RVA20 Profile Release

Table of Contents

Copyright and license information 1
Acknowledgements 1
1. RISC-V Profiles 1
2. RVA Profile Family 3
3. RVA20 Profile Release 5
Appendix A: Profile Comparisons 13
Appendix B: Extension Details 18
Appendix C: Instruction Details 43
Appendix D: CSR Details 239
Appendix E: IDL Function Details 378

TODO: revmark

Copyright and license information

This document is released under the Creative Commons Attribution 4.0 International License.

Copyright 2023 by RISC-V International.

Acknowledgements

Contributors to the RVA20 Profile (in alphabetical order) include:
* Krste Asanovic <krste@sifive.com> (SiFive)

We express our gratitude to everyone that contributed to, reviewed or improved this specification through their comments and questions.

1. RISC-V Profiles

RISC-V was designed to provide a highly modular and extensible instruction set, and includes a large and growing set of standard extensions. In
addition, users may add their own custom extensions. This flexibility can be used to highly optimize a specialized design by including only the exact
set of ISA features required for an application, but the same flexibility also leads to a combinatorial explosion in possible ISA choices. Profiles specify
a much smaller common set of ISA choices that capture the most value for most users, and which thereby enable the software community to focus
resources on building a rich software ecosystem with application and operating system portability across different implementations.

o Another pragmatic concern is the long and unwieldy ISA strings required to encode common sets of extensions, which will continue
to grow as new extensions are defined.

Each profile is built on a standard base ISA plus a set of mandatory ISA extensions, and provides a small set of standard ISA options to extend the
mandatory components. Profiles provide a convenient shorthand for describing the ISA portions of hardware and software platforms, and also guide
the development of common software toolchains shared by different platforms that use the same profile. The intent is that the software ecosystem
focus on supporting the profiles' mandatory base and standard options, instead of attempting to support every possible combination of individual
extensions. Similarly, hardware vendors should aim to structure their offerings around standard profiles to increase the likelihood their designs will
have mainstream software support.

Profiles are not intended to prohibit the use of combinations of individual ISA extensions or the addition of custom extensions,
o which can continue to be used for more specialized applications albeit without the expectation of widespread software support or
portability between hardware platforms.

As RISC-V evolves over time, the set of ISA features will grow, and new platforms will be added that may need different profiles. To

o manage this evolution, RISC-V is adopting a model of regular annual releases of new ISA profiles, following an ISA roadmap
managed by the RISC-V Technical Steering Committee. The architecture profiles will also be used for branding and to advertise
compatibility with the RISC-V standard.

1.1. Profiles versus Platforms

Profiles only describe ISA features, not a complete execution environment.

A software platform is a specification for an execution environment, in which software targeted for that software platform can run.

https://creativecommons.org/licenses/by/4.0/
mailto:krste@sifive.com

A hardware platform is a specification for a hardware system (which can be viewed as a physical realization of an execution environment).

Both software and hardware platforms include specifications for many features beyond details of the ISA used by RISC-V harts in the platform (e.g.,
boot process, calling convention, behavior of environment calls, discovery mechanism, presence of certain memory-mapped hardware devices, etc.).
Architecture profiles factor out ISA-specific definitions from platform definitions to allow ISA profiles to be reused across different platforms, and to
be used by tools (e.g., compilers) that are common across many different platforms.

A platform can add additional constraints on top of those in a profile. For example, mandating an extension that is a standard option in the
underlying profile, or constraining some implementation-specific parameter in the profile to lie within a certain range.

A platform cannot remove mandates or reduce other requirements in a profile.

o A new profile should be proposed if existing profiles do not match the needs of a new platform.

1.2. Components of a Profile

1.2.1. Profile Family

Every profile is a member of a profile family. A profile family is a set of profiles that share the same base ISA but which vary in highest-supported
privilege mode. The initial two types of family are:

* generic unprivileged instructions (I)

* application processors running rich operating systems (A)
e More profile families may be added over time.

A profile family may be updated no more than annually, and the release calendar year is treated as part of the profile family name.

Each profile family is described in more detail below.

1.2.2. Profile Privilege Mode

RISC-V has a layered architecture supporting multiple privilege modes, and most RISC-V platforms support more than one privilege mode. Software
is usually written assuming a particular privilege mode during execution. For example, application code is written assuming it will be run in user
mode, and kernel code is written assuming it will be run in supervisor mode.

Software can be run in a mode different than the one for which it was written. For example, privileged code using privileged ISA

o features can be run in a user-mode execution environment, but will then cause traps into the enclosing execution environment
when privileged instructions are executed. This behavior might be exploited, for example, to emulate a privileged execution
environment using a user-mode execution environment.

The profile for a privilege mode describes the ISA features for an execution environment that has the eponymous privilege mode as the most-
privileged mode available, but also includes all supported lower-privilege modes. In general, available instructions vary by privilege mode, and the
behavior of RISC-V instructions can depend on the current privilege mode. For example, an S-mode profile includes U-mode as well as S-mode and
describes the behavior of instructions when running in different modes in an S-mode execution environment, such as how an ecall instruction in U-
mode causes a contained trap into an S-mode handler whereas an ecall in S-mode causes a requested trap out to the execution environment.

A profile may specify that certain conditions will cause a requested trap (such as an ecall made in the highest-supported privilege mode) or fatal trap
to the enclosing execution environment. The profile does not specify the behavior of the enclosing execution environment iusually n handling
requested or fatal traps.

o In particular, a profile does not specify the set of ECALLs available in the outer execution environment. This should be documented
in the appropriate binary interface to the outer execution environment (e.g., Linux user ABI, or RISC-V SEE).

o In general, a profile can be implemented by an execution environment using any hardware or software technique that provides
compatible functionality, including pure software emulation.

A profile does not specify any invisible traps.

o In particular, a profile does not constrain how invisible traps to a more-privileged mode can be used to emulate profile features.
A more-privileged profile can always support running software to implement a less-privileged profile from the same profile family. For example, a
platform supporting the S-mode profile can run a supervisor-mode operating system that provides user-mode execution environments supporting

the U-mode profile.

o Instructions in a U-mode profile, which are all executed in user mode, have potentially different behaviors than instructions
executed in user mode in an S-mode profile. For this reason, a U-mode profile cannot be considered a subset of an S-mode profile.

1.2.3. Profile ISA Features

An architecture profile has a mandatory ratified base instruction set (RV32I or RV64I for the current profiles). The profile also includes ratified ISA
extensions placed into two categories:

1. Mandatory
2. Optional

As the name implies, Mandatory ISA extensions are a required part of the profile. Implementations of the profile must provide these. The
combination of the profile base ISA plus the mandatory ISA extensions are termed the profile mandates, and software using the profile can assume
these always exist.

The Optional category (also known as options) contains extensions that may be added as options, and which are expected to be generally supported
as options by the software ecosystem for this profile.

The level of "support" for an Optional extension will likely vary greatly among different software components supporting a profile.
o Users would expect that software claiming compatibility with a profile would make use of any available supported options, but as a
bare minimum software should not report errors or warnings when supported options are present in a system.

An optional extension may comprise many individually named and ratified extensions but a profile option requires all constituent extensions are
present. In particular, unless explicitly listed as a profile option, individual extensions are not by themselves a profile option even when required as
part of a profile option. For example, the Zbkb extension is not by itself a profile option even though it is a required component of the Zkn option.

o Profile optional extensions are intended to capture the granularity at which the broad software ecosystem is expected to cope with
combinations of extensions.

All components of a ratified profile must themselves have been ratified.
Platforms may provide a discovery mechanism to determine what optional extensions are present.

Extensions that are not explicitly listed in the mandatory or optional categories are termed non-profile extensions, and are not considered parts of
the profile. Some non-profile extensions can be added to an implementation without conflicting with the mandatory or optional components of a
profile. In this case, the implementation is still compatible with the profile even though additional non-profile extensions are present. Other non-
profile extensions added to an implementation might alter or conflict with the behavior of the mandatory or optional extensions in a profile, in
which case the implementation would not be compatible with the profile.

o Extensions that are released after a given profile is released are by definition non-profile extensions. For example, mandatory or
optional profile extensions for a new profile might be prototyped as non-profile extensions on an earlier profile.

2. RVA Profile Family

The RVA profile family targets application processors for markets requiring a high-degree of binary compatibility between compliant
implementations.

