::OF) {
  CSR[fcsr].OF = 1;
} else if (flag == FpFlag::DZ) {
  CSR[fcsr].DZ = 1;
} else if (flag == FpFlag::NV) {
  CSR[fcsr].NV = 1;
}

D.83. rm_to_mode
Convert rm to a RoundingMode.

encoding is the full encoding of the instruction rm comes from.

Will raise an IllegalInstruction exception if rm is a reserved encoding.

Return Type
RoundingMode

Arguments
Bits<3> rm, Bits<32> encoding

if (rm == $bits(RoundingMode::RNE)) {
  return RoundingMode::RNE;
} else if (rm == $bits(RoundingMode::RTZ)) {
  return RoundingMode::RTZ;
} else if (rm == $bits(RoundingMode::RDN)) {
  return RoundingMode::RDN;
} else if (rm == $bits(RoundingMode::RUP)) {
  return RoundingMode::RUP;
} else if (rm == $bits(RoundingMode::RMM)) {
  return RoundingMode::RMM;
} else if (rm == $bits(RoundingMode::DYN)) {
  return $enum(RoundingMode, CSR[fcsr].FRM);
} else {
  raise(ExceptionCode::IllegalInstruction, mode(), encoding);
}

D.84. mark_f_state_dirty
Potentially updates mstatus.FS to the Dirty (3) state, depending on configuration settings.

204



Return Type
void

Arguments None

if (HW_MSTATUS_FS_DIRTY_UPDATE == "precise") {
  CSR[mstatus].FS = 3;
} else if (HW_MSTATUS_FS_DIRTY_UPDATE == "imprecise") {
  unpredictable("The hart may or may not update mstatus.FS now");
}

D.85. nan_box
Produces a properly NaN-boxed floating-point value from a floating-point value of smaller size by adding all 1’s to the upper bits.

Return Type
Bits<TO_SIZE>

Arguments
Bits<FROM_SIZE> from_value

assert(FROM_SIZE < TO_SIZE, "Bad template arguments; FROM_SIZE must be less than TO_SIZE");
return {{TO_SIZE - FROM_SIZE{1'b1}}, from_value};

D.86. check_f_ok
Checks if instructions from the F extension can be executed, and, if not, raise an exception.

Return Type
void

Arguments
Bits<INSTR_ENC_SIZE> encoding

if (MUTABLE_MISA_F && CSR[misa].F == 0) {
  raise(ExceptionCode::IllegalInstruction, mode(), encoding);
}
if (CSR[mstatus].FS == 0) {
  raise(ExceptionCode::IllegalInstruction, mode(), encoding);
}

D.87. is_sp_neg_inf?
Return true if sp_value is negative infinity.

Return Type
Boolean

Arguments
Bits<32> sp_value

return sp_value == SP_NEG_INF;

D.88. is_sp_pos_inf?
Return true if sp_value is positive infinity.

Return Type
Boolean

Arguments
Bits<32> sp_value

205



return sp_value == SP_POS_INF;

D.89. is_sp_neg_norm?
Returns true if sp_value is a negative normal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 1) && (sp_value[30:23] != 0b11111111) && !((sp_value[30:23] == 0b00000000) && sp_value[22:0] != 0);

D.90. is_sp_pos_norm?
Returns true if sp_value is a positive normal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 0) && (sp_value[30:23] != 0b11111111) && !((sp_value[30:23] == 0b00000000) && sp_value[22:0] != 0);

D.91. is_sp_neg_subnorm?
Returns true if sp_value is a negative subnormal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 1) && (sp_value[30:23] == 0) && (sp_value[22:0] != 0);

D.92. is_sp_pos_subnorm?
Returns true if sp_value is a positive subnormal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 0) && (sp_value[30:23] == 0) && (sp_value[22:0] != 0);

D.93. is_sp_neg_zero?
Returns true if sp_value is negative zero.

Return Type
Boolean

Arguments
Bits<32> sp_value

return sp_value == SP_NEG_ZERO;

206



D.94. is_sp_pos_zero?
Returns true if sp_value is positive zero.

Return Type
Boolean

Arguments
Bits<32> sp_value

return sp_value == SP_POS_ZERO;

D.95. is_sp_nan?
Returns true if sp_value is a NaN (quiet or signaling)

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[30:23] == 0b11111111) && (sp_value[22:0] != 0);

D.96. is_sp_signaling_nan?
Returns true if sp_value is a signaling NaN

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[30:23] == 0b11111111) && (sp_value[22] == 0) && (sp_value[21:0] != 0);

D.97. is_sp_quiet_nan?
Returns true if sp_value is a quiet NaN

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[30:23] == 0b11111111) && (sp_value[22] == 1);

D.98. softfloat_shiftRightJam32
Shifts a right by the number of bits given in dist, which must not be zero. If any nonzero bits are shifted off, they are "jammed" into the least-
significant bit of the shifted value by setting the least-significant bit to 1. This shifted-and-jammed value is returned. The value of dist can be
arbitrarily large. In particular, if dist is greater than 32, the result will be either 0 or 1, depending on whether a is zero or nonzero.

Return Type
Bits

Arguments
Bits<32> a, Bits<32> dist

return (dist < 31) ? a >> dist | (a << (-dist & 31 != 0) ? 1 : 0) : ((a != 0) ? 1 : 0);

207



D.99. softfloat_shiftRightJam64
Shifts a right by the number of bits given in dist, which must not be zero. If any nonzero bits are shifted off, they are "jammed" into the least-
significant bit of the shifted value by setting the least-significant bit to 1. This shifted-and-jammed value is returned.

The value of 'dist' can be arbitrarily large. In particular, if dist is greater than 64, the result will be either 0 or 1, depending on whether a is zero or
nonzero.

Return Type
Bits

Arguments
Bits<64> a, Bits<32> dist

return (dist < 63) ? a >> dist | (a << (-dist & 63 != 0) ? 1 : 0) : ((a != 0) ? 1 : 0);

D.100. softfloat_roundToI32
Round to signed 32-bit integer, using rounding_mode

Return Type
Bits

Arguments
Bits<1> sign, Bits<64> sig, RoundingMode roundingMode

Bits<16> roundIncrement = 0x800;
if ((roundingMode != RoundingMode::RMM) && (roundingMode != RoundingMode::RNE)) {
  roundIncrement = 0;
  if (sign == 1 ? (roundingMode == RoundingMode::RDN) : (roundingMode == RoundingMode::RUP)) {
    roundIncrement = 0xFFF;
  }
}
Bits<16> roundBits = sig & 0xFFF;
sig = sig + roundIncrement;
if ((sig & 0xFFFFF00000000000) != 0) {
  set_fp_flag(FpFlag::NV);
  return sign == 1 ? WORD_NEG_OVERFLOW : WORD_POS_OVERFLOW;
}
Bits<32> sig32 = sig >> 12;
if ((roundBits == 0x800 && (roundingMode == RoundingMode::RNE))) {
  sig32 = sig32 & ~32'b1;
}
Bits<32> z = (sign == 1) ? -sig32 : sig32;
if ((z != 0) && $signed(z) < 's0) != (sign == 1) {
  set_fp_flag(FpFlag::NV);
  return sign == 1 ? WORD_NEG_OVERFLOW : WORD_POS_OVERFLOW;
}
if (roundBits != 0) {
  set_fp_flag(FpFlag::NX);
}
return z;

D.101. softfloat_roundToUI32
Round to unsigned 32-bit integer, using rounding_mode

Return Type
Bits

Arguments
Bits<1> sign, Bits<64> sig, RoundingMode roundingMode

Bits<16> roundIncrement = 0x800;
if ((roundingMode != RoundingMode::RMM) && (roundingMode != RoundingMode::RNE)) {
  roundIncrement = 0;
  if (sign == 1) {
    if (sig == 0) {

208



      return 0;
    }
    if (roundingMode == RoundingMode::RDN) {
      set_fp_flag(FpFlag::NV);
    }
  } else {
    if (roundingMode == RoundingMode::RUP) {
      roundIncrement = 0xFFF;
    }
  }
}
Bits<16> roundBits = sig & 0xFFF;
sig = sig + roundIncrement;
if ((sig & 0xFFFFF00000000000) != 0) {
  set_fp_flag(FpFlag::NV);
  return sign == 1 ? UI32_NEG_OVERFLOW : UI32_POS_OVERFLOW;
}
Bits<32> z = sig >> 12;
if ((roundBits == 0x800 && (roundingMode == RoundingMode::RNE))) {
  z = z & ~32'b1;
}
if ((z != 0) && (sign == 1)) {
  set_fp_flag(FpFlag::NV);
  return sign == 1 ? UI32_NEG_OVERFLOW : UI32_POS_OVERFLOW;
}
if (roundBits != 0) {
  set_fp_flag(FpFlag::NX);
}
return z;

D.102. packToF32UI
Pack components into a 32-bit value

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig

return {sign, exp, sig};

D.103. packToF16UI
Pack components into a 16-bit value

Return Type
Bits

Arguments
Bits<1> sign, Bits<5> exp, Bits<10> sig

return {sign, exp, sig};

D.104. softfloat_normSubnormalF16Sig
normalize subnormal half-precision value

Return Type
Bits<5>, Bits⑩

Arguments
Bits<16> hp_value

Bits<8> shift_dist = count_leading_zeros<16>(hp_value);
return 1 - shift_dist, hp_value << shift_dist;

209



D.105. softfloat_roundPackToF32
Round FP value according to mdode and then pack it in IEEE format.

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

Bits<8> roundIncrement = 0x40;
if ((mode != RoundingMode::RNE) && (mode != RoundingMode::RMM)) {
  roundIncrement = (mode == sign != 0) ? RoundingMode::RDN : RoundingMode::RUP ? 0x7F : 0;
}
Bits<8> roundBits = sig & 0x7f;
if (0xFD <= exp) {
  if ($signed(exp) < 's0) {
    Boolean isTiny = ($signed(exp) < -8's1) || (sig + roundIncrement < 0x80000000);
    sig = softfloat_shiftRightJam32(sig, -exp);
    exp = 0;
    roundBits = sig & 0x7F;
    if (isTiny && (roundBits != 0)) {
      set_fp_flag(FpFlag::UF);
    }
  } else if ('shFD < $signed(exp) || (0x80000000 <= sig + roundIncrement)) {
    set_fp_flag(FpFlag::OF);
    set_fp_flag(FpFlag::NX);
    return packToF32UI(sign, 0xFF, 0) - roundIncrement == 0) ? 1 : 0);   } } sig = (sig + roundIncrement);
if (sig == 0) {
  exp = 0;
}
return packToF32UI(sign, exp, sig);

D.106. softfloat_normRoundPackToF32
Normalize, round, and pack into a 32-bit floating point value

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

Bits<8> shiftDist = count_leading_zeros<32>(sig) - 1;
exp = exp - shiftDist;
if ((7 <= shiftDist) && (exp < 0xFD)) {
  return packToF32UI(sign, (sig != 0) ? exp : 0, sig << (shiftDist - 7));
} else {
  return softfloat_roundPackToF32(sign, exp, sig << shiftDist, mode);
}

D.107. signF32UI
Extract sign-bit of a 32-bit floating point number

Return Type
Bits①

Arguments
Bits<32> a

return a[31];

D.108. expF32UI
Extract exponent of a 32-bit floating point number

210



Return Type
Bits⑧

Arguments
Bits<32> a

return a[30:23];

D.109. fracF32UI
Extract significand of a 32-bit floating point number

Return Type
Bits

Arguments
Bits<32> a

return a[22:0];

D.110. returnNonSignalingNaN
Returns a non-signalling NaN version of the floating-point number Does not modify the input

Return Type
U32

Arguments
U32 a

U32 a_copy = a;
a_copy[22] = 1'b1;
return a_copy;

D.111. returnMag
Returns magnitude of the given number Does not modify the input

Return Type
U32

Arguments
U32 a

U32 a_copy = a;
a_copy[31] = 1'b0;
return a_copy;

D.112. returnLargerMag
Returns the larger number between a and b by magnitude If either number is signaling NaN then that is made quiet

Return Type
U32

Arguments
U32 a, U32 b

U32 mag_a = returnMag(a);
U32 mag_b = returnMag(b);
U32 nonsig_a = returnNonSignalingNaN(a);
U32 nonsig_b = returnNonSignalingNaN(b);
if (mag_a < mag_b) {

211



  return nonsig_b;
}
if (mag_b < mag_a) {
  return nonsig_a;
}
return (nonsig_a < nonsig_b) ? nonsig_a : nonsig_b;

D.113. softfloat_propagateNaNF32UI
Interpreting 'a' and 'b' as the bit patterns of two 32-bit floating- | point values, at least one of which is a NaN, returns the bit pattern of | the
combined NaN result. If either 'a' or 'b' has the pattern of a | signaling NaN, the invalid exception is raised.

Return Type
U32

Arguments
U32 a, U32 b

Boolean isSigNaN_a = is_sp_signaling_nan?(a);
Boolean isSigNaN_b = is_sp_signaling_nan?(b);
if (isSigNaN_a || isSigNaN_b) {
  set_fp_flag(FpFlag::NV);
}
return SP_CANONICAL_NAN;

D.114. softfloat_addMagsF32
Returns sum of the magnitudes of 2 floating point numbers

Return Type
U32

Arguments
U32 a, U32 b, RoundingMode mode

Bits<8> expA = expF32UI(a);
Bits<23> sigA = fracF32UI(a);
Bits<8> expB = expF32UI(b);
Bits<23> sigB = fracF32UI(b);
U32 sigZ;
U32 z;
Bits<1> signZ;
Bits<8> expZ;
Bits<8> expDiff = expA - expB;
if (expDiff == 8'd0) {
  if (expA == 8'd0) {
    z = a + b;
    return z;
  }
  if (expA == 8'hFF) {
    if ((sigA != 8'd0) || (sigB != 8'd0)) {
      return softfloat_propagateNaNF32UI(a, b);
    }
    return a;
  }
  signZ = signF32UI(a);
  expZ = expA;
  sigZ = 32'h01000000 + sigA + sigB;
  if (sigZ & 0x1) == 0) && (expZ < 8'hFE {
    sigZ = sigZ >> 1;
    return (32'h0 + (signZ << 31) + (expZ << 23) + sigZ);
  }
  sigZ = sigZ << 6;
} else {
  signZ = signF32UI(a);
  U32 sigA_32 = 32'h0 + (sigA << 6);
  U32 sigB_32 = 32'h0 + (sigA << 6);
  if (expDiff < 0) {
    if (expB == 8'hFF) {
      if (sigB != 0) {

212



        return softfloat_propagateNaNF32UI(a, b);
      }
      return packToF32UI(signZ, 8'hFF, 23'h0);
    }
    expZ = expB;
    sigA_32 = (expA == 0) ? 2 * sigA_32 : (sigA_32 + 0x20000000);
    sigA_32 = softfloat_shiftRightJam32(sigA_32, (32'h0 - expDiff));
  } else {
    if (expA == 8'hFF) {
      if (sigA != 0) {
        return softfloat_propagateNaNF32UI(a, b);
      }
      return a;
    }
    expZ = expA;
    sigB_32 = (expB == 0) ? 2 * sigB_32 : (sigB_32 + 0x20000000);
    sigB_32 = softfloat_shiftRightJam32(sigB_32, (32'h0 + expDiff));
  }
  U32 sigZ = 0x20000000 + sigA + sigB;
  if (sigZ < 0x40000000) {
    expZ = expZ - 1;
    sigZ = sigZ << 1;
  }
}
return softfloat_roundPackToF32(signZ, expZ, sigZ[22:0], mode);

D.115. softfloat_subMagsF32
Returns difference of the magnitudes of 2 floating point numbers

Return Type
U32

Arguments
U32 a, U32 b, RoundingMode mode

Bits<8> expA = expF32UI(a);
Bits<23> sigA = fracF32UI(a);
Bits<8> expB = expF32UI(b);
Bits<23> sigB = fracF32UI(b);
U32 sigZ;
U32 z;
Bits<1> signZ;
Bits<8> expZ;
U32 sigDiff;
U32 sigX;
U32 sigY;
U32 sigA_32;
U32 sigB_32;
Bits<8> shiftDist;
Bits<8> expDiff = expA - expB;
if (expDiff == 8'd0) {
  if (expA == 8'hFF) {
    if ((sigA != 8'd0) || (sigB != 8'd0)) {
      return softfloat_propagateNaNF32UI(a, b);
    }
    return a;
  }
  sigDiff = sigA - sigB;
  if (sigDiff == 0) {
    return packToF32UI(((mode == RoundingMode::RDN) ? 1 : 0), 0, 0);
  }
  if (expA != 0) {
    expA = expA - 1;
  }
  signZ = signF32UI(a);
  if (sigDiff < 0) {
    signZ = ~signZ;
    sigDiff = -32'sh1 * sigDiff;
  }
  shiftDist = count_leading_zeros<32>(sigDiff) - 8;
  expZ = expA - shiftDist;