2.1. RVA Description

RISC-V was designed to provide a highly modular and extensible instruction set and includes a large and growing set of standard extensions, where
each standard extension is a bundle of instruction-set features. This is no different than other industry ISAs that continue to add new ISA features.
Unlike other ISAs, however, RISC-V has a broad set of contributors and implementers, and also allows users to add their own custom extensions. For
some deep embedded markets, highly customized processor configurations are desirable for efficiency, and all software is compiled, ported, and/or
developed in-house by the same organization for that specific processor configuration. However, for other markets that expect a substantial fraction
of software to be delivered to end-customers in binary form, compatibility across multiple implementations from different RISC-V vendors is
required.

The RVIA ISA extension ratification process ensures that all processor vendors have agreed to the specification of a standard extension if present.
However, by themselves, the ISA extension specifications do not guarantee that a certain set of standard extensions will be present in all
implementations.

The primary goal of the RVA profiles is to align processor vendors targeting binary software markets, so software can rely on the existence
of a certain set of ISA features in a particular generation of RISC-V implementations.

Alignment is not only for compatibility, but also to ensure RISC-V is competitive in these markets. The binary app markets are also generally those
with the most competitive performance requirements (e.g., mobile, client, server). RVIA cannot mandate the ISA features that a RISC-V binary
software ecosystem should use, as each ecosystem will typically select the lowest-common denominator they empirically observe in the deployed
devices in their target markets. But RVIA can align hardware vendors to support a common set of features in each generation through the RVA
profiles. Without proactive alignment through RVA profiles, RISC-V will be uncompetitive, as even if a particular vendor implements a certain
feature, if other vendors do not, then binary distributions will not generally use that feature and all implementations will suffer. While certain
features may be discoverable, and alternate code provided in case of presence/absence of a feature, the added cost to support such options is only
justified for certain limited cases, and binary app markets will not support a wide range of optional features, particularly for the nascent RISC-V
binary app ecosystems.

To maintain alignment and increase RISC-V competitiveness over time, the mandatory set of extensions must increase over time in successive
generations of RVA profile. (RVA profiles may eventually have to deprecate previously mandatory instructions, but that is unlikely in the near
future.) Note that the RISC-V ISA will continue to evolve, regardless of whether a given software ecosystem settles on a certain generation of profile
as the baseline for their ecosystem for many years or even decades. There are many existing binary software ecosystems, which will migrate to RISC-
V and evolve at different rates, and more new ones will doubtless be created over the hopefully long lifetime of RISC-V. High-performance
application processors require considerable investment, and no single binary app ecosystem can justify the development costs of these processors,
especially for RISC-V in its early stage of adoption.

While the heart of the profile is the set of mandatory extensions, there are several kinds of optional extension that serve important roles in the
profile.

The first kind are localized options, whose presence or use necessarily differs along geo-political and/or jurisdictional boundaries, with crypto being
the obvious example. These will always be optional. At least for crypto, discovery has been found to be perfectly acceptable to handle this optionality
on other architectures, as the use of the extensions is well contained in certain libraries.

The second kind of optional extension is a development option, which represents a new ISA extension in an early part of its lifecycle but which is
intended to become mandatory in a later generation of the RVA profile. Processor vendors and software toolchain providers will have varying
development schedules, and providing an optional phase in a new extension’s lifecycle provides some flexibility while maintaining overall
alignment, and is particularly appropriate when hardware or software development for the extension is complex. Denoting an extension as a
development option signals to the community that development should be prioritized for such extensions as they will become mandatory.

The third kind of optional extension are expansion options, which are those that may have a large implementation cost but are not always needed in
a particular platform, and which can be readily handled by discovery. These are also intended to remain available as expansion options in future
versions of the profile. Several supervisor-mode extensions fall into this category, e.g., Sv57, which has a notable PPA impact over Sv48 and is not
needed on smaller platforms. Some unprivileged extensions that may fall into this category are possible future matrix extensions. These have large
implementation costs, and use of matrix instructions can be readily supported with discovery and alternate math libraries.

The fourth kind of optional extensions are transitory options, where it is not clear if the extension will change to a mandatory, localized, or
expansion option, or be possibly dropped over time. Cryptography provides some examples where earlier cyphers have been broken and are now
deprecated. RVIA used this mechanism to enable scalar crypto until vector crypto was ready. Software security features may also be in this category,
with examples of deprecated security features occurring in other architectures. As another example, the recent avalanche of new numeric datatypes
for AI/ML may eventually subside with a few survivors actually being used longer term. Denoting an option as transitory signals to the community
that this extension may be removed in a future profile, though the time scale may span many years.

Except for the localized options, it could be argued that other three kinds of option could be left out of profiles. Binary distributions of applications
willing to invest in discovery can use an optional extension, and customers compiling their own applications can take advantage of the feature on a
particular implementation, even when that system is mostly running binary distributions that ignore the new extension. However, there is value in
providing guidance to align hardware vendors and software developers around what extensions are worth implementing and worth discovering, by
designating only a few important features as profile options and limiting their granularity.

2.2. RVA Naming Scheme

The profile family name is RVA (RISC-V Apps processor). A profile release name is an integer (currently 2 digits, could grow in the future). A full
profile name is comprised of, in order:
» Prefix RVA for RISC-V Applications
* Profile release
* Privilege mode:
o U Unprivileged (available to any privilege mode, U is not User-mode)
o § Supervisor mode (note that Hypervisor support is treated as an option)
o M Machine mode

* A base ISA XLEN specifier (32, 64)

Profile names are embeddable into RISC-V ISA naming strings. This implies that there will be no standard ISA extension with a
o name that matches the profile naming convention. This allows tools that process the RISC-V ISA naming string to parse and/or
process a combined string.

2.3. RVA Profile Releases

The following profile releases are defined in this profile family:

Name
RVA20

State

ratified

Ratification date
2023-04-03

Name
RVA22

State

ratified

Ratification date
2023-04-03

Name
RVA23

State

ratified

Ratification date
2023-04-03

3. RVA20 Profile Release

This profile release targets 64-bit application processors for markets requiring a high-degree of binary compatibility between compliant
implementations.

RVA20 has 28 associated implementation-defined parameters across all its defined profiles.

3.1. RVA20 Description

This profile release is intended to be used for 64-bit application processors running rich OS stacks. Only user-mode and supervisor-mode profiles are
specified in this release.

There is no machine-mode profile currently defined for this release. A machine-mode profile for application processors would only

o be used in specifying platforms for portable machine-mode software. Given the relatively low volume of portable M-mode software
in this domain, the wide variety of potential M-mode code, and the very specific needs of each type of M-mode software, we are not
specifying individual M-mode ISA requirements in this release.

o Only XLEN=64 application processor profiles are currently defined. It would be possible to also define very similar XLEN=32
variants.

3.2. RVA20U64 Profile

The RVA20U64 profile specifies the ISA features available to user-mode execution environments in 64-bit applications processors. This is the most
important profile within application processors in terms of the amount of software that targets this profile.

3.2.1. Mandatory Extensions
The RVA20U64 Profile has 14 mandatory extensions.
* A Atomic instructions
Version ~> 2.1
* C Compressed instructions
Version ~> 2.0
* D Double-precision floating-point

Version ~> 2.2

The rationale to not include Q as a profile option is that quad-precision floating-point is unlikely to be
o o implemented in hardware, and so we do not require or expect software to expend effort optimizing use of Q
instructions in case they are present.

 F Single-precision floating-point

Version ~> 2.2

» I Base integer ISA (RV32I or RV64I)

Version ~> 2.1

RVI is the mandatory base ISA for RVA, and is little-endian.
As per the unprivileged architecture specification, the ecall instruction causes a requested trap to the execution environment.
Misaligned loads and stores might not be supported.

The fence.tso instruction is mandatory.

The fence.tso instruction was incorrectly described as optional in the 2019 ratified specifications. However,
fence.tso is encoded within the standard fence encoding such that implementations must treat it as a simple

o global fence if they do not natively support TSO-ordering optimizations. As software can always assume
without any penalty that fence.tso is being exploited by a hardware implementation, there is no advantage to
making the instruction a profile option. Later versions of the unprivileged ISA specifications correctly indicate
that fence.tso is mandatory.

* M Integer multiply and divide
Version ~> 2.0
* U User-mode privilege level
Version ~> 2.0
» Zal128rs Reservation set size of at most 128 bytes

Version ~> 1.0

o Za128rs is a profile-defined extension introduced with RVA20. The minimum reservation set size is effectively determined by the
size of atomic accesses in the A extension.

» Ziccamoa Main memory supports all atomics in A extension

Version ~> 1.0
o Ziccamo is a profile-defined extension introduced with RVA20.

* Ziccif Main memory supports instruction fetch with atomicity requirement

Version ~> 1.0

o Ziccif is a profile-defined extension introduced with RVA20. The fetch atomicity requirement facilitates runtime patching of
aligned instructions.

* Zicclsm Main memory supports misaligned loads/stores

Version ~> 1.0

Zicclsm is a profile-defined extension introduced with RVA20. This requires misaligned support for all regular load and store

o instructions (including scalar and vector) but not AMOs or other specialized forms of memory access. Even though mandated,
misaligned loads and stores might execute extremely slowly. Standard software distributions should assume their existence only
for correctness, not for performance.

» Ziccrse Main memory supports forward progress on LR/SC sequences

Version ~> 1.0
o Ziccrse is a profile-defined extension introduced with RVA20.
» Zicntr Base Counters and Timers
Version ~> 2.0

» Zicsr Control and status register instructions

Version ~> 2.0

3.2.2. Optional Extensions

The RVA20U64 Profile has 4 optional extensions.

» Zca C instructions excluding floating-point loads/stores
Version ~> 1.0

* Zcd Compressed double-precision floating-point loads/stores
Version ~> 1.0

» Zcf Compressed single-precision floating-point loads/stores
Version ~> 1.0

* Zihpm Hardware Performance Counters

Version ~> 2.0

o The number of counters is platform-specific.

The rationale to not make Q an optional extension is that quad-precision floating-point is unlikely to be implemented in
o hardware, and so we do not require or expect A-profile software to expend effort optimizing use of Q instructions in case they
are present.

Zifencei is not classed as a supported option in the user-mode profile because it is not sufficient by itself to produce the desired
effect in a multiprogrammed multiprocessor environment without OS support, and so the instruction cache flush should always be

o performed using an OS call rather than using the fence.i instruction. fence.i semantics can be expensive to implement for some
hardware memory hierarchy designs, and so alternative non-standard instruction-cache coherence mechanisms can be used behind
the OS abstraction. A separate extension is being developed for more general and efficient instruction cache coherence.

The execution environment must provide a means to synchronize writes to instruction memory with instruction fetches, the
o implementation of which likely relies on the Zifencei extension. For example, RISC-V Linux supplies the __riscv_flush_icache system
call and a corresponding vDSO call.
3.2.3. Recommendations

Recommendations are not strictly mandated but are included to guide implementers making design choices.

* Implementations are strongly recommended to raise illegal-instruction exceptions on attempts to execute unimplemented opcodes.

3.2.4. Implementation-dependencies

RVA20U64 has 5 associated implementation-defined parameters.

MCOUNTENABLE_EN

Indicates which counters can be delegated via mcounteren.
An unimplemented counter cannot be specified, i.e., if HPM_COUNTER_EN[3] is false, it would be illegal to set MCOUNTENABLE_EN[3] to true.
MCOUNTENABLE_EN[0:2] must all be false if Zicntr is not implemented. MCOUNTENABLE_EN[3:31] must all be false if Zihpm is not implemented.

TRAP_ON_ECALL_FROM_U

Whether or not an ECALL-from-U-mode causes a synchronous exception.
The spec states that implementations may handle ECALLs transparently without raising a trap, in which case the EEI must provide a builtin.

UXLEN
Set of XLENSs supported in U-mode. When both 32 and 64 are supported, SXLEN can be changed, via mstatus.UXL, between 32 and 64.

U_MODE_ENDIANNESS

Endianness of data in U-mode. Can be one of:

+ little: U-mode data is always little endian
* big: U-mode data is always big endian

» dynamic: U-mode data can be either little or big endian, depending on the CSR field mstatus.UBE

TIME_CSR_IMPLEMENTED

Whether or not a real hardware time CSR exists. Implementations can either provide a real CSR or emulate access at M-mode.
Possible values:

true

time/timeh exists, and accessing it will not cause an Illegallnstruction trap

false

time/timeh does not exist. Accessing the CSR will cause an Illegallnstruction trap or enter an unpredictable state, depending on
TRAP_ON_UNIMPLEMENTED_CSR. Privileged software may emulate the time CSR, or may pass the exception to a lower level.

3.3. RVA20S64 Profile

The RVA20S64 profile specifies the ISA features available to a supervisor-mode execution environment in 64-bit applications processors. RVA20S64 is
based on privileged architecture version 1.11.

3.3.1. Mandatory Extensions

The RVA20S64 Profile has 22 mandatory extensions.
* A Atomic instructions
Version ~> 2.1
* C Compressed instructions
Version ~> 2.0
* D Double-precision floating-point

Version ~> 2.2

The rationale to not include Q as a profile option is that quad-precision floating-point is unlikely to be
o o implemented in hardware, and so we do not require or expect software to expend effort optimizing use of Q
instructions in case they are present.

* F Single-precision floating-point
Version ~> 2.2
» I Base integer ISA (RV32I or RV64I)

Version ~> 2.1

RVI is the mandatory base ISA for RVA, and is little-endian.
As per the unprivileged architecture specification, the ecall instruction causes a requested trap to the execution environment.
Misaligned loads and stores might not be supported.

The fence.tso instruction is mandatory.

The fence.tso instruction was incorrectly described as optional in the 2019 ratified specifications. However,
fence.tso is encoded within the standard fence encoding such that implementations must treat it as a simple

o global fence if they do not natively support TSO-ordering optimizations. As software can always assume
without any penalty that fence.tso is being exploited by a hardware implementation, there is no advantage to
making the instruction a profile option. Later versions of the unprivileged ISA specifications correctly indicate
that fence.tso is mandatory.

* M Integer multiply and divide
Version ~> 2.0
* S Supervisor mode
Version ~> 1.11
» Ssceptr Cacheable and coherent main memory page table reads

Version ~> 1.0

e Ssceptr is a new extension name introduced with RVA20.

Sstvala Supervisor Trap Value provides all needed values

Version ~> 1.0

o Sstvala is a new extension name introduced with RVA20.

Sstvecd Direct exception vectoring

Version ~> 1.0
e Sstvecd is a new extension name introduced with RVA20.

Sv39 39-bit virtual address translation (3 level)
Version ~> 1.11
Svade Exception on PTE A/D Bits

Version ~> 1.0

Svbare Bare virtual addressing

Svbare is a new extension name introduced with RVA20.

It is subsequently defined in more detail with the ratification of Svadu.

Version ~> 1.0
o Svbare is a new extension name introduced with RVA20.

U User-mode privilege level
Version ~> 1.0
Za128rs Reservation set size of at most 128 bytes

Version ~> 1.0

o Za128rs is a profile-defined extension introduced with RVA20. The minimum reservation set size is effectively determined by the
size of atomic accesses in the A extension.

Ziccamoa Main memory supports all atomics in A extension

Version ~> 1.0
o Ziccamo is a profile-defined extension introduced with RVA20.

Ziccif Main memory supports instruction fetch with atomicity requirement

Version ~> 1.0

o Ziccif is a profile-defined extension introduced with RVA20. The fetch atomicity requirement facilitates runtime patching of
aligned instructions.

Zicclsm Main memory supports misaligned loads/stores

Version ~> 1.0

Zicclsm is a profile-defined extension introduced with RVA20. This requires misaligned support for all regular load and store

o instructions (including scalar and vector) but not AMOs or other specialized forms of memory access. Even though mandated,
misaligned loads and stores might execute extremely slowly. Standard software distributions should assume their existence only
for correctness, not for performance.

Ziccrse Main memory supports forward progress on LR/SC sequences

Version ~> 1.0
o Ziccrse is a profile-defined extension introduced with RVA20.

Zicntr Base Counters and Timers

Version ~> 2.0

Zicsr Control and status register instructions
Version ~> 2.0

Zifencei Instruction fence

Version ~> 2.0

o Zifencei is mandated as it is the only standard way to support instruction-cache coherence in RVA20 application processors. A
new instruction-cache coherence mechanism is under development which might be added as an option in the future.