213



  if (expZ < 0) {
    shiftDist = expA;
    expZ = 0;
  }
  return packToF32UI(signZ, expZ, sigDiff << shiftDist);
} else {
  signZ = signF32UI(a);
  sigA_32 = 32'h0 + (sigA << 7);
  sigB_32 = 32'h0 + (sigB << 7);
  if (expDiff < 0) {
    signZ = ~signZ;
    if (expB == 0xFF) {
      if (sigB_32 != 0) {
        return softfloat_propagateNaNF32UI(a, b);
      }
      return packToF32UI(signZ, expB, 0);
    }
    expZ = expB - 1;
    sigX = sigB_32 | 0x40000000;
    sigY = sigA_32 + ((expA != 0) ? 0x40000000 : sigA_32);
    expDiff = -expDiff;
  } else {
    if (expA == 0xFF) {
      if (sigA_32 != 0) {
        return softfloat_propagateNaNF32UI(a, b);
      }
      return a;
    }
    expZ = expA - 1;
    sigX = sigA_32 | 0x40000000;
    sigY = sigB_32 + ((expB != 0) ? 0x40000000 : sigB_32);
  }
  return softfloat_normRoundPackToF32(signZ, expZ, sigX - softfloat_shiftRightJam32(sigY, expDiff), mode);
}

D.116. f32_add
Returns sum of 2 floating point numbers

Return Type
U32

Arguments
U32 a, U32 b, RoundingMode mode

U32 a_xor_b = a ^ b;
if (signF32UI(a_xor_b) == 1) {
  return softfloat_subMagsF32(a, b, mode);
} else {
  return softfloat_addMagsF32(a, b, mode);
}

D.117. f32_sub
Returns difference of 2 floating point numbers

Return Type
U32

Arguments
U32 a, U32 b, RoundingMode mode

U32 a_xor_b = a ^ b;
if (signF32UI(a_xor_b) == 1) {
  return softfloat_addMagsF32(a, b, mode);
} else {
  return softfloat_subMagsF32(a, b, mode);
}

214



D.118. i32_to_f32
Converts 32-bit signed integer to 32-bit floating point number

Return Type
U32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = a[31];
if ((a & 0x7FFFFFFF) == 0) {
  return (sign == 1) ? packToF32UI(1, 0x9E, 0) : packToF32UI(0, 0, 0);
}
U32 magnitude_of_A = returnMag(a);
return softfloat_normRoundPackToF32(sign, 0x9C, magnitude_of_A, mode);

D.119. ui32_to_f32
Converts 32-bit unsigned integer to 32-bit floating point number

Return Type
U32

Arguments
U32 a, RoundingMode mode

if (a == 0) {
  return a;
}
if (a[31] == 1) {
  return softfloat_roundPackToF32(0, 0x9D, a >> 1 | (a & 1), mode);
} else {
  return softfloat_normRoundPackToF32(0, 0x9C, a, mode);
}

D.120. f32_to_i32
Converts 32-bit floating point number to a signed 32-bit integer

Return Type
U32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = signF32UI(a);
Bits<8> exp = expF32UI(a);
Bits<23> sig = fracF32UI(a);
Bits<8> shiftDist;
U64 sig64;
if ((exp == 8'hFF) && (sig != 0)) {
  sign = 0;
  set_fp_flag(FpFlag::NV);
  return I32_NAN;
}
if (exp != 0) {
  sig = sig | 32'h00800000;
}
sig64 = sig `<< 32;
shiftDist = 8'hAA - exp;
if (shiftDist > 0) {
  sig64 = softfloat_shiftRightJam64(sig64, shiftDist);
}
return softfloat_roundToI32(sign, sig64, mode);

215



D.121. f32_to_ui32
Converts 32-bit floating point number to an unsigned 32-bit integer

Return Type
U32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = signF32UI(a);
Bits<8> exp = expF32UI(a);
Bits<23> sig = fracF32UI(a);
Bits<8> shiftDist;
U64 sig64;
if ((exp == 8'hFF) && (sig != 0)) {
  sign = 0;
  set_fp_flag(FpFlag::NV);
  return UI32_NAN;
}
if (exp != 0) {
  sig = sig | 32'h00800000;
}
sig64 = sig `<< 32;
shiftDist = 8'hAA - exp;
if (shiftDist > 0) {
  sig64 = softfloat_shiftRightJam64(sig64, shiftDist);
}
return softfloat_roundToUI32(sign, sig64, mode);

D.122. softfloat_roundPackToF32_no_flag
Round FP value according to mdode and then pack it in IEEE format. No flags to be set

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

Bits<8> roundIncrement = 0x40;
if ((mode != RoundingMode::RNE) && (mode != RoundingMode::RMM)) {
  roundIncrement = (mode == sign != 0) ? RoundingMode::RDN : RoundingMode::RUP ? 0x7F : 0;
}
Bits<8> roundBits = sig & 0x7f;
if (0xFD <= exp) {
  if ($signed(exp) < 's0) {
    Boolean isTiny = ($signed(exp) < -8's1) || (sig + roundIncrement < 0x80000000);
    sig = softfloat_shiftRightJam32(sig, -exp);
    exp = 0;
    roundBits = sig & 0x7F;
  } else if ('shFD < $signed(exp) || (0x80000000 <= sig + roundIncrement)) {
    return packToF32UI(sign, 0xFF, 0) - roundIncrement == 0) ? 1 : 0);   } } sig = (sig + roundIncrement);
if (sig == 0) {
  exp = 0;
}
return packToF32UI(sign, exp, sig);

D.123. softfloat_normRoundPackToF32_no_flag
Normalize, round, and pack into a 32-bit floating point value No flags to be set

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

216



Bits<8> shiftDist = count_leading_zeros<32>(sig) - 1;
exp = exp - shiftDist;
if ((7 <= shiftDist) && (exp < 0xFD)) {
  return packToF32UI(sign, (sig != 0) ? exp : 0, sig << (shiftDist - 7));
} else {
  return softfloat_roundPackToF32_no_flag(sign, exp, sig << shiftDist, mode);
}

D.124. i32_to_f32_no_flag
Converts 32-bit signed integer to 32-bit floating point number No flags to be set

Return Type
U32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = a[31];
if ((a & 0x7FFFFFFF) == 0) {
  return (sign == 1) ? packToF32UI(1, 0x9E, 0) : packToF32UI(0, 0, 0);
}
U32 magnitude_of_A = returnMag(a);
return softfloat_normRoundPackToF32_no_flag(sign, 0x9C, magnitude_of_A, mode);

D.125. softfloat_roundToI32_no_flag
Round to signed 32-bit integer, using rounding_mode No flag to be set

Return Type
Bits

Arguments
Bits<1> sign, Bits<64> sig, RoundingMode roundingMode

Bits<16> roundIncrement = 0x800;
if ((roundingMode != RoundingMode::RMM) && (roundingMode != RoundingMode::RNE)) {
  roundIncrement = 0;
  if (sign == 1 ? (roundingMode == RoundingMode::RDN) : (roundingMode == RoundingMode::RUP)) {
    roundIncrement = 0xFFF;
  }
}
Bits<16> roundBits = sig & 0xFFF;
sig = sig + roundIncrement;
if ((sig & 0xFFFFF00000000000) != 0) {
  return sign == 1 ? WORD_NEG_OVERFLOW : WORD_POS_OVERFLOW;
}
Bits<32> sig32 = sig >> 12;
if ((roundBits == 0x800 && (roundingMode == RoundingMode::RNE))) {
  sig32 = sig32 & ~32'b1;
}
Bits<32> z = (sign == 1) ? -sig32 : sig32;
if ((z != 0) && $signed(z) < 's0) != (sign == 1) {
  return sign == 1 ? WORD_NEG_OVERFLOW : WORD_POS_OVERFLOW;
}
return z;

D.126. f32_to_i32_no_flag
Converts 32-bit floating point number to a signed 32-bit integer No flags to be set

Return Type
U32

Arguments
U32 a, RoundingMode mode

217



Bits<1> sign = signF32UI(a);
Bits<8> exp = expF32UI(a);
Bits<23> sig = fracF32UI(a);
Bits<8> shiftDist;
U64 sig64;
if ((exp == 8'hFF) && (sig != 0)) {
  sign = 0;
  return I32_NAN;
}
if (exp != 0) {
  sig = sig | 32'h00800000;
}
sig64 = sig `<< 32;
shiftDist = 8'hAA - exp;
if (shiftDist > 0) {
  sig64 = softfloat_shiftRightJam64(sig64, shiftDist);
}
return softfloat_roundToI32_no_flag(sign, sig64, mode);

D.127. round_f32_to_integral
Rounds 32-bit floating point number to a signed 32-bit integer. This 32-bit integer is represented as a floating point number and returned.

Return Type
U32

Arguments
U32 a, RoundingMode mode

if ((is_sp_neg_inf?(a)) || (is_sp_pos_inf?(a)) || (is_sp_pos_zero?(a)) || (is_sp_neg_zero?(a))) {
  return a;
} else if (is_sp_signaling_nan?(a)) {
  set_fp_flag(FpFlag::NV);
  return a;
}
U32 intermediate;
intermediate = f32_to_i32_no_flag(a, mode);
return i32_to_f32_no_flag(intermediate, mode);

D.128. vector_state
Get the current vector state from CSRs

Return Type
VectorState

Arguments None

VectorState state;
state.log2_sew = 3 + CSR[vtype].VSEW;
state.sew = 7'b1 << state.log2_sew;
Bits<3> vlmul = CSR[vtype].VLMUL;
state.lmul_type = CSR[vtype].VLMUL[2] == 1'b1 ? VectorLmulType::Divide : VectorLmulType::Multiply;
state.log2_lmul = CSR[vtype].VLMUL[1:0];
if (vlmul == 3'b101) {
  state.log2_lmul = 3;
} else if (vlmul == 3'b110) {
  state.log2_lmul = 2;
} else if (vlmul == 3'b111) {
  state.log2_lmul = 1;
} else if (vlmul == 3'b100) {
  unpredictable("VLMUL value 0b100 is reserved");
}
return state;

D.129. mode
Returns the current active privilege mode.

218



Return Type
PrivilegeMode

Arguments None

if ((!implemented?(ExtensionName::S)) && (!implemented?(ExtensionName::U)) && (!implemented?(ExtensionName::H))) {
  return PrivilegeMode::M;
} else {
  return current_mode;
}

D.130. set_mode_no_refresh
Set the current privilege mode to new_mode, but don’t refresh interrupts

Return Type
void

Arguments
PrivilegeMode new_mode

if (new_mode != current_mode) {
  notify_mode_change(new_mode, current_mode);
  current_mode = new_mode;
}

D.131. set_mode
Set the current privilege mode to new_mode

Return Type
void

Arguments
PrivilegeMode new_mode

if (new_mode != current_mode) {
  notify_mode_change(new_mode, current_mode);
  current_mode = new_mode;
  refresh_pending_interrupts();
}

D.132. compatible_mode?
Returns true if target_mode is more privileged than actual_mode.

Return Type
Boolean

Arguments
PrivilegeMode target_mode, PrivilegeMode actual_mode

if (target_mode == PrivilegeMode::M) {
  return actual_mode == PrivilegeMode::M;
} else if (target_mode == PrivilegeMode::S) {
  return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S);
} else if (target_mode == PrivilegeMode::U) {
  return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S) || (actual_mode == PrivilegeMode::U);
} else if (target_mode == PrivilegeMode::VS) {
  return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S) || (actual_mode == PrivilegeMode::VS);
} else if (target_mode == PrivilegeMode::VU) {
  return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S) || (actual_mode == PrivilegeMode::VS) ||
(actual_mode == PrivilegeMode::VU);
}

219



D.133. exception_handling_mode
Returns the target privilege mode that will handle synchronous exception exception_code

Return Type
PrivilegeMode

Arguments
ExceptionCode exception_code

if (mode() == PrivilegeMode::M) {
  return PrivilegeMode::M;
} else if (implemented?(ExtensionName::S) && mode() == PrivilegeMode::HS) || (mode() == PrivilegeMode::U) {
  if (($bits(CSR[CSR[medeleg]]) & (MXLEN'1 << $bits(exception_code))) != 0) {
    return PrivilegeMode::HS;
  } else {
    return PrivilegeMode::M;
  }
} else {
  assert(implemented?(ExtensionName::H) && mode() == PrivilegeMode::VS) || (mode() == PrivilegeMode::VU, "Unexpected mode");
  if (($bits(CSR[CSR[medeleg]]) & (MXLEN'1 << $bits(exception_code))) != 0) {
    if (($bits(CSR[CSR[hedeleg]]) & (MXLEN'1 << $bits(exception_code))) != 0) {
      return PrivilegeMode::VS;
    } else {
      return PrivilegeMode::HS;
    }
  } else {
    return PrivilegeMode::M;
  }
}

D.134. creg2reg
Maps a C register index (e.g., rs1' in the specification) to an X register index. From the specification:

Table 9. Registers specified by the three-bit rs1′, rs2′, and rd′ fields of the CIW, CL, CS, CA, and CB formats.

RVC Register Number

Integer Register Number

Integer Register ABI Name

Floating-Point Register Number

Floating-Point Register ABI Name

000 001 010 011 100 101 110 111

x8 x9 x10 x11 x12 x13 x14 x15

s0 s1 a0 a1 a2 a3 a4 a5

f8 f9 f10 f11 f12 f13 f14 f15

fs0 fs1 fa0 fa1 fa2 fa3 fa4 fa5

Return Type
Bits⑤

Arguments
Bits<3> creg_idx

return {2'b01, creg_idx};

D.135. unimplemented_csr
Either raises an IllegalInstruction exception or enters unpredictable state, depending on the setting of the TRAP_ON_UNIMPLEMENTED_CSR
parameter.

Return Type
void

Arguments
Bits<INSTR_ENC_SIZE> encoding

if (TRAP_ON_UNIMPLEMENTED_CSR) {
  raise(ExceptionCode::IllegalInstruction, mode(), encoding);
} else {
  unpredictable("Accessing an unimplmented CSR");

220



}

D.136. mtval_readonly?
Returns whether or not CSR[mtval] is read-only based on implementation options

Return Type
Boolean

Arguments None

return !(REPORT_VA_IN_MTVAL_ON_BREAKPOINT || REPORT_VA_IN_MTVAL_ON_LOAD_MISALIGNED || REPORT_VA_IN_MTVAL_ON_STORE_AMO_MISALIGNED ||
REPORT_VA_IN_MTVAL_ON_INSTRUCTION_MISALIGNED || REPORT_VA_IN_MTVAL_ON_LOAD_ACCESS_FAULT ||
REPORT_VA_IN_MTVAL_ON_STORE_AMO_ACCESS_FAULT || REPORT_VA_IN_MTVAL_ON_INSTRUCTION_ACCESS_FAULT ||
REPORT_VA_IN_MTVAL_ON_LOAD_PAGE_FAULT || REPORT_VA_IN_MTVAL_ON_STORE_AMO_PAGE_FAULT || REPORT_VA_IN_MTVAL_ON_INSTRUCTION_PAGE_FAULT
|| REPORT_ENCODING_IN_MTVAL_ON_ILLEGAL_INSTRUCTION || REPORT_CAUSE_IN_MTVAL_ON_SHADOW_STACK_SOFTWARE_CHECK ||
REPORT_CAUSE_IN_MTVAL_ON_LANDING_PAD_SOFTWARE_CHECK);

D.137. stval_readonly?
Returns whether or not CSR[stval] is read-only based on implementation options

Return Type
Boolean

Arguments None

if (implemented?(ExtensionName::S)) {
  return !(REPORT_VA_IN_STVAL_ON_BREAKPOINT || REPORT_VA_IN_STVAL_ON_LOAD_MISALIGNED || REPORT_VA_IN_STVAL_ON_STORE_AMO_MISALIGNED
|| REPORT_VA_IN_STVAL_ON_INSTRUCTION_MISALIGNED || REPORT_VA_IN_STVAL_ON_LOAD_ACCESS_FAULT ||
REPORT_VA_IN_STVAL_ON_STORE_AMO_ACCESS_FAULT || REPORT_VA_IN_STVAL_ON_INSTRUCTION_ACCESS_FAULT ||
REPORT_VA_IN_STVAL_ON_LOAD_PAGE_FAULT || REPORT_VA_IN_STVAL_ON_STORE_AMO_PAGE_FAULT || REPORT_VA_IN_STVAL_ON_INSTRUCTION_PAGE_FAULT
|| REPORT_ENCODING_IN_STVAL_ON_ILLEGAL_INSTRUCTION || REPORT_CAUSE_IN_STVAL_ON_SHADOW_STACK_SOFTWARE_CHECK ||
REPORT_CAUSE_IN_STVAL_ON_LANDING_PAD_SOFTWARE_CHECK);
} else {
  return true;
}

D.138. vstval_readonly?
Returns whether or not CSR[vstval] is read-only based on implementation options

Return Type
Boolean

Arguments None

if (implemented?(ExtensionName::H)) {
  return !(REPORT_VA_IN_VSTVAL_ON_BREAKPOINT || REPORT_VA_IN_VSTVAL_ON_LOAD_MISALIGNED ||
REPORT_VA_IN_VSTVAL_ON_STORE_AMO_MISALIGNED || REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_MISALIGNED ||
REPORT_VA_IN_VSTVAL_ON_LOAD_ACCESS_FAULT || REPORT_VA_IN_VSTVAL_ON_STORE_AMO_ACCESS_FAULT ||
REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_ACCESS_FAULT || REPORT_VA_IN_VSTVAL_ON_LOAD_PAGE_FAULT ||
REPORT_VA_IN_VSTVAL_ON_STORE_AMO_PAGE_FAULT || REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_PAGE_FAULT ||
REPORT_ENCODING_IN_VSTVAL_ON_ILLEGAL_INSTRUCTION || REPORT_CAUSE_IN_VSTVAL_ON_SHADOW_STACK_SOFTWARE_CHECK ||
REPORT_CAUSE_IN_VSTVAL_ON_LANDING_PAD_SOFTWARE_CHECK);
} else {
  return true;
}

D.139. mtval_for
Given an exception code and a legal non-zero value for mtval, returns the value to be written in mtval considering implementation options

Return Type
XReg

221



Arguments
ExceptionCode exception_code, XReg tval

if (exception_code == ExceptionCode::Breakpoint) {
  return REPORT_VA_IN_MTVAL_ON_BREAKPOINT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAddressMisaligned) {
  return REPORT_VA_IN_MTVAL_ON_LOAD_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAddressMisaligned) {
  return REPORT_VA_IN_MTVAL_ON_STORE_AMO_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAddressMisaligned) {
  return REPORT_VA_IN_MTVAL_ON_INSTRUCTION_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAccessFault) {
  return REPORT_VA_IN_MTVAL_ON_LOAD_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAccessFault) {
  return REPORT_VA_IN_MTVAL_ON_STORE_AMO_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAccessFault) {
  return REPORT_VA_IN_MTVAL_ON_INSTRUCTION_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadPageFault) {
  return REPORT_VA_IN_MTVAL_ON_LOAD_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoPageFault) {
  return REPORT_VA_IN_MTVAL_ON_STORE_AMO_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionPageFault) {
  return REPORT_VA_IN_MTVAL_ON_INSTRUCTION_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::IllegalInstruction) {
  return REPORT_ENCODING_IN_MTVAL_ON_ILLEGAL_INSTRUCTION ? tval : 0;
} else if (exception_code == ExceptionCode::SoftwareCheck) {
  return tval;
} else {
  return 0;
}

D.140. stval_for
Given an exception code and a legal non-zero value for stval, returns the value to be written in stval considering implementation options

Return Type
XReg

Arguments
ExceptionCode exception_code, XReg tval

if (exception_code == ExceptionCode::Breakpoint) {
  return REPORT_VA_IN_STVAL_ON_BREAKPOINT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAddressMisaligned) {
  return REPORT_VA_IN_STVAL_ON_LOAD_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAddressMisaligned) {
  return REPORT_VA_IN_STVAL_ON_STORE_AMO_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAddressMisaligned) {
  return REPORT_VA_IN_STVAL_ON_INSTRUCTION_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAccessFault) {
  return REPORT_VA_IN_STVAL_ON_LOAD_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAccessFault) {
  return REPORT_VA_IN_STVAL_ON_STORE_AMO_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAccessFault) {
  return REPORT_VA_IN_STVAL_ON_INSTRUCTION_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadPageFault) {
  return REPORT_VA_IN_STVAL_ON_LOAD_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoPageFault) {
  return REPORT_VA_IN_STVAL_ON_STORE_AMO_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionPageFault) {
  return REPORT_VA_IN_STVAL_ON_INSTRUCTION_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::IllegalInstruction) {
  return REPORT_ENCODING_IN_STVAL_ON_ILLEGAL_INSTRUCTION ? tval : 0;
} else if (exception_code == ExceptionCode::SoftwareCheck) {
  return tval;
} else {
  return 0;
}

222



D.141. vstval_for
Given an exception code and a legal non-zero value for vstval, returns the value to be written in vstval considering implementation options

Return Type
XReg

Arguments
ExceptionCode exception_code, XReg tval

if (exception_code == ExceptionCode::Breakpoint) {
  return REPORT_VA_IN_VSTVAL_ON_BREAKPOINT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAddressMisaligned) {
  return REPORT_VA_IN_VSTVAL_ON_LOAD_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAddressMisaligned) {
  return REPORT_VA_IN_VSTVAL_ON_STORE_AMO_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAddressMisaligned) {
  return REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAccessFault) {
  return REPORT_VA_IN_VSTVAL_ON_LOAD_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAccessFault) {
  return REPORT_VA_IN_VSTVAL_ON_STORE_AMO_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAccessFault) {
  return REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadPageFault) {
  return REPORT_VA_IN_VSTVAL_ON_LOAD_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoPageFault) {
  return REPORT_VA_IN_VSTVAL_ON_STORE_AMO_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionPageFault) {
  return REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::IllegalInstruction) {
  return REPORT_ENCODING_IN_VSTVAL_ON_ILLEGAL_INSTRUCTION ? tval : 0;
} else if (exception_code == ExceptionCode::SoftwareCheck) {
  return tval;
} else {
  return 0;
}

D.142. raise_guest_page_fault
Raise a guest page fault exception.

Return Type
void

Arguments
MemoryOperation op, XReg gpa, XReg gva, XReg tinst_value, PrivilegeMode from_mode

ExceptionCode code;
Boolean write_gpa_in_tval;
if (op == MemoryOperation::Read) {
  code = ExceptionCode::LoadGuestPageFault;
  write_gpa_in_tval = REPORT_GPA_IN_TVAL_ON_LOAD_GUEST_PAGE_FAULT;
} else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
  code = ExceptionCode::StoreAmoGuestPageFault;
  write_gpa_in_tval = REPORT_GPA_IN_TVAL_ON_STORE_AMO_GUEST_PAGE_FAULT;
} else {
  assert(op == MemoryOperation::Fetch, "unexpected memory operation");
  code = ExceptionCode::InstructionGuestPageFault;
  write_gpa_in_tval = REPORT_GPA_IN_TVAL_ON_INSTRUCTION_GUEST_PAGE_FAULT;
}
PrivilegeMode handling_mode = exception_handling_mode(code);
if (handling_mode == PrivilegeMode::S) {
  CSR[htval].VALUE = write_gpa_in_tval ? (gpa >> 2) : 0;
  CSR[htinst].VALUE = tinst_value;
  CSR[sepc].PC = $pc;
  if (!stval_readonly?()) {
    CSR[stval].VALUE = stval_for(code, gva);
  }
  $pc = {CSR[stvec].BASE, 2'b00};

223



  CSR[scause].INT = 1'b0;
  CSR[scause].CODE = $bits(code);
  CSR[hstatus].GVA = 1;
  CSR[hstatus].SPV = 1;
  CSR[hstatus].SPVP = $bits(from_mode)[0];
  CSR[mstatus].SPP = $bits(from_mode)[0];
} else {
  assert(handling_mode == PrivilegeMode::M, "unexpected privilege mode");
  CSR[mtval2].VALUE = write_gpa_in_tval ? (gpa >> 2) : 0;
  CSR[mtinst].VALUE = tinst_value;
  CSR[mstatus].MPP = $bits(from_mode)[1:0];
  if (MXLEN == 64) {
    CSR[mstatus].MPV = 1;
  } else {
    CSR[mstatush].MPV = 1;
  }
}
set_mode(handling_mode);
abort_current_instruction();

D.143. raise
Raise synchronous exception number exception_code.

The exception may be imprecise, and will cause execution to enter an unpredictable state, if PRECISE_SYNCHRONOUS_EXCEPTIONS is false.

Otherwise, the exception will be precise.

Return Type
void

Arguments
ExceptionCode exception_code, PrivilegeMode from_mode, XReg tval

if (!PRECISE_SYNCHRONOUS_EXCEPTIONS) {
  unpredictable("Imprecise synchronous exception");
} else {
  raise_precise(exception_code, from_mode, tval);
}

D.144. raise_precise
Raise synchronous exception number exception_code.

Return Type
void

Arguments
ExceptionCode exception_code, PrivilegeMode from_mode, XReg tval

PrivilegeMode handling_mode = exception_handling_mode(exception_code);
if (handling_mode == PrivilegeMode::M) {
  CSR[mepc].PC = $pc;
  if (!mtval_readonly?()) {
    CSR[mtval].VALUE = mtval_for(exception_code, tval);
  }
  $pc = {CSR[mtvec].BASE, 2'b00};
  CSR[mcause].INT = 1'b0;
  CSR[mcause].CODE = $bits(exception_code);
  if (CSR[misa].H == 1) {
    CSR[mtval2].VALUE = 0;
    CSR[mtinst].VALUE = 0;
    if (from_mode == PrivilegeMode::VU || from_mode == PrivilegeMode::VS) {
      if (MXLEN == 32) {
        CSR[mstatush].MPV = 1;
      } else {
        CSR[mstatus].MPV = 1;
      }
    } else {
      if (MXLEN == 32) {

224



        CSR[mstatush].MPV = 0;
      } else {
        CSR[mstatus].MPV = 0;
      }
    }
  }
  CSR[mstatus].MPP = $bits(from_mode);
} else if (CSR[misa].S == 1 && (handling_mode == PrivilegeMode::S)) {
  CSR[sepc].PC = $pc;
  if (!stval_readonly?()) {
    CSR[stval].VALUE = stval_for(exception_code, tval);
  }
  $pc = {CSR[stvec].BASE, 2'b00};
  CSR[scause].INT = 1'b0;
  CSR[scause].CODE = $bits(exception_code);
  CSR[mstatus].SPP = $bits(from_mode)[0];
  if (CSR[misa].H == 1) {
    CSR[htval].VALUE = 0;
    CSR[htinst].VALUE = 0;
    CSR[hstatus].SPV = $bits(from_mode)[2];
    if (from_mode == PrivilegeMode::VU || from_mode == PrivilegeMode::VS) {
      CSR[hstatus].SPV = 1;
      if (exception_code == ExceptionCode::Breakpoint) && (REPORT_VA_IN_STVAL_ON_BREAKPOINT || exception_code ==
ExceptionCode::LoadAddressMisaligned) && (REPORT_VA_IN_STVAL_ON_LOAD_MISALIGNED || exception_code ==
ExceptionCode::StoreAmoAddressMisaligned) && (REPORT_VA_IN_STVAL_ON_STORE_AMO_MISALIGNED || exception_code ==
ExceptionCode::InstructionAddressMisaligned) && (REPORT_VA_IN_STVAL_ON_INSTRUCTION_MISALIGNED || exception_code ==
ExceptionCode::LoadAccessFault) && (REPORT_VA_IN_STVAL_ON_LOAD_ACCESS_FAULT || exception_code ==
ExceptionCode::StoreAmoAccessFault) && (REPORT_VA_IN_STVAL_ON_STORE_AMO_ACCESS_FAULT || exception_code ==
ExceptionCode::InstructionAccessFault) && (REPORT_VA_IN_STVAL_ON_INSTRUCTION_ACCESS_FAULT || exception_code ==
ExceptionCode::LoadPageFault) && (REPORT_VA_IN_STVAL_ON_LOAD_PAGE_FAULT || exception_code == ExceptionCode::StoreAmoPageFault) &&
(REPORT_VA_IN_STVAL_ON_STORE_AMO_PAGE_FAULT || exception_code == ExceptionCode::InstructionPageFault) &&
(REPORT_VA_IN_STVAL_ON_INSTRUCTION_PAGE_FAULT) {
        CSR[hstatus].GVA = 1;
      } else {
        CSR[hstatus].GVA = 0;
      }
      CSR[hstatus].SPVP = $bits(from_mode)[0];
    } else {
      CSR[hstatus].SPV = 0;
      CSR[hstatus].GVA = 0;
    }
  }
} else if (CSR[misa].H == 1 && (handling_mode == PrivilegeMode::VS)) {
  CSR[vsepc].PC = $pc;
  if (!vstval_readonly?()) {
    CSR[vstval].VALUE = vstval_for(exception_code, tval);
  }
  $pc = {CSR[vstvec].BASE, 2'b00};
  CSR[vscause].INT = 1'b0;
  CSR[vscause].CODE = $bits(exception_code);
  CSR[vsstatus].SPP = $bits(from_mode)[0];
}
set_mode(handling_mode);
abort_current_instruction();

D.145. ialign
Returns IALIGN, the smallest instruction encoding size, in bits.

Return Type
Bits⑥

Arguments None

if (implemented?(ExtensionName::C) && (CSR[misa].C == 0x1)) {
  return 16;
} else {
  return 32;
}

225



D.146. jump
Jump to virtual address target_addr.

If target address is misaligned, raise a MisalignedAddress exception.

Return Type
void

Arguments
XReg target_addr

if ((ialign() == 16) && target_addr & 0x1) != 0 {
  raise(ExceptionCode::InstructionAddressMisaligned, mode(), target_addr);
} else if ((ialign() == 32) && (target_addr & 0x3) != 0) {
  raise(ExceptionCode::InstructionAddressMisaligned, mode(), target_addr);
}
$pc = target_addr;

D.147. jump_halfword
Jump to virtual halfword address target_hw_addr.

If target address is misaligned, raise a MisalignedAddress exception.

Return Type
void

Arguments
XReg target_hw_addr

assert((target_hw_addr & 0x1) == 0x0, "Expected halfword-aligned address in jump_halfword");
if (ialign() != 16) {
  if ((target_hw_addr & 0x3) != 0) {
    raise(ExceptionCode::InstructionAddressMisaligned, mode(), target_hw_addr);
  }
}
$pc = target_hw_addr;

D.148. valid_interrupt_code?
Returns true if code is a legal interrupt number.

Return Type
Boolean

Arguments
XReg code

if (code > 1 `<< $enum_element_size(InterruptCode - 1)) {
  return false;
}
if ($array_includes?($enum_to_a(InterruptCode), code)) {
  return true;
} else {
  return false;
}

D.149. valid_exception_code?
Returns true if code is a legal exception number.

Return Type
Boolean

226



Arguments
XReg code

if (code > 1 `<< $enum_element_size(ExceptionCode - 1)) {
  return false;
}
if ($array_includes?($enum_to_a(ExceptionCode), code)) {
  return true;
} else {
  return false;
}

D.150. xlen
Returns the effective XLEN for the current privilege mode.

Return Type
Bits⑧

Arguments None

if (MXLEN == 32) {
  return 32;
} else {
  if (mode() == PrivilegeMode::M) {
    if (CSR[misa].MXL == $bits(XRegWidth::XLEN32)) {
      return 32;
    } else if (CSR[misa].MXL == $bits(XRegWidth::XLEN64)) {
      return 64;
    } else {
      unreachable();
    }
  } else if (implemented?(ExtensionName::S) && mode() == PrivilegeMode::S) {
    if (CSR[mstatus].SXL == $bits(XRegWidth::XLEN32)) {
      return 32;
    } else if (CSR[mstatus].SXL == $bits(XRegWidth::XLEN64)) {
      return 64;
    } else {
      unreachable();
    }
  } else if (implemented?(ExtensionName::U) && mode() == PrivilegeMode::U) {
    if (CSR[mstatus].UXL == $bits(XRegWidth::XLEN32)) {
      return 32;
    } else if (CSR[mstatus].UXL == $bits(XRegWidth::XLEN64)) {
      return 64;
    } else {
      unreachable();
    }
  } else if (implemented?(ExtensionName::H) && mode() == PrivilegeMode::VS) {
    if (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {
      return 32;
    } else if (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN64)) {
      return 64;
    } else {
      unreachable();
    }
  } else if (implemented?(ExtensionName::H) && mode() == PrivilegeMode::VU) {
    if (CSR[vsstatus].UXL == $bits(XRegWidth::XLEN32)) {
      return 32;
    } else if (CSR[vsstatus].UXL == $bits(XRegWidth::XLEN64)) {
      return 64;
    } else {
      unreachable();
    }
  }
}

227



D.151. virtual_mode?
Returns True if the current mode is virtual (VS or VU).

Return Type
Boolean

Arguments None

return (mode() == PrivilegeMode::VS) || (mode() == PrivilegeMode::VU);

D.152. mask_eaddr
Mask upper N bits of an effective address if pointer masking is enabled

Return Type
XReg

Arguments
XReg eaddr

return eaddr;

D.153. pmp_match_64
Given a physical address, see if any PMP entry matches.

If there is a complete match, return the PmpCfg that guards the region. If there is no match or a partial match, report that result.

Return Type
PmpMatchResult, PmpCfg

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size

Bits<12> pmpcfg0_addr = 0x3a0;
Bits<12> pmpaddr0_addr = 0x3b0;
for (U32 i = 0; i < NUM_PMP_ENTRIES; i++) {
  Bits<12> pmpcfg_idx = pmpcfg0_addr + (i / 8) * 2;
  Bits<6> shamt = (i % 8) * 8;
  Csr pmpcfg_csr = direct_csr_lookup(pmpcfg_idx);
  PmpCfg cfg = (csr_hw_read(pmpcfg_csr) >> shamt)[7:0];
  Bits<12> pmpaddr_idx = pmpaddr0_addr + i;
  Csr pmpaddr_csr = direct_csr_lookup(pmpaddr_idx);
  Bits<64> pmpaddr_csr_value = csr_sw_read(pmpaddr_csr);
  Bits<PHYS_ADDR_WIDTH> range_base = 0;
  Bits<PHYS_ADDR_WIDTH> range_limit = 0;
  if (cfg.A == $bits(PmpCfg_A::TOR)) {
    if (i == 0) {
      range_base = 0;
    } else {
      Csr tor_pmpaddr_csr = direct_csr_lookup(pmpaddr_idx - 1);
      range_base = (csr_sw_read(tor_pmpaddr_csr))[PHYS_ADDR_WIDTH - 1:0];
    }
    range_limit = (pmpaddr_csr_value)[PHYS_ADDR_WIDTH - 1:0] - 1;
  } else if (cfg.A == $bits(PmpCfg_A::NAPOT)) {
    Bits<PHYS_ADDR_WIDTH - 1> pmpaddr_value = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 1:0];
    Bits<PHYS_ADDR_WIDTH - 1> mask = pmpaddr_value ^ (pmpaddr_value + 1);
    range_base = (pmpaddr_value & ~mask);
    range_limit = range_base + mask;
  } else if (cfg.A == $bits(PmpCfg_A::NA4)) {
    range_base = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 1:0];
    range_limit = range_base + 3;
  }
  if (paddr {
    return PmpMatchResult::FullMatch, cfg;
  } else if (! {
    return PmpMatchResult::PartialMatch, -;
  }

228



}
return PmpMatchResult::NoMatch, -;

D.154. pmp_match_32
Given a physical address, see if any PMP entry matches.