3.3.2. Optional Extensions

The RVA20S64 Profile has 6 optional extensions.
* Ssu64xl1 64-bit UXLEN

Version ~> 1.0
e Ssu64xl is a new extension name introduced with RVA20.

» Sv48 48-bit virtual address translation (4 level)
Version ~> 1.11

» Zca Cinstructions excluding floating-point loads/stores
Version ~> 1.0

* Zcd Compressed double-precision floating-point loads/stores
Version ~> 1.0

» Zcf Compressed single-precision floating-point loads/stores
Version ~> 1.0

» Zihpm Hardware Performance Counters

Version ~> 2.0

o The number of counters is platform-specific.

3.3.3. Implementation-dependencies
RVA20S64 has 28 associated implementation-defined parameters.

ASID WIDTH
Number of implemented ASID bits. Maximum is 16 for XLEN==64, and 9 for XLEN==32

MSTATUS_TVM_IMPLEMENTED

Whether or not mstatus.TVM is implemented.
When not implemented mstatus.TVM will be read-only-zero.

REPORT_ENCODING_IN_STVAL_ON_ILLEGAL_INSTRUCTION

When true, stval is written with the encoding of an instruction that causes an I11legalInstruction exception.
When false stval is written with 0 when an Illegallnstruction exception occurs.

REPORT_VA_IN_MTVAL_ON_INSTRUCTION_PAGE_FAULT

When true, mtval is written with the virtual PC of an instructino when fetch causes an InstructionPageFault.
WHen false, mtval is written with 0 when an instruction fetch causes an InstructionPageFault.

REPORT_VA_IN_MTVAL_ON_LOAD_PAGE_FAULT

When true, mtval is written with the virtual address of a load when it causes a LoadPageFault.
WHen false, mtval is written with 0 when a load causes a LoadPageFault.

REPORT_VA_IN_MTVAL_ON_STORE_AMO_PAGE_FAULT

When true, mtval is written with the virtual address of a store when it causes a StoreAmoPageFault.
WHen false, mtval is written with 0 when a store causes a StoreAmoPageFault.

REPORT_VA_IN_STVAL_ON_BREAKPOINT

When true, stval is written with the virtual PC of the EBREAK instruction (same information as mepc).
When false, stval is written with 0 on an EBREAK instruction.

Regardless, stval is always written with a virtual PC when an external breakpoint is generated

10

REPORT_VA_IN_STVAL_ON_INSTRUCTION_ACCESS_FAULT

When true, stval is written with the virtual PC of an instructino when fetch causes an InstructionAccessFault.
WHen false, stval is written with 0 when an instruction fetch causes an InstructionAccessFault.

REPORT_VA_IN_STVAL_ON_INSTRUCTION_MISALIGNED

When true, stval is written with the virtual PC when an instruction fetch is misaligned.
When false, stval is written with 0 when an instruction fetch is misaligned.

Note that when IALIGN=16 (i.e., when the C or one of the Zc* extensions are implemented), it is impossible to generate a misaligned fetch, and so
this parameter has no effect.

REPORT_VA_IN_STVAL_ON_INSTRUCTION_PAGE_FAULT

When true, stval is written with the virtual PC of an instructino when fetch causes an InstructionPageFault.
WHen false, stval is written with 0 when an instruction fetch causes an InstructionPageFault.

REPORT_VA_IN_STVAL_ON_LOAD_ACCESS_FAULT

When true, stval is written with the virtual address of a load when it causes a LoadAccessFault.
WHen false, stval is written with 0 when a load causes a LoadAccessFault.

REPORT_VA_IN_STVAL_ON_LOAD_MISALIGNED

When true, stval is written with the virtual address of a load instruction when the address is misaligned and MISALIGNED_LDST is false.
When false, stval is written with 0 when a load address is misaligned and MISALIGNED_LDST is false.

REPORT_VA_IN_STVAL_ON_LOAD_PAGE_FAULT

When true, stval is written with the virtual address of a load when it causes a LoadPageFault.
WHen false, stval is written with 0 when a load causes a LoadPageFault.

REPORT_VA_IN_STVAL_ON_STORE_AMO_ACCESS_FAULT

When true, stval is written with the virtual address of a store when it causes a StoreAmoAccessFault.
WHen false, stval is written with 0 when a store causes a StoreAmoAccessFault.

REPORT_VA_IN_STVAL_ON_STORE_AMO_MISALIGNED

When true, stval is written with the virtual address of a store instruction when the address is misaligned and MISALIGNED_LDST is false.
When false, stval is written with 0 when a store address is misaligned and MISALIGNED_LDST is false.

REPORT_VA_IN_STVAL_ON_STORE_AMO_PAGE_FAULT

When true, stval is written with the virtual address of a store when it causes a StoreAmoPageFault.
WHen false, stval is written with 0 when a store causes a StoreAmoPageFault.

SATP_MODE_BARE
Whether or not satp.MODE == Bare is supported.

STVAL_WIDTH

The number of implemented bits in stval.
Must be greater than or equal to max(PHYS_ADDR_WIDTH, VA_SIZE)

STVEC_MODE_DIRECT
Whether or not stvec. MODE supports Direct (0).

STVEC_MODE_VECTORED
Whether or not stvec.MODE supports Vectored (1).

SXLEN
Set of XLENSs supported in S-mode. Can be one of:

» 32: SXLEN is always 32
* 64: SXLEN is always 64
* [32, 64]: SXLEN can be changed (via mstatus.SXL) between 32 and 64

S_MODE_ENDIANNESS

Endianness of data in S-mode. Can be one of:

» little: S-mode data is always little endian

11

* big: S-mode data is always big endian

» dynamic: S-mode data can be either little or big endian, depending on the CSR field mstatus.SBE

TRAP_ON_ECALL_FROM_S

Whether or not an ECALL-from-S-mode causes a synchronous exception.
The spec states that implementations may handle ECALLs transparently without raising a trap, in which case the EEI must provide a builtin.

MCOUNTENABLE_EN

Indicates which counters can be delegated via mcounteren.
An unimplemented counter cannot be specified, i.e., if HPM_COUNTER_EN][3] is false, it would be illegal to set MCOUNTENABLE_EN[3] to true.
MCOUNTENABLE_EN[0:2] must all be false if Zicntr is not implemented. MCOUNTENABLE_EN[3:31] must all be false if Zihpm is not implemented.

TRAP_ON_ECALL_FROM_U

Whether or not an ECALL-from-U-mode causes a synchronous exception.
The spec states that implementations may handle ECALLs transparently without raising a trap, in which case the EEI must provide a builtin.

UXLEN
Set of XLENSs supported in U-mode. When both 32 and 64 are supported, SXLEN can be changed, via mstatus.UXL, between 32 and 64.

U_MODE_ENDIANNESS

Endianness of data in U-mode. Can be one of:

» little: U-mode data is always little endian
* big: U-mode data is always big endian

* dynamic: U-mode data can be either little or big endian, depending on the CSR field mstatus.UBE

TIME_CSR_IMPLEMENTED

Whether or not a real hardware time CSR exists. Implementations can either provide a real CSR or emulate access at M-mode.
Possible values:

true

time/timeh exists, and accessing it will not cause an Illegallnstruction trap

false

time/timeh does not exist. Accessing the CSR will cause an Illegallnstruction trap or enter an unpredictable state, depending on
TRAP_ON_UNIMPLEMENTED_CSR. Privileged software may emulate the time CSR, or may pass the exception to a lower level.

12

Appendix A: Profile Comparisons

A.1. Apps Processor Profile Releases

The Apps Processor processor kind has 4 processor profile releases that reference a total of 89 extensions.