If there is a complete match, return the PmpCfg that guards the region. If there is no match or a partial match, report that result.

Return Type
PmpMatchResult, PmpCfg

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size

Bits<12> pmpcfg0_addr = 0x3a0;
Bits<12> pmpaddr0_addr = 0x3b0;
for (U32 i = 0; i < NUM_PMP_ENTRIES; i++) {
  Bits<12> pmpcfg_idx = pmpcfg0_addr + (i / 4);
  Bits<6> shamt = (i % 4) * 8;
  Csr pmpcfg_csr = direct_csr_lookup(pmpcfg_idx);
  PmpCfg cfg = (csr_hw_read(pmpcfg_csr) >> shamt)[7:0];
  Bits<12> pmpaddr_idx = pmpaddr0_addr + i;
  Csr pmpaddr_csr = direct_csr_lookup(pmpaddr_idx);
  Bits<32> pmpaddr_csr_value = csr_sw_read(pmpaddr_csr);
  Bits<PHYS_ADDR_WIDTH> range_base = 0;
  Bits<PHYS_ADDR_WIDTH> range_limit = 0;
  if (cfg.A == $bits(PmpCfg_A::TOR)) {
    if (i == 0) {
      range_base = 0;
    } else {
      Csr tor_pmpaddr_csr = direct_csr_lookup(pmpaddr_idx - 1);
      range_base = csr_sw_read(tor_pmpaddr_csr)[PHYS_ADDR_WIDTH - 1:0];
    }
    range_limit = (pmpaddr_csr_value)[PHYS_ADDR_WIDTH - 1:0] - 1;
  } else if (cfg.A == $bits(PmpCfg_A::NAPOT)) {
    Bits<PHYS_ADDR_WIDTH - 1> pmpaddr_value = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 3:0];
    Bits<PHYS_ADDR_WIDTH - 1> mask = pmpaddr_value ^ (pmpaddr_value + 1);
    range_base = pmpaddr_value & ~mask;
    range_limit = range_base + mask;
  } else if (cfg.A == $bits(PmpCfg_A::NA4)) {
    range_base = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 1:0];
    range_limit = range_base + 3;
  }
  if (paddr {
    return PmpMatchResult::FullMatch, cfg;
  } else if (! {
    return PmpMatchResult::PartialMatch, -;
  }
}
return PmpMatchResult::NoMatch, -;

D.155. pmp_match
Given a physical address, see if any PMP entry matches.

If there is a complete match, return the PmpCfg that guards the region. If there is no match or a partial match, report that result.

Return Type
PmpMatchResult, PmpCfg

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size

if (MXLEN == 64) {
  return pmp_match_64(paddr, access_size);
} else {
  return pmp_match_32(paddr, access_size);
}

229



D.156. mpv
Returns the current value of CSR[mstatus].MPV (when MXLEN == 64) of CSR[mstatush].MPV (when MXLEN == 32)

Return Type
Bits①

Arguments None

if (implemented?(ExtensionName::H)) {
  return (MXLEN == 32) ? CSR[mstatush].MPV : CSR[mstatus].MPV;
} else {
  assert(false, "TODO");
}

D.157. effective_ldst_mode
Returns the effective privilege mode for normal explicit loads and stores, taking into account the current actual privilege mode and modifications
from mstatus.MPRV.

Return Type
PrivilegeMode

Arguments None

if (mode() == PrivilegeMode::M) {
  if (CSR[misa].U == 1 && CSR[mstatus].MPRV == 1) {
    if (CSR[mstatus].MPP == 0b00) {
      if (CSR[misa].H == 1 && mpv() == 0b1) {
        return PrivilegeMode::VU;
      } else {
        return PrivilegeMode::U;
      }
    } else if (CSR[misa].S == 1 && CSR[mstatus].MPP == 0b01) {
      if (CSR[misa].H == 1 && mpv() == 0b1) {
        return PrivilegeMode::VS;
      } else {
        return PrivilegeMode::S;
      }
    }
  }
}
return mode();

D.158. pmp_check
Given a physical address and operation type, return whether or not the access is allowed by PMP.

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size, MemoryOperation type

PrivilegeMode mode = effective_ldst_mode();
PmpMatchResult match_result;
PmpCfg cfg;
(match_result, cfg = pmp_match(paddr, access_size));
if (match_result == PmpMatchResult::FullMatch) {
  if (mode == PrivilegeMode::M && (cfg.L == 0)) {
    return true;
  }
  if (type == MemoryOperation::Write && (cfg.W == 0)) {
    return false;
  } else if (type == MemoryOperation::Read && (cfg.R == 0)) {
    return false;
  } else if (type == MemoryOperation::Fetch && (cfg.X == 0)) {
    return false;
  }

230



} else if (match_result == PmpMatchResult::NoMatch) {
  if (mode == PrivilegeMode::M) {
    return true;
  } else {
    return false;
  }
} else {
  assert(match_result == PmpMatchResult::PartialMatch, "PMP matching logic error");
  return false;
}
return true;

D.159. access_check
Checks if the physical address paddr is able to access memory, and raises the appropriate exception if not.

Return Type
void

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size, XReg vaddr, MemoryOperation type,
ExceptionCode fault_type, PrivilegeMode from_mode

if (paddr > 1 `<< PHYS_ADDR_WIDTH) - access_size {
  raise(fault_type, from_mode, vaddr);
}
if (implemented?(ExtensionName::Smpmp)) {
  if (!pmp_check(paddr[PHYS_ADDR_WIDTH - 1:0], access_size, type)) {
    raise(fault_type, from_mode, vaddr);
  }
}

D.160. base32?
return True iff current effective XLEN == 32

Return Type
Boolean

Arguments None

if (MXLEN == 32) {
  return true;
} else {
  XRegWidth xlen32 = XRegWidth::XLEN32;
  if (mode() == PrivilegeMode::M) {
    return CSR[misa].MXL == $bits(xlen32);
  } else if (implemented?(ExtensionName::S) && mode() == PrivilegeMode::S) {
    return CSR[mstatus].SXL == $bits(xlen32);
  } else if (implemented?(ExtensionName::U) && mode() == PrivilegeMode::U) {
    return CSR[mstatus].UXL == $bits(xlen32);
  } else if (implemented?(ExtensionName::H) && mode() == PrivilegeMode::VS) {
    return CSR[hstatus].VSXL == $bits(xlen32);
  } else {
    assert(implemented?(ExtensionName::H) && mode() == PrivilegeMode::VU, "Unexpected mode");
    return CSR[vsstatus].UXL == $bits(xlen32);
  }
}

D.161. base64?
return True iff current effective XLEN == 64

Return Type
Boolean

Arguments None

231



return xlen() == 64;

D.162. current_translation_mode
Returns the current first-stage translation mode for an explicit load or store from mode given the machine state (e.g., value of satp or vsatp csr).

Returns SatpMode::Reserved if the setting found in satp or vsatp is invalid.

Return Type
SatpMode

Arguments
PrivilegeMode mode

PrivilegeMode effective_mode = effective_ldst_mode();
if (effective_mode == PrivilegeMode::M) {
  return SatpMode::Bare;
}
if (CSR[misa].H == 1'b1) {
  if (effective_mode == PrivilegeMode::VS || effective_mode == PrivilegeMode::VU) {
    Bits<4> mode_val = CSR[vsatp].MODE;
    if (mode_val == $bits(SatpMode::Bare)) {
      return SatpMode::Bare;
    } else if (mode_val == $bits(SatpMode::Sv32)) {
      if (MXLEN == 64) {
        if ((effective_mode == PrivilegeMode::VS) && (CSR[hstatus].VSXL != $bits(XRegWidth::XLEN32))) {
          return SatpMode::Reserved;
        }
        if ((effective_mode == PrivilegeMode::VU) && (CSR[vsstatus].UXL != $bits(XRegWidth::XLEN32))) {
          return SatpMode::Reserved;
        }
      }
      if (!SV32_VSMODE_TRANSLATION) {
        return SatpMode::Reserved;
      }
      return SatpMode::Sv32;
    } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv39))) {
      if (effective_mode == PrivilegeMode::VS && CSR[hstatus].VSXL != $bits(XRegWidth::XLEN64)) {
        return SatpMode::Reserved;
      }
      if (effective_mode == PrivilegeMode::VU && CSR[vsstatus].UXL != $bits(XRegWidth::XLEN64)) {
        return SatpMode::Reserved;
      }
      if (!SV39_VSMODE_TRANSLATION) {
        return SatpMode::Reserved;
      }
      return SatpMode::Sv39;
    } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv48))) {
      if (effective_mode == PrivilegeMode::VS && CSR[hstatus].VSXL != $bits(XRegWidth::XLEN64)) {
        return SatpMode::Reserved;
      }
      if (effective_mode == PrivilegeMode::VU && CSR[vsstatus].UXL != $bits(XRegWidth::XLEN64)) {
        return SatpMode::Reserved;
      }
      if (!SV48_VSMODE_TRANSLATION) {
        return SatpMode::Reserved;
      }
      return SatpMode::Sv48;
    } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv57))) {
      if (effective_mode == PrivilegeMode::VS && CSR[hstatus].VSXL != $bits(XRegWidth::XLEN64)) {
        return SatpMode::Reserved;
      }
      if (effective_mode == PrivilegeMode::VU && CSR[vsstatus].UXL != $bits(XRegWidth::XLEN64)) {
        return SatpMode::Reserved;
      }
      if (!SV57_VSMODE_TRANSLATION) {
        return SatpMode::Reserved;
      }
      return SatpMode::Sv57;
    } else {
      return SatpMode::Reserved;

232



    }
  } else {
    return SatpMode::Reserved;
  }
} else if (CSR[misa].S == 1'b1) {
  assert(effective_mode == PrivilegeMode::S || effective_mode == PrivilegeMode::U, "unexpected priv mode");
  Bits<4> mode_val = CSR[satp].MODE;
  if (mode_val == $bits(SatpMode::Bare)) {
    return SatpMode::Bare;
  } else if (mode_val == $bits(SatpMode::Sv32)) {
    if (MXLEN == 64) {
      if (effective_mode == PrivilegeMode::S && CSR[mstatus].SXL != $bits(XRegWidth::XLEN32)) {
        return SatpMode::Reserved;
      }
      if (effective_mode == PrivilegeMode::U && CSR[sstatus].UXL != $bits(XRegWidth::XLEN32)) {
        return SatpMode::Reserved;
      }
    }
    if (!implemented?(ExtensionName::Sv32)) {
      return SatpMode::Reserved;
    }
    return SatpMode::Sv32;
  } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv39))) {
    if (effective_mode == PrivilegeMode::S && CSR[mstatus].SXL != $bits(XRegWidth::XLEN64)) {
      return SatpMode::Reserved;
    }
    if (effective_mode == PrivilegeMode::U && CSR[sstatus].UXL != $bits(XRegWidth::XLEN64)) {
      return SatpMode::Reserved;
    }
    if (!implemented?(ExtensionName::Sv39)) {
      return SatpMode::Reserved;
    }
    return SatpMode::Sv39;
  } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv48))) {
    if (effective_mode == PrivilegeMode::S && CSR[mstatus].SXL != $bits(XRegWidth::XLEN64)) {
      return SatpMode::Reserved;
    }
    if (effective_mode == PrivilegeMode::U && CSR[sstatus].UXL != $bits(XRegWidth::XLEN64)) {
      return SatpMode::Reserved;
    }
    if (!implemented?(ExtensionName::Sv48)) {
      return SatpMode::Reserved;
    }
    return SatpMode::Sv48;
  } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv57))) {
    if (effective_mode == PrivilegeMode::S && CSR[mstatus].SXL != $bits(XRegWidth::XLEN64)) {
      return SatpMode::Reserved;
    }
    if (effective_mode == PrivilegeMode::U && CSR[sstatus].UXL != $bits(XRegWidth::XLEN64)) {
      return SatpMode::Reserved;
    }
    if (!implemented?(ExtensionName::Sv57)) {
      return SatpMode::Reserved;
    }
    return SatpMode::Sv57;
  } else {
    return SatpMode::Reserved;
  }
} else {
  return SatpMode::Reserved;
}

D.163. current_gstage_translation_mode
Returns the current second-stage translation mode for a load or store from VS-mode or VU-mode.

Return Type
HgatpMode

Arguments None

return $enum(HgatpMode, CSR[hgatp].MODE);

233



D.164. translate_gstage
Translates a guest physical address to a physical address.

Return Type
TranslationResult

Arguments
XReg gpaddr, XReg vaddr, MemoryOperation op, PrivilegeMode effective_mode,
Bits<INSTR_ENC_SIZE> encoding

TranslationResult result;
if (effective_mode == PrivilegeMode::S || effective_mode == PrivilegeMode::U) {
  result.paddr = gpaddr;
  return result;
}
Boolean mxr = CSR[mstatus].MXR == 1;
if (GSTAGE_MODE_BARE && CSR[hgatp].MODE == $bits(HgatpMode::Bare)) {
  result.paddr = gpaddr;
  return result;
} else if (SV32X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv32x4)) {
  return gstage_page_walk<32, 34, 32, 2>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else if (SV39X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv39x4)) {
  return gstage_page_walk<39, 56, 64, 3>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else if (SV48X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv48x4)) {
  return gstage_page_walk<48, 56, 64, 4>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else if (SV57X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv57x4)) {
  return gstage_page_walk<57, 56, 64, 5>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else {
  if (op == MemoryOperation::Read) {
    raise_guest_page_fault(op, gpaddr, vaddr, tinst_value_for_guest_page_fault(op, encoding, true), effective_mode);
  } else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
    raise_guest_page_fault(op, gpaddr, vaddr, tinst_value_for_guest_page_fault(op, encoding, true), effective_mode);
  } else {
    assert(op == MemoryOperation::Fetch, "unexpected memory op");
    raise_guest_page_fault(op, gpaddr, vaddr, tinst_value_for_guest_page_fault(op, encoding, true), effective_mode);
  }
}

D.165. tinst_value_for_guest_page_fault
Returns the value of htinst/mtinst for a Guest Page Fault

Return Type
XReg

Arguments
MemoryOperation op, Bits<INSTR_ENC_SIZE> encoding, Boolean for_final_vs_pte

if (for_final_vs_pte) {
  if (op == MemoryOperation::Fetch) {
    if (TINST_VALUE_ON_FINAL_INSTRUCTION_GUEST_PAGE_FAULT == "always zero") {
      return 0;
    } else {
      assert(TINST_VALUE_ON_FINAL_INSTRUCTION_GUEST_PAGE_FAULT == "always pseudoinstruction", "Instruction guest page faults can
only report zero/pseudo instruction in tval");
      return 0x00002000;
    }
  } else if (op == MemoryOperation::Read) {
    if (TINST_VALUE_ON_FINAL_LOAD_GUEST_PAGE_FAULT == "always zero") {
      return 0;
    } else if (TINST_VALUE_ON_FINAL_LOAD_GUEST_PAGE_FAULT == "always pseudoinstruction") {
      if (($array_size(VSXLEN) == 1 && VSXLEN[0] == 32) || MXLEN == 64) && (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {
        return 0x00002000;
      } else {
        return 0x00003000;
      }
    } else if (TINST_VALUE_ON_FINAL_LOAD_GUEST_PAGE_FAULT == "always transformed standard instruction") {
      return tinst_transform(encoding, 0);
    } else {

234



      unpredictable("Custom value written into htinst/mtinst");
    }
  } else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
    if (TINST_VALUE_ON_FINAL_STORE_AMO_GUEST_PAGE_FAULT == "always zero") {
      return 0;
    } else if (TINST_VALUE_ON_FINAL_STORE_AMO_GUEST_PAGE_FAULT == "always pseudoinstruction") {
      if (($array_size(VSXLEN) == 1 && VSXLEN[0] == 32) || MXLEN == 64) && (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {
        return 0x00002020;
      } else {
        return 0x00003020;
      }
    } else if (TINST_VALUE_ON_FINAL_STORE_AMO_GUEST_PAGE_FAULT == "always transformed standard instruction") {
      return tinst_transform(encoding, 0);
    } else {
      unpredictable("Custom value written into htinst/mtinst");
    }
  }
} else {
  if (REPORT_GPA_IN_TVAL_ON_INTERMEDIATE_GUEST_PAGE_FAULT) {
    if (($array_size(VSXLEN) == 1 && VSXLEN[0] == 32) || MXLEN == 64) && (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {
      return 0x00002000;
    } else if (($array_size(VSXLEN) == 1 && VSXLEN[0] == 64) || MXLEN == 64) && (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN64)) {
      return 0x00003000;
    }
  }
}

D.166. tinst_transform
Returns the standard transformation of an encoding for htinst/mtinst

Return Type
Bits<INSTR_ENC_SIZE>

Arguments
Bits<INSTR_ENC_SIZE> encoding, Bits<5> addr_offset

if (encoding[1:0] == 0b11) {
  if (encoding[6:2] == 5'b00001) {
    return {{12{1'b0}}, addr_offset, encoding[14:0]};
  } else if (encoding[6:2] == 5'b01000) {
    return {{7{1'b0}}, encoding[24:20], addr_offset, encoding[14:12], {5{1'b0}}, encoding[6:0]};
  } else if (encoding[6:2] == 5'b01011) {
    return {encoding[31:20], addr_offset, encoding[14:0]};
  } else if (encoding[6:2] == 5'b00011) {
    return {encoding[31:20], addr_offset, encoding[14:0]};
  } else {
    assert(false, "Bad transform");
  }
} else {
  assert(false, "TODO: compressed instruction");
}

D.167. transformed_standard_instruction_for_tinst
Transforms an instruction encoding for htinst.