Table 1. Extension Presence

Extension RVA20 RVA22 RVA23 RVB23

A mandatory mandatory mandatory mandatory
B - mandatory mandatory mandatory
C mandatory mandatory mandatory mandatory
D mandatory mandatory mandatory mandatory
F mandatory mandatory mandatory mandatory
I mandatory mandatory mandatory mandatory
M mandatory mandatory mandatory mandatory
S mandatory mandatory mandatory mandatory
Sdtrig - - optional optional
Sha - optional mandatory optional
Sm - - - -

Smpmp - - - -

Ssceptr mandatory mandatory mandatory mandatory
Sscofpmf - optional mandatory mandatory
Sscounterenw - mandatory mandatory mandatory
Ssnpm - - mandatory optional
Sspm - - optional optional
Ssstrict - - optional optional
Sstc - optional mandatory mandatory
Sstvala mandatory mandatory mandatory mandatory
Sstvecd mandatory mandatory mandatory mandatory
Ssu64x1 optional optional mandatory mandatory
Supm - - mandatory optional
Sv39 mandatory mandatory mandatory mandatory
Sv48 optional optional optional optional
Sv57 - optional optional optional
Svade mandatory mandatory mandatory mandatory
Svadu - - optional optional
Svbare mandatory mandatory mandatory mandatory
Svinval - mandatory mandatory mandatory
Svnapot - optional mandatory mandatory
Svpbmt - mandatory mandatory mandatory
Svvptc - - optional optional

U mandatory mandatory mandatory mandatory
A - optional mandatory optional
Zal28rs mandatory mandatory mandatory mandatory
Zab4rs - mandatory mandatory mandatory
Zabha - - optional optional
Zacas - - optional optional
Zamal6b - - optional optional
Zawrs - - mandatory mandatory
Zba - mandatory mandatory mandatory
Zbb - mandatory mandatory mandatory

13

Extension
Zbc

Zbs

Zca

Zch

Zcd

Zcf
Zcmop
Zfa
Zfbfmin
Zth
Zfhmin
Zic64b
Zichom
Zicbop
Zichoz
Ziccamoa
Ziccamoc
Ziccif
Zicclsm
Ziccrse
Zicfilp
Zicfiss
Zicntr
Zicond
Zicsr
Zifencei
Zihintntl
Zihintpause
Zihpm
Zimop
Zkn

Zkr

Zks

Zkt

Zvbb
Zvhc
Zvtbfmin
Zvfbfwma
Zvth
Zvfhmin
Zvkg
Zvknc
Zvkng
Zvksc
Zvksg
Zvkt

A.2. RVA Profile Releases

The RVA Profile Family has 3 releases that reference a total of 86 extensions.

14

RVA20

optional
optional

optional

mandatory
mandatory
mandatory

mandatory

mandatory
mandatory

mandatory

optional

RVA22
mandatory
optional
optional

optional

optional

mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory

mandatory

mandatory
mandatory
mandatory
mandatory
mandatory
optional
optional
optional

mandatory

RVA23
optional
mandatory
optional
mandatory
optional
optional
mandatory
mandatory
optional
optional
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
optional
mandatory
mandatory
mandatory
optional
optional
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory

optional
mandatory
mandatory
optional
optional
optional
optional

mandatory

optional
optional

mandatory

RVB23
optional
mandatory
optional
mandatory
optional
optional
mandatory
mandatory
optional
optional
optional
mandatory
mandatory
mandatory
mandatory
mandatory
optional
mandatory
mandatory
mandatory
optional
optional
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
optional
optional
optional
mandatory
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional
optional

optional

Table 2. Extension Presence

Extension
A
B
C
D
F

I

M

S

Sdtrig
Sha

Sm
Smpmp
Ssceptr

Sscofpmf

Sscounterenw

Ssnpm
Sspm
Ssstrict
Sstc
Sstvala
Sstvecd
Ssu64x1
Supm
Sv39
Sv48
Sv57
Svade
Svadu
Svbare
Svinval
Svnapot
Svpbmt
Svvptc
U

\
Zal28rs
Zab4rs
Zabha
Zacas
Zamal6b
Zawrs
Zba
Zbb
Zbc

Zbs

Zca

Zch

Zcd

RVA20

mandatory
mandatory
mandatory
mandatory
mandatory
mandatory

mandatory

mandatory

mandatory
mandatory
optional

mandatory
optional

mandatory

mandatory

mandatory

mandatory

optional

optional

RVA22
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
optional

mandatory
optional

mandatory

optional
mandatory
mandatory
optional
mandatory
optional
optional
mandatory
mandatory
mandatory
optional
mandatory
mandatory
optional
mandatory

mandatory

mandatory
mandatory
mandatory
optional

optional

RVA23
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
optional

mandatory

mandatory
mandatory
mandatory
mandatory
optional
optional
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
optional
optional
mandatory
optional
mandatory
mandatory
mandatory
mandatory
optional
mandatory
mandatory
mandatory
mandatory
optional
optional
optional
mandatory
mandatory
mandatory
optional
mandatory
optional
mandatory

optional

15

Extension
Zct
Zcmop
Zfa
Zfbfmin
Zth
Zfhmin
Zic64b
Zichom
Zicbop
Zicboz
Ziccamoa
Ziccamoc
Ziccif
Zicclsm
Ziccrse
Zicfilp
Zicfiss
Zicntr
Zicond
Zicsr
Zifencei
Zihintntl
Zihintpause
Zihpm
Zimop
Zkn

Zkr

Zks

Zkt

Zvbb
Zvhbc
Zvfbfmin
Zvfbfwma
Zvth
Zvfhmin
Zvkng
Zvksg
Zvkt

A.3. RVA20 Profiles

RVA20

optional

mandatory
mandatory
mandatory

mandatory

mandatory
mandatory

mandatory

optional

RVA22

optional

optional

mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory

mandatory

mandatory
mandatory
mandatory
mandatory
mandatory
optional
optional
optional

mandatory

The RVA20 Profile Release has 2 profiles that reference a total of 28 extensions.

Table 3. Extension Presence

Extension

A

C
D
F

16

RVA20U64
mandatory
mandatory
mandatory

mandatory

RVA20S64

mandatory
mandatory
mandatory

mandatory

RVA23
optional
mandatory
mandatory
optional
optional
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
optional
mandatory
mandatory
mandatory
optional
optional
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory

optional
mandatory
mandatory
optional
optional
optional
optional
mandatory
optional
optional

mandatory

Extensions present in a profile are also present in higher-privileged profiles in the same profile release.

Extension
I

M

S
Ssceptr
Sstvala
Sstvecd
Ssu64x1
Sv39
Sv48
Svade
Svbare
U
Zal28rs
Zca

Zcd

Zct
Ziccamoa
Ziccif
Zicclsm
Ziccrse
Zicntr
Zicsr
Zifencei

Zihpm

RVA20U64
mandatory

mandatory

mandatory
mandatory
option

option

option

mandatory
mandatory
mandatory
mandatory
mandatory
mandatory

option

RVA20S64
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
option
mandatory
option
mandatory
mandatory
mandatory
mandatory
option
option
option
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory
mandatory

option

17

Appendix B: Extension Details

B.1. Extension A

Long Name: Atomic instructions
Version Requirement: ~> 2.1
A Extension Presence

profile v2.1.0
RVA20U64 mandatory
RVA20S64 mandatory

B.1.1. Available Versions

Version 2.1.0

State ratified
Ratification date 2019-12
B.1.2. Synopsis

The atomic-instruction extension, named A, contains instructions that atomically read-modify-write memory to support synchronization between
multiple RISC-V harts running in the same memory space. The two forms of atomic instruction provided are load-reserved/store-conditional
instructions and atomic fetch-and-op memory instructions. Both types of atomic instruction support various memory consistency orderings
including unordered, acquire, release, and sequentially consistent semantics. These instructions allow RISC-V to support the RCsc memory
consistency model. cite:[Gharachorloo90memoryconsistency]

o After much debate, the language community and architecture community appear to have finally settled on release consistency as
the standard memory consistency model and so the RISC-V atomic support is built around this model.

The A extension comprises instructions provided by the Zaamo and Zalrsc extensions.

B.1.3. Specifying Ordering of Atomic Instructions

The base RISC-V ISA has a relaxed memory model, with the FENCE instruction used to impose additional ordering constraints. The address space is
divided by the execution environment into memory and I/O domains, and the FENCE instruction provides options to order accesses to one or both of
these two address domains.

To provide more efficient support for release consistency cite:[Gharachorloo90memoryconsistency], each atomic instruction has two bits, aq and rl,
used to specify additional memory ordering constraints as viewed by other RISC-V harts. The bits order accesses to one of the two address domains,
memory or I/0, depending on which address domain the atomic instruction is accessing. No ordering constraint is implied to accesses to the other
domain, and a FENCE instruction should be used to order across both domains.