Return Type
Bits<INSTR_ENC_SIZE>

Arguments
Bits<INSTR_ENC_SIZE> original

assert(false, "TODO");
return 0;

235



D.168. tinst_value
Returns the value of htinst/mtinst for the given exception code.

Return Type
XReg

Arguments
ExceptionCode code, Bits<INSTR_ENC_SIZE> encoding

if (code == ExceptionCode::InstructionAddressMisaligned) {
  if (TINST_VALUE_ON_INSTRUCTION_ADDRESS_MISALIGNED == "always zero") {
    return 0;
  } else {
    unpredictable("An unpredictable value is written into tinst in response to an InstructionAddressMisaligned exception");
  }
} else if (code == ExceptionCode::InstructionAccessFault) {
  return 0;
} else if (code == ExceptionCode::IllegalInstruction) {
  return 0;
} else if (code == ExceptionCode::Breakpoint) {
  if (TINST_VALUE_ON_BREAKPOINT == "always zero") {
    return 0;
  } else {
    unpredictable("An unpredictable value is written into tinst in response to a Breakpoint exception");
  }
} else if (code == ExceptionCode::VirtualInstruction) {
  if (TINST_VALUE_ON_VIRTUAL_INSTRUCTION == "always zero") {
    return 0;
  } else {
    unpredictable("An unpredictable value is written into tinst in response to a VirtualInstruction exception");
  }
} else if (code == ExceptionCode::LoadAddressMisaligned) {
  if (TINST_VALUE_ON_LOAD_ADDRESS_MISALIGNED == "always zero") {
    return 0;
  } else if (TINST_VALUE_ON_LOAD_ADDRESS_MISALIGNED == "always transformed standard instruction") {
    return transformed_standard_instruction_for_tinst(encoding);
  } else {
    unpredictable("An unpredictable value is written into tinst in response to a LoadAddressMisaligned exception");
  }
} else if (code == ExceptionCode::LoadAccessFault) {
  if (TINST_VALUE_ON_LOAD_ACCESS_FAULT == "always zero") {
    return 0;
  } else if (TINST_VALUE_ON_LOAD_ACCESS_FAULT == "always transformed standard instruction") {
    return transformed_standard_instruction_for_tinst(encoding);
  } else {
    unpredictable("An unpredictable value is written into tinst in response to a LoadAccessFault exception");
  }
} else if (code == ExceptionCode::StoreAmoAddressMisaligned) {
  if (TINST_VALUE_ON_STORE_AMO_ADDRESS_MISALIGNED == "always zero") {
    return 0;
  } else if (TINST_VALUE_ON_STORE_AMO_ADDRESS_MISALIGNED == "always transformed standard instruction") {
    return transformed_standard_instruction_for_tinst(encoding);
  } else {
    unpredictable("An unpredictable value is written into tinst in response to a StoreAmoAddressMisaligned exception");
  }
} else if (code == ExceptionCode::StoreAmoAccessFault) {
  if (TINST_VALUE_ON_STORE_AMO_ACCESS_FAULT == "always zero") {
    return 0;
  } else if (TINST_VALUE_ON_STORE_AMO_ACCESS_FAULT == "always transformed standard instruction") {
    return transformed_standard_instruction_for_tinst(encoding);
  } else {
    unpredictable("An unpredictable value is written into tinst in response to a StoreAmoAccessFault exception");
  }
} else if (code == ExceptionCode::Ucall) {
  if (TINST_VALUE_ON_UCALL == "always zero") {
    return 0;
  } else {
    unpredictable("An unpredictable value is written into tinst in response to a UCall exception");
  }
} else if (code == ExceptionCode::Scall) {
  if (TINST_VALUE_ON_SCALL == "always zero") {
    return 0;

236



  } else {
    unpredictable("An unpredictable value is written into tinst in response to a SCall exception");
  }
} else if (code == ExceptionCode::Mcall) {
  if (TINST_VALUE_ON_MCALL == "always zero") {
    return 0;
  } else {
    unpredictable("An unpredictable value is written into tinst in response to a MCall exception");
  }
} else if (code == ExceptionCode::VScall) {
  if (TINST_VALUE_ON_VSCALL == "always zero") {
    return 0;
  } else {
    unpredictable("An unpredictable value is written into tinst in response to a VSCall exception");
  }
} else if (code == ExceptionCode::InstructionPageFault) {
  return 0;
} else if (code == ExceptionCode::LoadPageFault) {
  if (TINST_VALUE_ON_LOAD_PAGE_FAULT == "always zero") {
    return 0;
  } else if (TINST_VALUE_ON_LOAD_PAGE_FAULT == "always transformed standard instruction") {
    return transformed_standard_instruction_for_tinst(encoding);
  } else {
    unpredictable("An unpredictable value is written into tinst in response to a LoadPageFault exception");
  }
} else if (code == ExceptionCode::StoreAmoPageFault) {
  if (TINST_VALUE_ON_STORE_AMO_PAGE_FAULT == "always zero") {
    return 0;
  } else if (TINST_VALUE_ON_STORE_AMO_PAGE_FAULT == "always transformed standard instruction") {
    return transformed_standard_instruction_for_tinst(encoding);
  } else {
    unpredictable("An unpredictable value is written into tinst in response to a StoreAmoPageFault exception");
  }
} else {
  assert(false, "Unhandled exception type");
}

D.169. gstage_page_walk
Translate guest physical address to physical address through a page walk.

May raise a Guest Page Fault if an error involving the page table structure occurs along the walk.

Implicit reads of the page table are accessed check, and may raise Access Faults. Implicit writes (updates of A/D) are also accessed checked, and may
raise Access Faults

The translated address is not accessed checked.

Returns the translated physical address.

Return Type
TranslationResult

Arguments
XReg gpaddr, XReg vaddr, MemoryOperation op, PrivilegeMode effective_mode, Boolean
for_final_vs_pte, Bits<INSTR_ENC_SIZE> encoding

Bits<PA_SIZE> ppn;
TranslationResult result;
U32 VPN_SIZE = (LEVELS == 2) ? 10 : 9;
ExceptionCode access_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadAccessFault : (op == MemoryOperation::Fetch ?
ExceptionCode::InstructionAccessFault : ExceptionCode::StoreAmoAccessFault);
ExceptionCode page_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadGuestPageFault : (op == MemoryOperation::Fetch ?
ExceptionCode::InstructionGuestPageFault : ExceptionCode::StoreAmoGuestPageFault);
Boolean mxr = for_final_vs_pte && (CSR[mstatus].MXR == 1);
Boolean pbmte = implemented?(ExtensionName::Svpbmt) && CSR[menvcfg].PBMTE == 1;
Boolean adue = implemented?(ExtensionName::Svadu) && CSR[menvcfg].ADUE == 1;
Bits<32> tinst = tinst_value_for_guest_page_fault(op, encoding, for_final_vs_pte);
U32 max_gpa_width = LEVELS * VPN_SIZE + 2 + 12;
if (gpaddr >> max_gpa_width != 0) {
  raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
ppn = CSR[hgatp].PPN;

237



for (U32 i = (LEVELS - 1); i >= 0; i--) {
  U32 this_vpn_size = (i == (LEVELS - 1)) ? VPN_SIZE + 2 : VPN_SIZE;
  U32 vpn = (gpaddr >> (12 + VPN_SIZE * i)) & 1 << this_vpn_size) - 1);   Bits<PA_SIZE> pte_paddr = (ppn << 12) + (vpn * (PTESIZE /
8;
  if (!pma_applies?(PmaAttribute::HardwarePageTableRead, pte_paddr, PTESIZE)) {
    raise(access_fault_code, PrivilegeMode::U, vaddr);
  }
  access_check(pte_paddr, PTESIZE, vaddr, MemoryOperation::Read, access_fault_code, effective_mode);
  Bits<PTESIZE> pte = read_physical_memory<PTESIZE>(pte_paddr);
  PteFlags pte_flags = pte[9:0];
  if ((VA_SIZE != 32) && (pte[58:54] != 0)) {
    raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
  }
  if (!implemented?(ExtensionName::Svrsw60t59b)) {
    if ((PTESIZE >= 64) && pte[60:59] != 0) {
      raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
    }
  }
  if (!implemented?(ExtensionName::Svnapot)) {
    if ((PTESIZE >= 64) && pte[63] != 0) {
      raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
    }
  }
  if ((PTESIZE >= 64) && !pbmte && (pte[62:61] != 0)) {
    raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
  }
  if ((PTESIZE >= 64) && pbmte && (pte[62:61] == 3)) {
    raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
  }
  if (pte_flags.V == 0) {
    raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
  }
  if (pte_flags.R == 0 && pte_flags.W == 1) {
    raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
  }
  if (pte_flags.R == 1 || pte_flags.X == 1) {
    if (pte_flags.U == 0) {
      raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
    }
    if (op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite && (pte_flags.W == 0)) {
      raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
    } else if ((op == MemoryOperation::Fetch) && (pte_flags.X == 0)) {
      raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
    } else if ((op == MemoryOperation::Read) || (op == MemoryOperation::ReadModifyWrite)) {
      if (!mxr) && (pte_flags.R == 0 || mxr) && (pte_flags.X == 0 && pte_flags.R == 0) {
        raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
      }
    }
    if ((i > 0) && (pte[(i - 1) * VPN_SIZE:0] != 0)) {
      raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
    }
    if ((pte_flags.A == 0) || pte_flags.D == 0) && ((op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite)) {
      if (adue) {
        if (!pma_applies?(PmaAttribute::RsrvEventual, pte_paddr, PTESIZE)) {
          raise(access_fault_code, PrivilegeMode::U, vaddr);
        }
        if (!pma_applies?(PmaAttribute::HardwarePageTableWrite, pte_paddr, PTESIZE)) {
          raise(access_fault_code, PrivilegeMode::U, vaddr);
        }
        access_check(pte_paddr, PTESIZE, vaddr, MemoryOperation::Write, access_fault_code, effective_mode);
        Boolean success;
        Bits<PTESIZE> updated_pte;
        if (pte_flags.D == 0 && (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite)) {
          updated_pte = pte | 0b11000000;
        } else {
          updated_pte = pte | 0b01000000;
        }
        if (PTESIZE == 32) {
          success = atomic_check_then_write_32(pte_paddr, pte, updated_pte);
        } else if (PTESIZE == 64) {
          success = atomic_check_then_write_64(pte_paddr, pte, updated_pte);
        } else {
          assert(false, "Unexpected PTESIZE");
        }
        if (!success) {

238



          i = i + 1;
        } else {
          result.paddr = pte_paddr;
          if (PTESIZE >= 64) {
            result.pbmt = $enum(Pbmt, pte[62:61]);
          }
          result.pte_flags = pte_flags;
          return result;
        }
      } else {
        raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
      }
    }
  } else {
    if (i == 0) {
      raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
    }
    if (pte_flags.D == 1 || pte_flags.A == 1 || pte_flags.U == 1) {
      raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
    }
    if ((VA_SIZE != 32) && (pte[62:61] != 0)) {
      raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
    }
    if ((VA_SIZE != 32) && pte[63] != 0) {
      raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
    }
    ppn = pte[PA_SIZE - 3:10] << 12;
  }
}

D.170. stage1_page_walk
Translate virtual address to physical address through a page walk.

May raise a Page Fault if an error involving the page table structure occurs along the walk.

Implicit reads of the page table are accessed check, and may raise Access Faults. Implicit writes (updates of A/D) are also accessed checked, and may
raise Access Faults

The translated address is not accessed checked.

Returns the translated guest physical address.

Return Type
TranslationResult

Arguments
Bits<MXLEN> vaddr, MemoryOperation op, PrivilegeMode effective_mode,
Bits<INSTR_ENC_SIZE> encoding

Bits<PA_SIZE> ppn;
TranslationResult result;
U32 VPN_SIZE = (LEVELS == 2) ? 10 : 9;
ExceptionCode access_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadAccessFault : (op == MemoryOperation::Fetch ?
ExceptionCode::InstructionAccessFault : ExceptionCode::StoreAmoAccessFault);
ExceptionCode page_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadPageFault : (op == MemoryOperation::Fetch ?
ExceptionCode::InstructionPageFault : ExceptionCode::StoreAmoPageFault);
Boolean sse = false;
Boolean adue;
if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode::VS || effective_mode == PrivilegeMode::VU)) {
  adue = implemented?(ExtensionName::Svadu) && CSR[henvcfg].ADUE == 1;
} else {
  adue = implemented?(ExtensionName::Svadu) && CSR[menvcfg].ADUE == 1;
}
Boolean pbmte;
if (VA_SIZE == 32) {
  pbmte = false;
} else {
  if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode::VS || effective_mode == PrivilegeMode::VU)) {
    pbmte = implemented?(ExtensionName::Svpbmt) && CSR[henvcfg].PBMTE == 1;
  } else {
    pbmte = implemented?(ExtensionName::Svpbmt) && CSR[menvcfg].PBMTE == 1;
  }

239



}
Boolean mxr;
if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode::VS || effective_mode == PrivilegeMode::VU)) {
  mxr = (CSR[mstatus].MXR == 1) || (CSR[vsstatus].MXR == 1);
  ppn = CSR[vsatp].PPN;
} else {
  mxr = CSR[mstatus].MXR == 1;
  ppn = CSR[satp].PPN;
}
Boolean sum;
if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode::VS)) {
  sum = CSR[vsstatus].SUM == 1;
} else {
  sum = CSR[mstatus].SUM == 1;
}
if ((VA_SIZE < xlen()) && (vaddr[xlen() - 1:VA_SIZE] != {xlen() - VA_SIZE{vaddr[VA_SIZE - 1]}})) {
  raise(page_fault_code, mode(), vaddr);
}
for (U32 I = (LEVELS - 1); I >= 0; I--) {
  U32 vpn = (vaddr >> (12 + VPN_SIZE * I)) & 1 `<< VPN_SIZE) - 1);   Bits<PA_SIZE> pte_gpaddr = (ppn << 12) + (vpn * (PTESIZE / 8;
  TranslationResult pte_phys = translate_gstage(pte_gpaddr, vaddr, MemoryOperation::Read, effective_mode, encoding);
  if (!pma_applies?(PmaAttribute::HardwarePageTableRead, pte_phys.paddr, PTESIZE)) {
    raise(access_fault_code, mode(), vaddr);
  }
  access_check(pte_phys.paddr, PTESIZE, vaddr, MemoryOperation::Read, access_fault_code, effective_mode);
  Bits<PTESIZE> pte = read_physical_memory<PTESIZE>(pte_phys.paddr);
  PteFlags pte_flags = pte[9:0];
  Boolean ss_page = (pte_flags.R == 0) && (pte_flags.W == 1) && (pte_flags.X == 0);
  if ((VA_SIZE != 32) && (pte[58:54] != 0)) {
    raise(page_fault_code, mode(), vaddr);
  }
  if (pte_flags.V == 0) {
    raise(page_fault_code, mode(), vaddr);
  }
  if (!sse) {
    if ((pte_flags.R == 0) && (pte_flags.W == 1)) {
      raise(page_fault_code, mode(), vaddr);
    }
  }
  if (pbmte) {
    if (pte[62:61] == 3) {
      raise(page_fault_code, mode(), vaddr);
    }
  } else {
    if ((PTESIZE >= 64) && (pte[62:61] != 0)) {
      raise(page_fault_code, mode(), vaddr);
    }
  }
  if (!implemented?(ExtensionName::Svrsw60t59b)) {
    if ((PTESIZE >= 64) && pte[60:59] != 0) {
      raise(page_fault_code, mode(), vaddr);
    }
  }
  if (!implemented?(ExtensionName::Svnapot)) {
    if ((PTESIZE >= 64) && (pte[63] != 0)) {
      raise(page_fault_code, mode(), vaddr);
    }
  }
  if (pte_flags.R == 1 || pte_flags.X == 1) {
    Bits<PA_SIZE> paddr_base = pte[PA_SIZE - 3:I * VPN_SIZE + 10] `<< (I * VPN_SIZE + 12);
    Bits<PA_SIZE> offset = vaddr[I * VPN_SIZE + 11:0];
    if (op == MemoryOperation::Read || op == MemoryOperation::ReadModifyWrite) {
      if (!mxr) && (pte_flags.R == 0 || mxr) && (pte_flags.X == 0 && pte_flags.R == 0) {
        raise(page_fault_code, mode(), vaddr);
      }
      if (effective_mode == PrivilegeMode::U && pte_flags.U == 0) {
        raise(page_fault_code, mode(), vaddr);
      } else if (CSR[misa].H == 1 && effective_mode == PrivilegeMode::VU && pte_flags.U == 0) {
        raise(page_fault_code, mode(), vaddr);
      } else if (effective_mode == PrivilegeMode::S && pte_flags.U == 1 && !sum) {
        raise(page_fault_code, mode(), vaddr);
      } else if (effective_mode == PrivilegeMode::VS && pte_flags.U == 1 && !sum) {
        raise(page_fault_code, mode(), vaddr);
      }
    }

240



    if (op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite && (pte_flags.W == 0)) {
      raise(page_fault_code, mode(), vaddr);
    } else if ((op == MemoryOperation::Fetch) && (pte_flags.X == 0)) {
      raise(page_fault_code, mode(), vaddr);
    } else if ((op == MemoryOperation::Fetch) && ss_page) {
      raise(page_fault_code, mode(), vaddr);
    }
    raise(page_fault_code, mode(), vaddr) if;
    if ((pte_flags.A == 0) || pte_flags.D == 0) && ((op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite)) {
      if (adue) {
        TranslationResult pte_phys = translate_gstage(pte_gpaddr, vaddr, MemoryOperation::Write, effective_mode, encoding);
        if (!pma_applies?(PmaAttribute::RsrvEventual, pte_phys.paddr, PTESIZE)) {
          raise(access_fault_code, effective_mode, vaddr);
        }
        if (!pma_applies?(PmaAttribute::HardwarePageTableWrite, pte_phys.paddr, PTESIZE)) {
          raise(access_fault_code, effective_mode, vaddr);
        }
        access_check(pte_phys.paddr, PTESIZE, vaddr, MemoryOperation::Write, access_fault_code, effective_mode);
        Boolean success;
        Bits<PTESIZE> updated_pte;
        if (pte_flags.D == 0 && (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite)) {
          updated_pte = pte | 0b11000000;
        } else {
          updated_pte = pte | 0b01000000;
        }
        if (PTESIZE == 32) {
          success = atomic_check_then_write_32(pte_phys.paddr, pte, updated_pte);
        } else if (PTESIZE == 64) {
          success = atomic_check_then_write_64(pte_phys.paddr, pte, updated_pte);
        } else {
          assert(false, "Unexpected PTESIZE");
        }
        if (!success) {
          I = I + 1;
        } else {
          TranslationResult pte_phys = translate_gstage(paddr_base + offset, vaddr, op, effective_mode, encoding);
          result.paddr = pte_phys.paddr;
          result.pbmt = pte_phys.pbmt == Pbmt::PMA ? $enum(Pbmt, pte[62:61]) : pte_phys.pbmt;
          result.pte_flags = pte_flags;
          return result;
        }
      } else {
        raise(page_fault_code, mode(), vaddr);
      }
    }
    TranslationResult pte_phys = translate_gstage(paddr_base + offset, vaddr, op, effective_mode, encoding);
    result.paddr = pte_phys.paddr;
    if (PTESIZE >= 64) {
      result.pbmt = pte_phys.pbmt == Pbmt::PMA ? $enum(Pbmt, pte[62:61]) : pte_phys.pbmt;
    }
    result.pte_flags = pte_flags;
    return result;
  } else {
    if (I == 0) {
      raise(page_fault_code, mode(), vaddr);
    }
    if (pte_flags.D == 1 || pte_flags.A == 1 || pte_flags.U == 1) {
      raise(page_fault_code, mode(), vaddr);
    }
    if ((VA_SIZE != 32) && (pte[62:61] != 0)) {
      raise(page_fault_code, mode(), vaddr);
    }
    if ((VA_SIZE != 32) && pte[63] != 0) {
      raise(page_fault_code, mode(), vaddr);
    }
    ppn = pte[PA_SIZE - 3:10];
  }
}

D.171. translate
Translate a virtual address for operation type op that appears to execute at effective_mode.

241



The translation will depend on the effective privilege mode.

May raise a Page Fault or Access Fault.

The final physical address is not access checked (for PMP, PMA, etc., violations). (though intermediate page table reads will be)

Return Type
TranslationResult

Arguments
XReg vaddr, MemoryOperation op, PrivilegeMode effective_mode, Bits<INSTR_ENC_SIZE>
encoding

Boolean cached_translation_valid;
CachedTranslationResult cached_translation_result;
cached_translation_result = cached_translation(vaddr, op);
if (cached_translation_result.valid) {
  return cached_translation_result.result;
}
TranslationResult result;
if (effective_mode == PrivilegeMode::M) {
  result.paddr = vaddr;
  return result;
}
SatpMode translation_mode = current_translation_mode(effective_mode);
if (translation_mode == SatpMode::Reserved) {
  if (op == MemoryOperation::Read) {
    raise(ExceptionCode::LoadPageFault, mode(), vaddr);
  } else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
    raise(ExceptionCode::StoreAmoPageFault, mode(), vaddr);
  } else {
    assert(op == MemoryOperation::Fetch, "Unexpected memory operation");
    raise(ExceptionCode::InstructionPageFault, mode(), vaddr);
  }
}
if (translation_mode == SatpMode::Bare) {
  result.paddr = vaddr;
} else if (xlen() == 32 && translation_mode == SatpMode::Sv32) {
  result = stage1_page_walk<32, 34, 32, 2>(vaddr, op, effective_mode, encoding);
} else if (xlen() == 64 && translation_mode == SatpMode::Sv39) {
  result = stage1_page_walk<39, 56, 64, 3>(vaddr, op, effective_mode, encoding);
} else if (xlen() == 64 && translation_mode == SatpMode::Sv48) {
  result = stage1_page_walk<48, 56, 64, 4>(vaddr, op, effective_mode, encoding);
} else if (xlen() == 64 && translation_mode == SatpMode::Sv57) {
  result = stage1_page_walk<57, 56, 64, 5>(vaddr, op, effective_mode, encoding);
} else {
  assert(false, "Unexpected SatpMode");
}
maybe_cache_translation(vaddr, op, result);
return result;

D.172. canonical_vaddr?
Returns whether or not vaddr is a valid (i.e., canonical) virtual address.

If pointer masking (S**pm) is enabled, then vaddr will be masked before checking the canonical address.

Return Type
Boolean

Arguments
XReg vaddr

if (CSR[misa].S == 1'b0) {
  return true;
}
SatpMode satp_mode;
if (virtual_mode?()) {
  satp_mode = $enum(SatpMode, CSR[vsatp].MODE);
} else {
  satp_mode = $enum(SatpMode, CSR[satp].MODE);

242



}
XReg eaddr = mask_eaddr(vaddr);
if (SATP_MODE_BARE && (satp_mode == SatpMode::Bare)) {
  return true;
} else if ((MXLEN == 32) && satp_mode == SatpMode::Sv32) {
  return true;
} else if ((MXLEN == 64) && satp_mode == SatpMode::Sv39) {
  return eaddr[63:39] == {25{eaddr[38]}};
} else if ((MXLEN == 64) && satp_mode == SatpMode::Sv48) {
  return eaddr[63:48] == {16{eaddr[47]}};
} else if ((MXLEN == 64) && satp_mode == SatpMode::Sv57) {
  return eaddr[63:57] == {6{eaddr[56]}};
}

D.173. canonical_gpaddr?
Returns whether or not gpaddr is a valid (i.e., canonical) guest physical address.

Return Type
Boolean

Arguments
XReg gpaddr

SatpMode satp_mode = $enum(SatpMode, CSR[satp].MODE);
if (satp_mode == SatpMode::Bare) {
  return true;
} else if (satp_mode == SatpMode::Sv32) {
  return true;
} else if ((MXLEN > 32) && (satp_mode == SatpMode::Sv39)) {
  return gpaddr[63:39] == {25{gpaddr[38]}};
} else if ((MXLEN > 32) && (satp_mode == SatpMode::Sv48)) {
  return gpaddr[63:48] == {16{gpaddr[47]}};
} else if ((MXLEN > 32) && (satp_mode == SatpMode::Sv57)) {
  return gpaddr[63:57] == {6{gpaddr[56]}};
}

D.174. misaligned_is_atomic?
Returns true if an access starting at physical_address that is N bits long is atomic.

This function takes into account any Atomicity Granule PMAs, so it should not be used for load-reserved/store-conditional, since those PMAs do
not apply to those accesses.

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> physical_address

return false if (MISALIGNED_MAX_ATOMICITY_GRANULE_SIZE == 0);
if (pma_applies?(PmaAttribute::MAG16, physical_address, N) && in_naturally_aligned_region?<128>(physical_address, N)) {
  return true;
} else if (pma_applies?(PmaAttribute::MAG8, physical_address, N) && in_naturally_aligned_region?<64>(physical_address, N)) {
  return true;
} else if (pma_applies?(PmaAttribute::MAG4, physical_address, N) && in_naturally_aligned_region?<32>(physical_address, N)) {
  return true;
} else if (pma_applies?(PmaAttribute::MAG2, physical_address, N) && in_naturally_aligned_region?<16>(physical_address, N)) {
  return true;
} else {
  return false;
}

D.175. read_memory_aligned
Read from virtual memory using a known aligned address.

243



Return Type
Bits<LEN>

Arguments
XReg virtual_address, Bits<INSTR_ENC_SIZE> encoding

TranslationResult result;
if (CSR[misa].S == 1) {
  result = translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(), encoding);
} else {
  result.paddr = virtual_address;
}
access_check(result.paddr, LEN, virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault, effective_ldst_mode());
return read_physical_memory<LEN>(result.paddr);

D.176. read_memory
Read from virtual memory.

Return Type
Bits<LEN>

Arguments
XReg virtual_address, Bits<INSTR_ENC_SIZE> encoding

Boolean aligned = is_naturally_aligned<LEN>(virtual_address);
XReg physical_address;
if (aligned) {
  return read_memory_aligned<LEN>(virtual_address, encoding);
}
if (MISALIGNED_MAX_ATOMICITY_GRANULE_SIZE > 0) {
  assert(MISALIGNED_LDST_EXCEPTION_PRIORITY == "low", "Invalid config: can't mix low-priority misaligned exceptions with large
atomicity granule");
  physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(), encoding).paddr
: virtual_address;
  if (misaligned_is_atomic?<LEN>(physical_address)) {
    access_check(physical_address, LEN, virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault,
effective_ldst_mode());
    return read_physical_memory<LEN>(physical_address);
  }
}
if (!MISALIGNED_LDST) {
  if (MISALIGNED_LDST_EXCEPTION_PRIORITY == "low") {
    physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(),
encoding).paddr : virtual_address;
    access_check(physical_address, LEN, virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault,
effective_ldst_mode());
  }
  raise(ExceptionCode::LoadAddressMisaligned, mode(), virtual_address);
} else {
  if (MISALIGNED_SPLIT_STRATEGY == "sequential_bytes") {
    Bits<LEN> result = 0;
    for (U32 I = 0; I < (LEN / 8); I++) {
      result = result | (read_memory_aligned<8>(virtual_address + I, encoding) `<< (8 * I));
    }
    return result;
  } else if (MISALIGNED_SPLIT_STRATEGY == "custom") {
    unpredictable("An implementation is free to break a misaligned access any way, leading to unpredictable behavior when any part
of the misaligned access causes an exception");
  }
}

D.177. read_memory_xlen
Read XLEN bits from memory

Return Type
Bits<MXLEN>

244



Arguments
XReg virtual_address, Bits<INSTR_ENC_SIZE> encoding

if (xlen() == 32) {
  return read_memory<32>(virtual_address, encoding);
} else {
  return read_memory<64>(virtual_address, encoding);
}

D.178. write_memory_xlen
Read XLEN bits from memory

Return Type
void

Arguments
XReg virtual_address, Bits<MXLEN> value, Bits<INSTR_ENC_SIZE> encoding

if (xlen() == 32) {
  return write_memory<32>(virtual_address, value, encoding);
} else {
  return write_memory<64>(virtual_address, value, encoding);
}

D.179. read_memory_xlen_aligned
Read from virtual memory XLEN (which may be runtime-determined) bits using a known aligned address.

Return Type
Bits<MXLEN>

Arguments
XReg virtual_address, Bits<INSTR_ENC_SIZE> encoding

TranslationResult result;
if (CSR[misa].S == 1) {
  result = translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(), encoding);
} else {
  result.paddr = virtual_address;
}
access_check(result.paddr, xlen(), virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault, effective_ldst_mode());
if (xlen() == 32) {
  return read_physical_memory<32>(result.paddr);
} else {
  return read_physical_memory<64>(result.paddr);
}

D.180. invalidate_reservation_set
Invalidates any currently held reservation set.



This function may be called by the platform, independent of any actions occurring in the local hart, for any or no reason.

The platform must call this function if an external hart or device accesses part of this reservation set while reservation_set_valid
could be true.

Return Type
void

Arguments None

reservation_set_valid = false;

245



D.181. register_reservation_set
Register a reservation for a physical address range that subsumes [physical_address, physical_address + N).

Return Type
void

Arguments
Bits<MXLEN> physical_address, Bits<MXLEN> length

reservation_set_valid = true;
reservation_set_address = physical_address;
if (LRSC_RESERVATION_STRATEGY == "reserve naturally-aligned 64-byte region") {
  reservation_set_address = physical_address & ~MXLEN'h3f;
  reservation_set_size = 64;
} else if (LRSC_RESERVATION_STRATEGY == "reserve naturally-aligned 128-byte region") {
  reservation_set_address = physical_address & ~MXLEN'h7f;
  reservation_set_size = 128;
} else if (LRSC_RESERVATION_STRATEGY == "reserve exactly enough to cover the access") {
  reservation_set_address = physical_address;
  reservation_set_size = length;
} else if (LRSC_RESERVATION_STRATEGY == "custom") {
  unpredictable("Implementations may set reservation sets of any size, as long as they cover the reserved accessed");
} else {
  assert(false, "Unexpected LRSC_RESERVATION_STRATEGY");
}

D.182. load_reserved
Register a reservation for virtual_address at least N bits long and read the value from memory.

If aq is set, then also perform a memory model acquire.

If rl is set, then also perform a memory model release (software is discouraged from doing so).

This function assumes alignment checks have already occurred.

Return Type
Bits<N>

Arguments
Bits<MXLEN> virtual_address, Bits<1>    aq, Bits<1>    rl, Bits<INSTR_ENC_SIZE>
encoding

Bits<PHYS_ADDR_WIDTH> physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Read,
effective_ldst_mode(), encoding).paddr : virtual_address;
if (pma_applies?(PmaAttribute::RsrvNone, physical_address, N)) {
  raise(ExceptionCode::LoadAccessFault, mode(), virtual_address);
}
if (aq == 1) {
  memory_model_acquire();
}
if (rl == 1) {
  memory_model_release();
}
register_reservation_set(physical_address, N);
if (CSR[misa].S == 1 && LRSC_FAIL_ON_VA_SYNONYM) {
  reservation_virtual_address = virtual_address;
}
return read_memory_aligned<N>(physical_address, encoding);

D.183. store_conditional
Atomically check the reservation set to ensure:

• it is valid

• it covers the region addressed by this store

• the address setting the reservation set matches virtual address

246



If the preceding are met, perform the store and return 0. Otherwise, return 1.

Return Type
Boolean

Arguments
Bits<MXLEN> virtual_address, Bits<MXLEN> value, Bits<1>    aq, Bits<1>    rl,
Bits<INSTR_ENC_SIZE> encoding

Bits<PHYS_ADDR_WIDTH> physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write,
effective_ldst_mode(), encoding).paddr : virtual_address;
if (pma_applies?(PmaAttribute::RsrvNone, physical_address, N)) {
  raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
}
access_check(physical_address, N, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective_ldst_mode());
if (aq == 1) {
  memory_model_acquire();
}
if (rl == 1) {
  memory_model_release();
}
if (reservation_set_valid == false) {
  return false;
}
if (!contains?(reservation_set_address, reservation_set_size, physical_address, N)) {
  invalidate_reservation_set();
  return false;
}
if (LRSC_FAIL_ON_NON_EXACT_LRSC) {
  if (reservation_physical_address != physical_address || reservation_size != N) {
    invalidate_reservation_set();
    return false;
  }
}
if (LRSC_FAIL_ON_VA_SYNONYM) {
  if (reservation_virtual_address != virtual_address || reservation_size != N) {
    invalidate_reservation_set();
    return false;
  }
}
write_physical_memory<N>(physical_address, value);
return true;

D.184. amo
Atomically read-modify-write the location at virtual_address.

The value written to virtual_address will depend on op.

If aq is 1, then the amo also acts as a memory model acquire. If rl is 1, then the amo also acts as a memory model release.

Return Type
Bits<N>

Arguments
XReg virtual_address, Bits<N> value, AmoOperation op, Bits<1>    aq, Bits<1>    rl,
Bits<INSTR_ENC_SIZE> encoding

Boolean aligned = is_naturally_aligned<N>(virtual_address);
if (!aligned && MISALIGNED_LDST_EXCEPTION_PRIORITY == "high") {
  raise(ExceptionCode::StoreAmoAddressMisaligned, mode(), virtual_address);
}
Bits<PHYS_ADDR_WIDTH> physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::ReadModifyWrite,
effective_ldst_mode(), encoding).paddr : virtual_address;
if (pma_applies?(PmaAttribute::AmoNone, physical_address, N)) {
  raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
} else if (op == AmoOperation::Add || op == AmoOperation::Max || op == AmoOperation::Maxu || op == AmoOperation::Min || op ==
AmoOperation::Minu && !pma_applies?(PmaAttribute::AmoArithmetic, physical_address, N)) {
  raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
} else if (op == AmoOperation::And || op == AmoOperation::Or || op == AmoOperation::Xor && !pma_applies?(PmaAttribute::AmoLogical,

247



physical_address, N)) {
  raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
} else {
  assert(pma_applies?(PmaAttribute::AmoSwap, physical_address, N) && op == AmoOperation::Swap, "Bad AMO operation");
}
if (!aligned && !misaligned_is_atomic?<N>(physical_address)) {
  raise(ExceptionCode::StoreAmoAddressMisaligned, mode(), virtual_address);
}
if (N == 32) {
  return atomic_read_modify_write_32(physical_address, value, op);
} else {
  return atomic_read_modify_write_64(physical_address, value, op);
}

D.185. write_memory_aligned
Write to virtual memory using a known aligned address.