If both bits are clear, no additional ordering constraints are imposed on the atomic memory operation. If only the aq bit is set, the atomic memory
operation is treated as an acquire access, i.e., no following memory operations on this RISC-V hart can be observed to take place before the acquire
memory operation. If only the rl bit is set, the atomic memory operation is treated as a release access, i.e., the release memory operation cannot be
observed to take place before any earlier memory operations on this RISC-V hart. If both the aq and rl bits are set, the atomic memory operation is
sequentially consistent and cannot be observed to happen before any earlier memory operations or after any later memory operations in the same
RISC-V hart and to the same address domain.

B.2. Extension C

Long Name: Compressed instructions
Version Requirement: ~> 2.0
C Extension Presence

profile v2.0.0
RVA20U64 mandatory
RVA20S64 mandatory

B.2.1. Available Versions

Version 2.0.0
State ratified

Ratification date 2019-12

18

B.2.2. Synopsis

The C extension reduces static and dynamic code size by adding short 16-bit instruction encodings for common operations. The C extension can be
added to any of the base ISAs (RV32, RV64, RV128), and we use the generic term "RVC" to cover any of these. Typically, 50%-60% of the RISC-V
instructions in a program can be replaced with RVC instructions, resulting in a 25%-30% code-size reduction.

B.2.3. Overview
RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V instructions when:

* the immediate or address offset is small, or
* one of the registers is the zero register (x0), the ABI link register (x1), or the ABI stack pointer (x2), or
* the destination register and the first source register are identical, or

* the registers used are the 8 most popular ones.

The C extension is compatible with all other standard instruction extensions. The C extension allows 16-bit instructions to be freely intermixed with
32-bit instructions, with the latter now able to start on any 16-bit boundary, i.e., IALIGN=16. With the addition of the C extension, no instructions can
raise instruction-address-misaligned exceptions.

o Removing the 32-bit alignment constraint on the original 32-bit instructions allows significantly greater code density.

The compressed instruction encodings are mostly common across RV32C, RV64C, and RV128C, but as shown in Table 34, a few opcodes are used for
different purposes depending on base ISA. For example, the wider address-space RV64C and RV128C variants require additional opcodes to compress
loads and stores of 64-bit integer values, while RV32C uses the same opcodes to compress loads and stores of single-precision floating-point values.
Similarly, RV128C requires additional opcodes to capture loads and stores of 128-bit integer values, while these same opcodes are used for loads and
stores of double-precision floating-point values in RV32C and RV64C. If the C extension is implemented, the appropriate compressed floating-point
load and store instructions must be provided whenever the relevant standard floating-point extension (F and/or D) is also implemented. In addition,
RV32C includes a compressed jump and link instruction to compress short-range subroutine calls, where the same opcode is used to compress
ADDIW for RV64C and RV128C.

Double-precision loads and stores are a significant fraction of static and dynamic instructions, hence the motivation to include them
in the RV32C and RV64C encoding.

Although single-precision loads and stores are not a significant source of static or dynamic compression for benchmarks compiled

for the currently supported ABIs, for microcontrollers that only provide hardware single-precision floating-point units and have an

ABI that only supports single-precision floating-point numbers, the single-precision loads and stores will be used at least as

(r) frequently as double-precision loads and stores in the measured benchmarks. Hence, the motivation to provide compressed support
- for these in RV32C.

Short-range subroutine calls are more likely in small binaries for microcontrollers, hence the motivation to include these in RV32C.

Although reusing opcodes for different purposes for different base ISAs adds some complexity to documentation, the impact on
implementation complexity is small even for designs that support multiple base ISAs. The compressed floating-point load and store
variants use the same instruction format with the same register specifiers as the wider integer loads and stores.

RVC was designed under the constraint that each RVC instruction expands into a single 32-bit instruction in either the base ISA (RV32I/E, RV64I/E, or
RV128I) or the F and D standard extensions where present. Adopting this constraint has two main benefits:

* Hardware designs can simply expand RVC instructions during decode, simplifying verification and minimizing modifications to existing
microarchitectures.

» Compilers can be unaware of the RVC extension and leave code compression to the assembler and linker, although a compression-aware
compiler will generally be able to produce better results.

We felt the multiple complexity reductions of a simple one-one mapping between C and base IFD instructions far outweighed the
o potential gains of a slightly denser encoding that added additional instructions only supported in the C extension, or that allowed
encoding of multiple IFD instructions in one C instruction.

It is important to note that the C extension is not designed to be a stand-alone ISA, and is meant to be used alongside a base ISA.

Variable-length instruction sets have long been used to improve code density. For example, the IBM Stretch cite:[stretch], developed
in the late 1950s, had an ISA with 32-bit and 64-bit instructions, where some of the 32-bit instructions were compressed versions of
the full 64-bit instructions. Stretch also employed the concept of limiting the set of registers that were addressable in some of the
shorter instruction formats, with short branch instructions that could only refer to one of the index registers. The later IBM 360
architecture cite:[ibm360] supported a simple variable-length instruction encoding with 16-bit, 32-bit, or 48-bit instruction formats.

- In 1963, CDC introduced the Cray-designed CDC 6600 cite:[cdc6600], a precursor to RISC architectures, that introduced a register-rich
load-store architecture with instructions of two lengths, 15-bits and 30-bits. The later Cray-1 design used a very similar instruction
format, with 16-bit and 32-bit instruction lengths.

The initial RISC ISAs from the 1980s all picked performance over code size, which was reasonable for a workstation environment,

19

but not for embedded systems. Hence, both ARM and MIPS subsequently made versions of the ISAs that offered smaller code size by
offering an alternative 16-bit wide instruction set instead of the standard 32-bit wide instructions. The compressed RISC ISAs
reduced code size relative to their starting points by about 25-30%, yielding code that was significantly smaller than 80x86. This
result surprised some, as their intuition was that the variable-length CISC ISA should be smaller than RISC ISAs that offered only 16-
bit and 32-bit formats.

Since the original RISC ISAs did not leave sufficient opcode space free to include these unplanned compressed instructions, they
were instead developed as complete new ISAs. This meant compilers needed different code generators for the separate compressed
ISAs. The first compressed RISC ISA extensions (e.g., ARM Thumb and MIPS16) used only a fixed 16-bit instruction size, which gave
good reductions in static code size but caused an increase in dynamic instruction count, which led to lower performance compared
to the original fixed-width 32-bit instruction size. This led to the development of a second generation of compressed RISC ISA
designs with mixed 16-bit and 32-bit instruction lengths (e.g., ARM Thumb2, microMIPS, PowerPC VLE), so that performance was
similar to pure 32-bit instructions but with significant code size savings. Unfortunately, these different generations of compressed
ISAs are incompatible with each other and with the original uncompressed ISA, leading to significant complexity in documentation,
implementations, and software tools support.

Of the commonly used 64-bit ISAs, only PowerPC and microMIPS currently supports a compressed instruction format. It is
surprising that the most popular 64-bit ISA for mobile platforms (ARM v8) does not include a compressed instruction format given
that static code size and dynamic instruction fetch bandwidth are important metrics. Although static code size is not a major
concern in larger systems, instruction fetch bandwidth can be a major bottleneck in servers running commercial workloads, which
often have a large instruction working set.

Benefiting from 25 years of hindsight, RISC-V was designed to support compressed instructions from the outset, leaving enough
opcode space for RVC to be added as a simple extension on top of the base ISA (along with many other extensions). The philosophy
of RVC is to reduce code size for embedded applications and to improve performance and energy-efficiency for all applications due
to fewer misses in the instruction cache. Waterman shows that RVC fetches 25%-30% fewer instruction bits, which reduces
instruction cache misses by 20%-25%, or roughly the same performance impact as doubling the instruction cache size.
cite:[waterman-ms]

B.2.4. Compressed Instruction Formats

Table 4 shows the nine compressed instruction formats. CR, CI, and CSS can use any of the 32 RVI registers, but CIW, CL, CS, CA, and CB are limited to
just 8 of them. Table 5 lists these popular registers, which correspond to registers x8 to x15. Note that there is a separate version of load and store
instructions that use the stack pointer as the base address register, since saving to and restoring from the stack are so prevalent, and that they use
the CI and CSS formats to allow access to all 32 data registers. CIW supplies an 8-bit immediate for the ADDI4SPN instruction.