Return Type
void

Arguments
XReg virtual_address, Bits<LEN> value, Bits<INSTR_ENC_SIZE> encoding

XReg physical_address;
physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(), encoding).paddr :
virtual_address;
access_check(physical_address, LEN, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective_ldst_mode());
write_physical_memory<LEN>(physical_address, value);

D.186. write_memory
Write to virtual memory

Return Type
void

Arguments
XReg virtual_address, Bits<LEN> value, Bits<INSTR_ENC_SIZE> encoding

Boolean aligned = is_naturally_aligned<LEN>(virtual_address);
XReg physical_address;
if (aligned) {
  write_memory_aligned<LEN>(virtual_address, value, encoding);
  return ;
}
if (MISALIGNED_MAX_ATOMICITY_GRANULE_SIZE > 0) {
  assert(MISALIGNED_LDST_EXCEPTION_PRIORITY == "low", "Invalid config: can't mix low-priority misaligned exceptions with large
atomicity granule");
  physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(), encoding).paddr
: virtual_address;
  if (misaligned_is_atomic?<LEN>(physical_address)) {
    access_check(physical_address, LEN, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective_ldst_mode());
    write_physical_memory<LEN>(physical_address, value);
    return ;
  }
}
if (!MISALIGNED_LDST) {
  if (MISALIGNED_LDST_EXCEPTION_PRIORITY == "low") {
    physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(),
encoding).paddr : virtual_address;
    access_check(physical_address, LEN, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective_ldst_mode());
  }
  raise(ExceptionCode::StoreAmoAddressMisaligned, mode(), virtual_address);
} else {
  if (MISALIGNED_SPLIT_STRATEGY == "sequential_bytes") {
    for (U32 I = 0; I < (LEN / 8); I++) {

248



      write_memory_aligned<8>(virtual_address + I, (value >> (8 * I))[7:0], encoding);
    }
  } else if (MISALIGNED_SPLIT_STRATEGY == "custom") {
    unpredictable("An implementation is free to break a misaligned access any way, leading to unpredictable behavior when any part
of the misaligned access causes an exception");
  }
}

D.187. write_memory_xlen_aligned
Write to virtual memory XLEN bits (which may be runtime determined) using a known aligned address.

Return Type
void

Arguments
XReg virtual_address, Bits<MXLEN> value, Bits<INSTR_ENC_SIZE> encoding

XReg physical_address;
physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(), encoding).paddr :
virtual_address;
access_check(physical_address, xlen(), virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective_ldst_mode());
if (xlen() == 32) {
  write_physical_memory<32>(physical_address, value);
} else {
  write_physical_memory<64>(physical_address, value);
}

D.188. mstatus_sd_has_known_reset
Returns true if the mstatus.SD bit has a defined reset value, as determined by various parameters.

Return Type
Boolean

Arguments None

Boolean fs_has_single_value = !implemented?(ExtensionName::F || ($array_size(MSTATUS_FS_LEGAL_VALUES) == 1));
Boolean vs_has_single_value = !implemented?(ExtensionName::V || ($array_size(MSTATUS_VS_LEGAL_VALUES) == 1));
return fs_has_single_value && vs_has_single_value;

D.189. mstatus_sd_reset_value
Returns the reset value of mstatus.SD when known

Return Type
Bits①

Arguments None

assert(mstatus_sd_has_known_reset(), "mstatus_sd_reset_value is only defined when mstatus_sd_has_known_reset() == true");
Bits<2> fs_value, vs_value;
if ((!implemented?(ExtensionName::F)) || ($array_size(MSTATUS_FS_LEGAL_VALUES) == 1)) {
  fs_value = (!implemented?(ExtensionName::F)) ? 0 : MSTATUS_FS_LEGAL_VALUES[0];
}
if ((!implemented?(ExtensionName::V)) || ($array_size(MSTATUS_VS_LEGAL_VALUES) == 1)) {
  fs_value = (!implemented?(ExtensionName::V)) ? 0 : MSTATUS_VS_LEGAL_VALUES[0];
}
return fs_value == 3) || (vs_value == 3 ? 1 : 0;

D.190. check_zcmt_enabled
If the Smstateen extension is implemented, then bit 2 in mstateen0, sstateen0, and hstateen0 is implemented. If bit 2 of a controlling stateen0 CSR is
zero, then access to the jvt CSR and execution of a cm.jalt or cm.jt instruction by a lower privilege level results in an illegal-instruction trap (or, if
appropriate, a virtual-instruction trap).

249



Return Type
void

Arguments
Bits<INSTR_ENC_SIZE> encoding

if ((mode() != PrivilegeMode::M && implemented?(ExtensionName::Smstateen) && CSR[mstateen0].JVT == 1'b0) || (mode() ==
PrivilegeMode::U && implemented?(ExtensionName::Ssstateen) && CSR[sstateen0].JVT == 1'b0)) {
  raise(ExceptionCode::IllegalInstruction, mode(), encoding);
} else if ((mode() == PrivilegeMode::VS && implemented?(ExtensionName::Ssstateen) && CSR[hstateen0].JVT == 1'b0) || (mode() ==
PrivilegeMode::VU && implemented?(ExtensionName::Ssstateen) && (CSR[sstateen0].JVT == 1'b0 || CSR[hstateen0].JVT == 1'b0))) {
  raise(ExceptionCode::VirtualInstruction, mode(), encoding);
}

250


	MC100-64 Processor Certification Requirements Document
	Table of Contents
	CRD Revision History
	Typographic Conventions
	Glossary
	1. Introduction
	1.1. What’s a CRD?
	1.2. Naming Scheme
	1.2.1. CRD Naming
	1.2.2. Processor Naming

	1.3. Requirements Terminology
	1.4. Related Specifications
	1.5. Privileged Modes

	2. Extensions
	2.1. Mandatory Extensions
	2.2. Optional Extensions

	3. Implementation-dependencies
	3.1. IN-SCOPE Parameters
	3.2. OUT-OF-SCOPE Parameters

	4. Instruction Summary
	5. CSR Summary
	5.1. By Name
	5.2. By Address

	Appendix A: Extension Details
	A.1. Extension C
	A.1.1. Available Versions
	A.1.2. Synopsis
	A.1.3. Overview
	A.1.4. Compressed Instruction Formats

	A.2. Extension I
	A.2.1. Available Versions
	A.2.2. Synopsis
	A.2.3. Instructions

	A.3. Extension M
	A.3.1. Available Versions
	A.3.2. Synopsis
	A.3.3. Instructions

	A.4. Extension Sm
	A.4.1. Available Versions
	A.4.2. Synopsis
	A.4.3. Instructions
	A.4.4. CSRs
	A.4.5. OUT-OF-SCOPE Parameters

	A.5. Extension Zicntr
	A.5.1. Available Versions
	A.5.2. Synopsis
	A.5.3. CSRs
	A.5.4. Parameters

	A.6. Extension Zicsr
	A.6.1. Available Versions
	A.6.2. Synopsis
	A.6.3. Instructions


	Appendix B: Instruction Details
	B.1. add
	B.1.1. Encoding
	B.1.2. Description
	B.1.3. Access
	B.1.4. Decode Variables
	B.1.5. IDL Operation
	B.1.6. Sail Operation
	B.1.7. Exceptions

	B.2. addi
	B.2.1. Encoding
	B.2.2. Description
	B.2.3. Access
	B.2.4. Decode Variables
	B.2.5. IDL Operation
	B.2.6. Sail Operation
	B.2.7. Exceptions

	B.3. and
	B.3.1. Encoding
	B.3.2. Description
	B.3.3. Access
	B.3.4. Decode Variables
	B.3.5. IDL Operation
	B.3.6. Sail Operation
	B.3.7. Exceptions

	B.4. andi
	B.4.1. Encoding
	B.4.2. Description
	B.4.3. Access
	B.4.4. Decode Variables
	B.4.5. IDL Operation
	B.4.6. Sail Operation
	B.4.7. Exceptions

	B.5. auipc
	B.5.1. Encoding
	B.5.2. Description
	B.5.3. Access
	B.5.4. Decode Variables
	B.5.5. IDL Operation
	B.5.6. Sail Operation
	B.5.7. Exceptions

	B.6. beq
	B.6.1. Encoding
	B.6.2. Description
	B.6.3. Access
	B.6.4. Decode Variables
	B.6.5. IDL Operation
	B.6.6. Sail Operation
	B.6.7. Exceptions

	B.7. bge
	B.7.1. Encoding
	B.7.2. Description
	B.7.3. Access
	B.7.4. Decode Variables
	B.7.5. IDL Operation
	B.7.6. Sail Operation
	B.7.7. Exceptions

	B.8. bgeu
	B.8.1. Encoding
	B.8.2. Description
	B.8.3. Access
	B.8.4. Decode Variables
	B.8.5. IDL Operation
	B.8.6. Sail Operation
	B.8.7. Exceptions

	B.9. blt
	B.9.1. Encoding
	B.9.2. Description
	B.9.3. Access
	B.9.4. Decode Variables
	B.9.5. IDL Operation
	B.9.6. Sail Operation
	B.9.7. Exceptions

	B.10. bltu
	B.10.1. Encoding
	B.10.2. Description
	B.10.3. Access
	B.10.4. Decode Variables
	B.10.5. IDL Operation
	B.10.6. Sail Operation
	B.10.7. Exceptions

	B.11. bne
	B.11.1. Encoding
	B.11.2. Description
	B.11.3. Access
	B.11.4. Decode Variables
	B.11.5. IDL Operation
	B.11.6. Sail Operation
	B.11.7. Exceptions

	B.12. csrrc
	B.12.1. Encoding
	B.12.2. Description
	B.12.3. Access
	B.12.4. Decode Variables
	B.12.5. IDL Operation
	B.12.6. Exceptions

	B.13. csrrci
	B.13.1. Encoding
	B.13.2. Description
	B.13.3. Access
	B.13.4. Decode Variables
	B.13.5. IDL Operation
	B.13.6. Exceptions

	B.14. csrrs
	B.14.1. Encoding
	B.14.2. Description
	B.14.3. Access
	B.14.4. Decode Variables
	B.14.5. IDL Operation
	B.14.6. Sail Operation
	B.14.7. Exceptions

	B.15. csrrsi
	B.15.1. Encoding
	B.15.2. Description
	B.15.3. Access
	B.15.4. Decode Variables
	B.15.5. IDL Operation
	B.15.6. Exceptions

	B.16. csrrw
	B.16.1. Encoding
	B.16.2. Description
	B.16.3. Access
	B.16.4. Decode Variables
	B.16.5. IDL Operation
	B.16.6. Sail Operation
	B.16.7. Exceptions

	B.17. csrrwi
	B.17.1. Encoding
	B.17.2. Description
	B.17.3. Access
	B.17.4. Decode Variables
	B.17.5. IDL Operation
	B.17.6. Sail Operation
	B.17.7. Exceptions

	B.18. div
	B.18.1. Encoding
	B.18.2. Description
	B.18.3. Access
	B.18.4. Decode Variables
	B.18.5. IDL Operation
	B.18.6. Sail Operation
	B.18.7. Exceptions

	B.19. divu
	B.19.1. Encoding
	B.19.2. Description
	B.19.3. Access
	B.19.4. Decode Variables
	B.19.5. IDL Operation
	B.19.6. Sail Operation
	B.19.7. Exceptions

	B.20. ebreak
	B.20.1. Encoding
	B.20.2. Description
	B.20.3. Access
	B.20.4. Decode Variables
	B.20.5. IDL Operation
	B.20.6. Sail Operation
	B.20.7. Exceptions

	B.21. ecall
	B.21.1. Encoding
	B.21.2. Description
	B.21.3. Access
	B.21.4. Decode Variables
	B.21.5. IDL Operation
	B.21.6. Sail Operation
	B.21.7. Exceptions

	B.22. fence
	B.22.1. Encoding
	B.22.2. Description
	B.22.3. Access
	B.22.4. Decode Variables
	B.22.5. IDL Operation
	B.22.6. Sail Operation
	B.22.7. Exceptions

	B.23. fence.tso
	B.23.1. Encoding
	B.23.2. Description
	B.23.3. Access
	B.23.4. Decode Variables
	B.23.5. IDL Operation
	B.23.6. Sail Operation
	B.23.7. Exceptions

	B.24. jal
	B.24.1. Encoding
	B.24.2. Description
	B.24.3. Access
	B.24.4. Decode Variables
	B.24.5. IDL Operation
	B.24.6. Sail Operation
	B.24.7. Exceptions

	B.25. jalr
	B.25.1. Encoding
	B.25.2. Description
	B.25.3. Access
	B.25.4. Decode Variables
	B.25.5. IDL Operation
	B.25.6. Sail Operation
	B.25.7. Exceptions

	B.26. lb
	B.26.1. Encoding
	B.26.2. Description
	B.26.3. Access
	B.26.4. Decode Variables
	B.26.5. IDL Operation
	B.26.6. Sail Operation
	B.26.7. Exceptions

	B.27. lbu
	B.27.1. Encoding
	B.27.2. Description
	B.27.3. Access
	B.27.4. Decode Variables
	B.27.5. IDL Operation
	B.27.6. Sail Operation
	B.27.7. Exceptions

	B.28. ld
	B.28.1. Encoding
	B.28.2. Description
	B.28.3. Access
	B.28.4. Decode Variables
	B.28.5. IDL Operation
	B.28.6. Sail Operation
	B.28.7. Exceptions

	B.29. lh
	B.29.1. Encoding
	B.29.2. Description
	B.29.3. Access
	B.29.4. Decode Variables
	B.29.5. IDL Operation
	B.29.6. Sail Operation
	B.29.7. Exceptions

	B.30. lhu
	B.30.1. Encoding
	B.30.2. Description
	B.30.3. Access
	B.30.4. Decode Variables
	B.30.5. IDL Operation
	B.30.6. Sail Operation
	B.30.7. Exceptions

	B.31. lui
	B.31.1. Encoding
	B.31.2. Description
	B.31.3. Access
	B.31.4. Decode Variables
	B.31.5. IDL Operation
	B.31.6. Sail Operation
	B.31.7. Exceptions

	B.32. lw
	B.32.1. Encoding
	B.32.2. Description
	B.32.3. Access
	B.32.4. Decode Variables
	B.32.5. IDL Operation
	B.32.6. Sail Operation
	B.32.7. Exceptions

	B.33. mret
	B.33.1. Encoding
	B.33.2. Description
	B.33.3. Access
	B.33.4. Decode Variables
	B.33.5. IDL Operation
	B.33.6. Sail Operation
	B.33.7. Exceptions

	B.34. mul
	B.34.1. Encoding
	B.34.2. Description
	B.34.3. Access
	B.34.4. Decode Variables
	B.34.5. IDL Operation
	B.34.6. Sail Operation
	B.34.7. Exceptions

	B.35. mulh
	B.35.1. Encoding
	B.35.2. Description
	B.35.3. Access
	B.35.4. Decode Variables
	B.35.5. IDL Operation
	B.35.6. Sail Operation
	B.35.7. Exceptions

	B.36. mulhsu
	B.36.1. Encoding
	B.36.2. Description
	B.36.3. Access
	B.36.4. Decode Variables
	B.36.5. IDL Operation
	B.36.6. Sail Operation
	B.36.7. Exceptions

	B.37. mulhu
	B.37.1. Encoding
	B.37.2. Description
	B.37.3. Access
	B.37.4. Decode Variables
	B.37.5. IDL Operation
	B.37.6. Sail Operation
	B.37.7. Exceptions

	B.38. or
	B.38.1. Encoding
	B.38.2. Description
	B.38.3. Access
	B.38.4. Decode Variables
	B.38.5. IDL Operation
	B.38.6. Sail Operation
	B.38.7. Exceptions

	B.39. ori
	B.39.1. Encoding
	B.39.2. Description
	B.39.3. Access
	B.39.4. Decode Variables
	B.39.5. IDL Operation
	B.39.6. Sail Operation
	B.39.7. Exceptions

	B.40. rem
	B.40.1. Encoding
	B.40.2. Description
	B.40.3. Access
	B.40.4. Decode Variables
	B.40.5. IDL Operation
	B.40.6. Sail Operation
	B.40.7. Exceptions

	B.41. remu
	B.41.1. Encoding
	B.41.2. Description
	B.41.3. Access
	B.41.4. Decode Variables
	B.41.5. IDL Operation
	B.41.6. Sail Operation
	B.41.7. Exceptions

	B.42. sb
	B.42.1. Encoding
	B.42.2. Description
	B.42.3. Access
	B.42.4. Decode Variables
	B.42.5. IDL Operation
	B.42.6. Sail Operation
	B.42.7. Exceptions

	B.43. sd
	B.43.1. Encoding
	B.43.2. Description
	B.43.3. Access
	B.43.4. Decode Variables
	B.43.5. IDL Operation
	B.43.6. Sail Operation
	B.43.7. Exceptions

	B.44. sh
	B.44.1. Encoding
	B.44.2. Description
	B.44.3. Access
	B.44.4. Decode Variables
	B.44.5. IDL Operation
	B.44.6. Sail Operation
	B.44.7. Exceptions

	B.45. sll
	B.45.1. Encoding
	B.45.2. Description
	B.45.3. Access
	B.45.4. Decode Variables
	B.45.5. IDL Operation
	B.45.6. Sail Operation
	B.45.7. Exceptions

	B.46. slli
	B.46.1. Encoding
	B.46.2. Description
	B.46.3. Access
	B.46.4. Decode Variables
	B.46.5. IDL Operation
	B.46.6. Sail Operation
	B.46.7. Exceptions

	B.47. slt
	B.47.1. Encoding
	B.47.2. Description
	B.47.3. Access
	B.47.4. Decode Variables
	B.47.5. IDL Operation
	B.47.6. Sail Operation
	B.47.7. Exceptions

	B.48. slti
	B.48.1. Encoding
	B.48.2. Description
	B.48.3. Access
	B.48.4. Decode Variables
	B.48.5. IDL Operation
	B.48.6. Sail Operation
	B.48.7. Exceptions

	B.49. sltiu
	B.49.1. Encoding
	B.49.2. Description
	B.49.3. Access
	B.49.4. Decode Variables
	B.49.5. IDL Operation
	B.49.6. Sail Operation
	B.49.7. Exceptions

	B.50. sltu
	B.50.1. Encoding
	B.50.2. Description
	B.50.3. Access
	B.50.4. Decode Variables
	B.50.5. IDL Operation
	B.50.6. Sail Operation
	B.50.7. Exceptions

	B.51. sra
	B.51.1. Encoding
	B.51.2. Description
	B.51.3. Access
	B.51.4. Decode Variables
	B.51.5. IDL Operation
	B.51.6. Sail Operation
	B.51.7. Exceptions

	B.52. srai
	B.52.1. Encoding
	B.52.2. Description
	B.52.3. Access
	B.52.4. Decode Variables
	B.52.5. IDL Operation
	B.52.6. Sail Operation
	B.52.7. Exceptions

	B.53. srl
	B.53.1. Encoding
	B.53.2. Description
	B.53.3. Access
	B.53.4. Decode Variables
	B.53.5. IDL Operation
	B.53.6. Sail Operation
	B.53.7. Exceptions

	B.54. srli
	B.54.1. Encoding
	B.54.2. Description
	B.54.3. Access
	B.54.4. Decode Variables
	B.54.5. IDL Operation
	B.54.6. Sail Operation
	B.54.7. Exceptions

	B.55. sub
	B.55.1. Encoding
	B.55.2. Description
	B.55.3. Access
	B.55.4. Decode Variables
	B.55.5. IDL Operation
	B.55.6. Sail Operation
	B.55.7. Exceptions

	B.56. sw
	B.56.1. Encoding
	B.56.2. Description
	B.56.3. Access
	B.56.4. Decode Variables
	B.56.5. IDL Operation
	B.56.6. Sail Operation
	B.56.7. Exceptions

	B.57. wfi
	B.57.1. Encoding
	B.57.2. Description
	B.57.3. Access
	B.57.4. Decode Variables
	B.57.5. IDL Operation
	B.57.6. Sail Operation
	B.57.7. Exceptions

	B.58. xor
	B.58.1. Encoding
	B.58.2. Description
	B.58.3. Access
	B.58.4. Decode Variables
	B.58.5. IDL Operation
	B.58.6. Sail Operation
	B.58.7. Exceptions

	B.59. xori
	B.59.1. Encoding
	B.59.2. Description
	B.59.3. Access
	B.59.4. Decode Variables
	B.59.5. IDL Operation
	B.59.6. Sail Operation
	B.59.7. Exceptions


	Appendix C: CSR Details
	C.1. cycle
	C.1.1. Attributes
	C.1.2. Format
	C.1.3. Field Summary
	C.1.4. Fields
	cycle.COUNT Field

	C.1.5. Software read

	C.2. instret
	C.2.1. Attributes
	C.2.2. Format
	C.2.3. Field Summary
	C.2.4. Fields
	instret.COUNT Field

	C.2.5. Software read

	C.3. marchid
	C.3.1. Attributes
	C.3.2. Format
	C.3.3. Field Summary
	C.3.4. Fields
	marchid.Architecture Field


	C.4. mcause
	C.4.1. Attributes
	C.4.2. Format
	C.4.3. Field Summary
	C.4.4. Fields
	mcause.INT Field
	mcause.CODE Field

	C.4.5. Software write

	C.5. mcountinhibit
	C.5.1. Attributes
	C.5.2. Format
	C.5.3. Field Summary
	C.5.4. Fields
	mcountinhibit.CY Field
	mcountinhibit.IR Field
	mcountinhibit.HPM3 Field
	mcountinhibit.HPM4 Field
	mcountinhibit.HPM5 Field
	mcountinhibit.HPM6 Field
	mcountinhibit.HPM7 Field
	mcountinhibit.HPM8 Field
	mcountinhibit.HPM9 Field
	mcountinhibit.HPM10 Field
	mcountinhibit.HPM11 Field
	mcountinhibit.HPM12 Field
	mcountinhibit.HPM13 Field
	mcountinhibit.HPM14 Field
	mcountinhibit.HPM15 Field
	mcountinhibit.HPM16 Field
	mcountinhibit.HPM17 Field
	mcountinhibit.HPM18 Field
	mcountinhibit.HPM19 Field
	mcountinhibit.HPM20 Field
	mcountinhibit.HPM21 Field
	mcountinhibit.HPM22 Field
	mcountinhibit.HPM23 Field
	mcountinhibit.HPM24 Field
	mcountinhibit.HPM25 Field
	mcountinhibit.HPM26 Field
	mcountinhibit.HPM27 Field
	mcountinhibit.HPM28 Field
	mcountinhibit.HPM29 Field
	mcountinhibit.HPM30 Field
	mcountinhibit.HPM31 Field


	C.6. mcycle
	C.6.1. Attributes
	C.6.2. Format
	C.6.3. Field Summary
	C.6.4. Fields
	mcycle.COUNT Field

	C.6.5. Software write
	C.6.6. Software read

	C.7. mepc
	C.7.1. Attributes
	C.7.2. Format
	C.7.3. Field Summary
	C.7.4. Fields
	mepc.PC Field

	C.7.5. Software write
	C.7.6. Software read

	C.8. mhartid
	C.8.1. Attributes
	C.8.2. Format
	C.8.3. Field Summary
	C.8.4. Fields
	mhartid.ID Field

	C.8.5. Software read

	C.9. mie
	C.9.1. Attributes
	C.9.2. Format
	C.9.3. Field Summary
	C.9.4. Fields
	mie.SSIE Field
	mie.VSSIE Field
	mie.MSIE Field
	mie.STIE Field
	mie.VSTIE Field
	mie.MTIE Field
	mie.SEIE Field
	mie.VSEIE Field
	mie.MEIE Field
	mie.SGEIE Field
	mie.LCOFIE Field


	C.10. mimpid
	C.10.1. Attributes
	C.10.2. Format
	C.10.3. Field Summary
	C.10.4. Fields
	mimpid.Implementation Field


	C.11. minstret
	C.11.1. Attributes
	C.11.2. Format
	C.11.3. Field Summary
	C.11.4. Fields
	minstret.COUNT Field


	C.12. mip
	C.12.1. Attributes
	C.12.2. Format
	C.12.3. Field Summary
	C.12.4. Fields
	mip.SSIP Field
	mip.VSSIP Field
	mip.MSIP Field
	mip.STIP Field
	mip.VSTIP Field
	mip.MTIP Field
	mip.SEIP Field
	mip.VSEIP Field
	mip.MEIP Field
	mip.SGEIP Field
	mip.LCOFIP Field

	C.12.5. Software read

	C.13. misa
	C.13.1. Attributes
	C.13.2. Format
	C.13.3. Field Summary
	C.13.4. Fields
	misa.MXL Field
	misa.A Field
	misa.B Field
	misa.C Field
	misa.D Field
	misa.F Field
	misa.G Field
	misa.H Field
	misa.I Field
	misa.M Field
	misa.Q Field
	misa.S Field
	misa.U Field
	misa.V Field

	C.13.5. Software write
	C.13.6. Software read

	C.14. mscratch
	C.14.1. Attributes
	C.14.2. Format
	C.14.3. Field Summary
	C.14.4. Fields
	mscratch.SCRATCH Field


	C.15. mstatus
	C.15.1. Attributes
	C.15.2. Format
	C.15.3. Field Summary
	C.15.4. Fields
	mstatus.SD Field
	mstatus.MDT Field
	mstatus.MPV Field
	mstatus.GVA Field
	mstatus.MBE Field
	mstatus.SBE Field
	mstatus.SXL Field
	mstatus.UXL Field
	mstatus.TSR Field
	mstatus.TW Field
	mstatus.TVM Field
	mstatus.MXR Field
	mstatus.SUM Field
	mstatus.MPRV Field
	mstatus.XS Field
	mstatus.FS Field
	mstatus.MPP Field
	mstatus.VS Field
	mstatus.SPP Field
	mstatus.MPIE Field
	mstatus.UBE Field
	mstatus.SPIE Field
	mstatus.MIE Field
	mstatus.SIE Field

	C.15.5. Software write

	C.16. mtval
	C.16.1. Attributes
	C.16.2. Format
	C.16.3. Field Summary
	C.16.4. Fields
	mtval.VALUE Field


	C.17. mtvec
	C.17.1. Attributes
	C.17.2. Format
	C.17.3. Field Summary
	C.17.4. Fields
	mtvec.BASE Field
	mtvec.MODE Field

	C.17.5. Software write

	C.18. mvendorid
	C.18.1. Attributes
	C.18.2. Format
	C.18.3. Field Summary
	C.18.4. Fields
	mvendorid.Bank Field
	mvendorid.Offset Field


	C.19. time
	C.19.1. Attributes
	C.19.2. Format
	C.19.3. Field Summary
	C.19.4. Fields
	time.COUNT Field

	C.19.5. Software read


	Appendix D: IDL Function Details
	D.1. implemented? (generated)
	D.2. implemented_version? (generated)
	D.3. implemented_csr? (generated)
	D.4. direct_csr_lookup (generated)
	D.5. indirect_csr_lookup (generated)
	D.6. csr_hw_read (generated)
	D.7. csr_sw_read (generated)
	D.8. csr_sw_write (generated)
	D.9. unpredictable (builtin)
	D.10. unreachable (builtin)
	D.11. read_hpm_counter (builtin)
	D.12. hartid (builtin)
	D.13. read_mcycle (builtin)
	D.14. read_mtime (builtin)
	D.15. sw_write_mcycle (builtin)
	D.16. cache_block_zero (builtin)
	D.17. eei_ecall_from_m (builtin)
	D.18. eei_ecall_from_s (builtin)
	D.19. eei_ecall_from_u (builtin)
	D.20. eei_ecall_from_vs (builtin)
	D.21. eei_ebreak (builtin)
	D.22. memory_model_acquire (builtin)
	D.23. memory_model_release (builtin)
	D.24. assert (builtin)
	D.25. notify_mode_change (builtin)
	D.26. abort_current_instruction (builtin)
	D.27. ebreak (builtin)
	D.28. prefetch_instruction (builtin)
	D.29. prefetch_read (builtin)
	D.30. prefetch_write (builtin)
	D.31. fence (builtin)
	D.32. fence_tso (builtin)
	D.33. ifence (builtin)
	D.34. pause (builtin)
	D.35. pow (generated)
	D.36. maybe_cache_translation (generated)
	D.37. cached_translation (generated)
	D.38. order_pgtbl_writes_before_vmafence (builtin)
	D.39. order_pgtbl_reads_after_vmafence (builtin)
	D.40. invalidate_translations (generated)
	D.41. read_physical_memory
	D.42. read_physical_memory_8 (builtin)
	D.43. read_physical_memory_16 (builtin)
	D.44. read_physical_memory_32 (builtin)
	D.45. read_physical_memory_64 (builtin)
	D.46. write_physical_memory
	D.47. write_physical_memory_8 (builtin)
	D.48. write_physical_memory_16 (builtin)
	D.49. write_physical_memory_32 (builtin)
	D.50. write_physical_memory_64 (builtin)
	D.51. wfi (builtin)
	D.52. pma_applies? (builtin)
	D.53. atomic_check_then_write_32 (builtin)
	D.54. atomic_check_then_write_64 (builtin)
	D.55. atomically_set_pte_a (builtin)
	D.56. atomically_set_pte_a_d (builtin)
	D.57. atomic_read_modify_write_32 (builtin)
	D.58. atomic_read_modify_write_64 (builtin)
	D.59. set_external_interrupt
	D.60. clear_external_interrupt
	D.61. set_software_interrupt
	D.62. clear_software_interrupt
	D.63. set_timer_interrupt
	D.64. clear_timer_interrupt
	D.65. refresh_pending_interrupts
	D.66. highest_priority_interrupt
	D.67. choose_interrupt
	D.68. take_interrupt
	D.69. fetch_memory_aligned_16
	D.70. fetch_memory_aligned_32
	D.71. power_of_2?
	D.72. has_virt_mem?
	D.73. max_va_size
	D.74. highest_set_bit
	D.75. lowest_set_bit
	D.76. bit_length
	D.77. count_leading_zeros
	D.78. sext
	D.79. is_naturally_aligned
	D.80. in_naturally_aligned_region?
	D.81. contains?
	D.82. set_fp_flag
	D.83. rm_to_mode
	D.84. mark_f_state_dirty
	D.85. nan_box
	D.86. check_f_ok
	D.87. is_sp_neg_inf?
	D.88. is_sp_pos_inf?
	D.89. is_sp_neg_norm?
	D.90. is_sp_pos_norm?
	D.91. is_sp_neg_subnorm?
	D.92. is_sp_pos_subnorm?
	D.93. is_sp_neg_zero?
	D.94. is_sp_pos_zero?
	D.95. is_sp_nan?
	D.96. is_sp_signaling_nan?
	D.97. is_sp_quiet_nan?
	D.98. softfloat_shiftRightJam32
	D.99. softfloat_shiftRightJam64
	D.100. softfloat_roundToI32
	D.101. softfloat_roundToUI32
	D.102. packToF32UI
	D.103. packToF16UI
	D.104. softfloat_normSubnormalF16Sig
	D.105. softfloat_roundPackToF32
	D.106. softfloat_normRoundPackToF32
	D.107. signF32UI
	D.108. expF32UI
	D.109. fracF32UI
	D.110. returnNonSignalingNaN
	D.111. returnMag
	D.112. returnLargerMag
	D.113. softfloat_propagateNaNF32UI
	D.114. softfloat_addMagsF32
	D.115. softfloat_subMagsF32
	D.116. f32_add
	D.117. f32_sub
	D.118. i32_to_f32
	D.119. ui32_to_f32
	D.120. f32_to_i32
	D.121. f32_to_ui32
	D.122. softfloat_roundPackToF32_no_flag
	D.123. softfloat_normRoundPackToF32_no_flag
	D.124. i32_to_f32_no_flag
	D.125. softfloat_roundToI32_no_flag
	D.126. f32_to_i32_no_flag
	D.127. round_f32_to_integral
	D.128. vector_state
	D.129. mode
	D.130. set_mode_no_refresh
	D.131. set_mode
	D.132. compatible_mode?
	D.133. exception_handling_mode
	D.134. creg2reg
	D.135. unimplemented_csr
	D.136. mtval_readonly?
	D.137. stval_readonly?
	D.138. vstval_readonly?
	D.139. mtval_for
	D.140. stval_for
	D.141. vstval_for
	D.142. raise_guest_page_fault
	D.143. raise
	D.144. raise_precise
	D.145. ialign
	D.146. jump
	D.147. jump_halfword
	D.148. valid_interrupt_code?
	D.149. valid_exception_code?
	D.150. xlen
	D.151. virtual_mode?
	D.152. mask_eaddr
	D.153. pmp_match_64
	D.154. pmp_match_32
	D.155. pmp_match
	D.156. mpv
	D.157. effective_ldst_mode
	D.158. pmp_check
	D.159. access_check
	D.160. base32?
	D.161. base64?
	D.162. current_translation_mode
	D.163. current_gstage_translation_mode
	D.164. translate_gstage
	D.165. tinst_value_for_guest_page_fault
	D.166. tinst_transform
	D.167. transformed_standard_instruction_for_tinst
	D.168. tinst_value
	D.169. gstage_page_walk
	D.170. stage1_page_walk
	D.171. translate
	D.172. canonical_vaddr?
	D.173. canonical_gpaddr?
	D.174. misaligned_is_atomic?
	D.175. read_memory_aligned
	D.176. read_memory
	D.177. read_memory_xlen
	D.178. write_memory_xlen
	D.179. read_memory_xlen_aligned
	D.180. invalidate_reservation_set
	D.181. register_reservation_set
	D.182. load_reserved
	D.183. store_conditional
	D.184. amo
	D.185. write_memory_aligned
	D.186. write_memory
	D.187. write_memory_xlen_aligned
	D.188. mstatus_sd_has_known_reset
	D.189. mstatus_sd_reset_value
	D.190. check_zcmt_enabled