The RISC-V ABI was changed to make the frequently used registers map to registers 'x8-x15'". This simplifies the decompression
decoder by having a contiguous naturally aligned set of register numbers, and is also compatible with the RV32E and RV64E base
ISAs, which only have 16 integer registers.

Compressed register-based floating-point loads and stores also use the CL and CS formats respectively, with the eight registers mapping to f8 to f15.

o The standard RISC-V calling convention maps the most frequently used floating-point registers to registers 8 to 15, which allows the
same register decompression decoding as for integer register numbers.

The formats were designed to keep bits for the two register source specifiers in the same place in all instructions, while the destination register field
can move. When the full 5-bit destination register specifier is present, it is in the same place as in the 32-bit RISC-V encoding. Where immediates are
sign-extended, the sign extension is always from bit 12. Immediate fields have been scrambled, as in the base specification, to reduce the number of
immediate muxes required.

o The immediate fields are scrambled in the instruction formats instead of in sequential order so that as many bits as possible are in
the same position in every instruction, thereby simplifying implementations.

For many RVC instructions, zero-valued immediates are disallowed and x@ is not a valid 5-bit register specifier. These restrictions free up encoding
space for other instructions requiring fewer operand bits.

Table 4. Compressed 16-bit RVC instruction formats

20

Format Meaning 15141312 1110987 65432 10

CR Register funct4 rd/rs1 rs2 op
CI Immediate funct3 imm rd/rs1 imm op
CSS Stack-relative Store funct3 imm rs2 op
CIW Wide Immediate funct3 imm rd' op
CL Load funct3 imm rsl’' imm rd' op
CS Store funct3 imm rsl’ imm rs2' op
CA Arithmetic funct6 rd'/rs1’ funct2 rs2' op
CB Branch/Arithmetic funct3 offset rd'/rs1' offset op
CJ Jump funct3 jump target op

Table 5. Registers specified by the three-bit rs1', rs2', and rd’ fields of the CIW, CL, CS, CA, and CB formats.

RVC Register Number 000 001 010 011 100 101 110 111
x8 x9 x10 x11 x12 x13 x14 x15

s@ s1 a@ al a2 a3 a4 ab
f8 f9 f10 11 12 f13 14 15
fs@ fs1 fa@ fal fa2 fa3 fad fab

Integer Register Number
Integer Register ABI Name
Floating-Point Register Number

Floating-Point Register ABI Name

B.3. Extension D

Long Name: Double-precision floating-point
Version Requirement: ~> 2.2
D Extension Presence

profile v2.2.0
RVA20U64 mandatory
RVA20S64 mandatory

B.3.1. Available Versions

Version 2.2.0

State ratified

Ratification date 2019-12

Changes * Define NaN-boxing scheme, changed definition of FMAX and FMIN
B.3.2. Synopsis

The D extension adds double-precision floating-point computational instructions compliant with the IEEE 754-2008 arithmetic standard. The D
extension depends on the base single-precision instruction subset F.

B.3.3. D Register State

The D extension widens the 32 floating-point registers, f0-f31, to 64 bits (FLEN=64 in Table 6. The f registers can now hold either 32-bit or 64-bit
floating-point values as described below in Section B.3.4.

o FLEN can be 32, 64, or 128 depending on which of the F, D, and Q extensions are supported. There can be up to four different
floating-point precisions supported, including H, F, D, and Q.

B.3.4. NaN Boxing of Narrower Values

When multiple floating-point precisions are supported, then valid values of narrower n-bit types, n<FLEN, are represented in the lower n bits of an
FLEN-bit NaN value, in a process termed NaN-boxing. The upper bits of a valid NaN-boxed value must be all 1s. Valid NaN-boxed n-bit values
therefore appear as negative quiet NaNs (qNaNs) when viewed as any wider m-bit value, n < m < FLEN. Any operation that writes a narrower result
to an 'f' register must write all 1s to the uppermost FLEN-n bits to yield a legal NaN-boxedvalue.

Software might not know the current type of data stored in a floating-point register but has to be able to save and restore the

o register values, hence the result of using wider operations to transfer narrower values has to be defined. A common case is for
callee-saved registers, but a standard convention is also desirable for features including varargs, user-level threading libraries,
virtual machine migration, and debugging.

21

https://ieeexplore.ieee.org/document/4610935

Floating-point n-bit transfer operations move external values held in IEEE standard formats into and out of the f registers, and comprise floating-
point loads and stores (FLn/FSn) and floating-point move instructions (FMV.n.X/FMV.X.n). A narrower n-bit transfer, n<FLEN, into the f registers will
create a valid NaN-boxed value. A narrower n-bit transfer out of the floating-point registers will transfer the lower n bits of the register ignoring the
upper FLEN-n bits.

Apart from transfer operations described in the previous paragraph, all other floating-point operations on narrower n-bit operations, n<FLEN, check
if the input operands are correctly NaN-boxed, i.e., all upper FLEN-n bits are 1. If so, the n least-significant bits of the input are used as the input

value, otherwise the input value is treated as an n-bit canonical NaN.

Earlier versions of this document did not define the behavior of feeding the results of narrower or wider operands into an
operation, except to require that wider saves and restores would preserve the value of a narrower operand. The new definition
removes this implementation-specific behavior, while still accommodating both non-recoded and recoded implementations of the
floating-point unit. The new definition also helps catch software errors by propagating NaNs if values are used incorrectly.

Non-recoded implementations unpack and pack the operands to IEEE standard format on the input and output of every floating-
point operation. The NaN-boxing cost to a non-recoded implementation is primarily in checking if the upper bits of a narrower
operation represent a legal NaN-boxed value, and in writing all 1s to the upper bits of a result.

Recoded implementations use a more convenient internal format to represent floating-point values, with an added exponent bit to
allow all values to be held normalized. The cost to the recoded implementation is primarily the extra tagging needed to track the
internal types and sign bits, but this can be done without adding new state bits by recoding NaNs internally in the exponent field.
Small modifications are needed to the pipelines used to transfer values in and out of the recoded format, but the datapath and
latency costs are minimal. The recoding process has to handle shifting of input subnormal values for wide operands in any case, and
extracting the NaN-boxed value is a similar process to normalization except for skipping over leading-1 bits instead of skipping over
leading-0 bits, allowing the datapath muxing to be shared.

The rationale to not include Q as a profile option is that quad-precision floating-point is unlikely to be implemented
in hardware, and so we do not require or expect software to expend effort optimizing use of Q instructions in case
they are present.

B.3.5. Instructions

The following 26 instructions are added by extension version 2.2.0 (the minimum version of this extension that satifies the extension requirement).

fadd.d Floating-Point Add Double-Precision

fclass.d Floating-Point Classify Double-Precision

fevt.d.s Floating-Point Convert Single-Precision to Double-Precision
fevt.d.w Floating-Point Convert Word to Double-Precision

fcvt.d.wu Floating-Point Convert Unsigned Word to Double-Precision
fevt.s.d Floating-Point Convert Double-Precision to Single-Precision
fevt.w.d Floating-Point Convert Double-Precision to Word

fevt.wu.d Floating-Point Convert Double-Precision to Unsigned Word
fdiv.d Floating-Point Divide Double-Precision

feq.d Floating-Point Equal Double-Precision

fld Floating-Point Load Double-Precision

fle.d Floating-Point Less Than or Equal Double-Precision

flt.d Floating-Point Less Than Double-Precision

fmadd.d Floating-Point Multiply-Add Double-Precision

fmax.d Floating-Point Maximum-Number Double-Precision

fmin.d Floating-Point Minimum-Number Double-Precision
fmsub.d Floating-Point Multiply-Subtract Double-Precision

fmul.d Floating-Point Multiply Double-Precision

fnmadd.d Floating-Point Negate-Multiply-Add Double-Precision
fnmsub.d Floating-Point Negate-Multiply-Subtract Double-Precision
fsd Floating-Point Store Double-Precision

fsgnj.d Floating-Point Sign-Inject Double-Precision

fsgnjn.d Floating-Point Sign-Inject Negate Double-Precision

fsgnjx.d Floating-Point Sign-Inject XOR Double-Precision

fsqrt.d Floating-Point Square Root Double-Precision

fsub.d Floating-Point Subtract Double-Precision

22

B.4. Extension F

Long Name: Single-precision floating-point
Version Requirement: ~> 2.2
F Extension Presence

profile v2.2.0
RVA20U64 mandatory
RVA20S64 mandatory

B.4.1. Available Versions

Version 2.2.0

State ratified

Ratification date 2019-12

Changes * Define NaN-boxing scheme, changed definition of FMAX and FMIN
B.4.2. Synopsis

This chapter describes the standard instruction-set extension for single-precision floating-point, which is named "F" and adds single-precision
floating-point computational instructions compliant with the IEEE 754-2008 arithmetic standard cite:[ieee754-2008]. The F extension depends on the
"Zicsr" extension for control and status register access.

B.4.3. F Register State

The F extension adds 32 floating-point registers, f0-f31, each 32 bits wide, and a floating-point control and status register fcsr, which contains the
operating mode and exception status of the floating-point unit. This additional state is shown in Table 6. We use the term FLEN to describe the width
of the floating-point registers in the RISC-V ISA, and FLEN=32 for the F single-precision floating-point extension. Most floating-point instructions
operate on values in the floating-point register file. Floating-point load and store instructions transfer floating-point values between registers and
memory. Instructions to transfer values to and from the integer register file are also provided.

We considered a unified register file for both integer and floating-point values as this simplifies software register allocation and
calling conventions, and reduces total user state. However, a split organization increases the total number of registers accessible
O with a given instruction width, simplifies provision of enough regfile ports for wide superscalar issue, supports decoupled floating-
- point-unit architectures, and simplifies use of internal floating-point encoding techniques. Compiler support and calling
conventions for split register file architectures are well understood, and using dirty bits on floating-point register file state can
reduce context-switch overhead.

Table 6. RISC-V standard F extension single-precision floating-point state

FLEN-1 0
fo
f1

4
5
f6

8
9
10
f11
f12
f13
f14
f15
f16
17
18
f19
f20

f21

23

FLEN-1 0
f22
f23
f24
25
26
27
28
29
30
31
FLEN
31 0
fesr

32

Floating-Point Control and Status Register

The floating-point control and status register, fcsr, is a RISC-V control and status register (CSR). It is a 32-bit read/write register that selects the
dynamic rounding mode for floating-point arithmetic operations and holds the accrued exception flags, as shown in Floating-Point Control and
Status Register.

Floating-point control and status register

Unresolved directive in RVA20ProfileRelease.adoc - include::images/wavedrom/float-csr.adoc[]

The fcsr register can be read and written with the FRCSR and FSCSR instructions, which are assembler pseudoinstructions built on the underlying
CSR access instructions. FRCSR reads fcsr by copying it into integer register rd. FSCSR swaps the value in fcsr by copying the original value into
integer register rd, and then writing a new value obtained from integer register rs1 into fcsr.

The fields within the fcsr can also be accessed individually through different CSR addresses, and separate assembler pseudoinstructions are defined
for these accesses. The FRRM instruction reads the Rounding Mode field frm (fcsr bits 7—5) and copies it into the least-significant three bits of integer
register rd, with zero in all other bits. FSRM swaps the value in frm by copying the original value into integer register rd, and then writing a new
value obtained from the three least-significant bits of integer register rs1 into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued
Exception Flags field fflags (fcsr bits 4—0).

Bits 31—38 of the fcsr are reserved for other standard extensions. If these extensions are not present, implementations shall ignore writes to these bits
and supply a zero value when read. Standard software should preserve the contents of these bits.

Floating-point operations use either a static rounding mode encoded in the instruction, or a dynamic rounding mode held in frm. Rounding modes
are encoded as shown in Table 7. A value of 111 in the instruction’s rm field selects the dynamic rounding mode held in frm. The behavior of
floating-point instructions that depend on rounding mode when executed with a reserved rounding mode is reserved, including both static reserved
rounding modes (101-110) and dynamic reserved rounding modes (101-111). Some instructions, including widening conversions, have the rm field
but are nevertheless mathematically unaffected by the rounding mode; software should set their rm field to RNE (000) but implementations must
treat the rm field as usual (in particular, with regard to decoding legal vs. reserved encodings).

Table 7. Rounding mode encoding.

Rounding Mode Mnemonic Meaning

000 RNE Round to Nearest, ties to Even

001 RTZ Round towards Zero

010 RDN Round Down (towards -\infty)

011 RUP Round Up (towards +\infty)

100 RMM Round to Nearest, ties to Max Magnitude

101 Reserved for future use.

110 Reserved for future use.

111 DYN In instruction’s rm field, selects dynamic rounding mode; In Rounding Mode register, reserved.

The C99 language standard effectively mandates the provision of a dynamic rounding mode register. In typical implementations,
writes to the dynamic rounding mode CSR state will serialize the pipeline. Static rounding modes are used to implement specialized
arithmetic operations that often have to switch frequently between different rounding modes.

o The ratified version of the F spec mandated that an illegal-instruction exception was raised when an instruction was executed with
a reserved dynamic rounding mode. This has been weakened to reserved, which matches the behavior of static rounding-mode
instructions. Raising an illegal-instruction exception is still valid behavior when encountering a reserved encoding, so
implementations compatible with the ratified spec are compatible with the weakened spec.

24

The accrued exception flags indicate the exception conditions that have arisen on any floating-point arithmetic instruction since the field was last
reset by software, as shown in Table 8. The base RISC-V ISA does not support generating a trap on the setting of a floating-point exception flag.

Table 8. Accrued exception flag

encoding.

Flag Mnemonic Flag Meaning

NV
Dz
OF
UF
NX

Invalid Operation
Divide by Zero
Overflow
Underflow

Inexact

As allowed by the standard, we do not support traps on floating-point exceptions in the F extension, but instead require explicit
checks of the flags in software. We considered adding branches controlled directly by the contents of the floating-point accrued
exception flags, but ultimately chose to omit these instructions to keep the ISA simple.

B.4.4. NaN Generation and Propagation

Except when otherwise stated, if the result of a floating-point operation is NaN, it is the canonical NaN. The canonical NaN has a positive sign and all
significand bits clear except the MSB, a.k.a. the quiet bit. For single-precision floating-point, this corresponds to the pattern 0x7fc00000.

@,

We considered propagating NaN payloads, as is recommended by the standard, but this decision would have increased hardware
cost. Moreover, since this feature is optional in the standard, it cannot be used in portable code.

Implementers are free to provide a NaN payload propagation scheme as a nonstandard extension enabled by a nonstandard
operating mode. However, the canonical NaN scheme described above must always be supported and should be the default mode.

We require implementations to return the standard-mandated default values in the case of exceptional conditions, without any
further intervention on the part of user-level software (unlike the Alpha ISA floating-point trap barriers). We believe full hardware
handling of exceptional cases will become more common, and so wish to avoid complicating the user-level ISA to optimize other
approaches. Implementations can always trap to machine-mode software handlers to provide exceptional default values.

B.4.5. Subnormal Arithmetic

Operations on subnormal numbers are handled in accordance with the IEEE 754-2008 standard.

In the parlance of the IEEE standard, tininess is detected after rounding.

Detecting tininess after rounding results in fewer spurious underflow signals.

B.4.6. Instructions

The following 26 instructions are added by extension version 2.2.0 (the minimum version of this extension that satifies the extension requirement).

fadd.s
fclass.s
fevt.s.w
fevt.s.wu
fevt.w.s
fevt.wu.s
fdiv.s
feq.s
fle.s

flt.s

flw
fmadd.s
fmax.s
fmin.s
fmsub.s

fmul.s

Floating-Point Add Single-Precision

Floating-Point Classify Single-Precision

Floating-Point Convert Word to Single-Precision

Floating-Point Convert Unsigned Word to Single-Precision

Floating-Point Convert Single-Precision to Word

Floating-Point Convert Single-Precision to Unsigned Word

Floating-Point Divide Single-Precision

Floating-Point Equal Single-Precision

Floating-Point Less Than or Equal Single-Precision

Floating-Point Less Than Single-Precision

Floating-Point Load Single-Precision

Floating-Point Multiply-Add Single-Precision

Floating-Point Maximum-Number Single-Precision

Floating-Point Minimum-Number Single-Precision

Floating-Point Multiply-Subtract Single-Precision

Floating-Point Multiply Single-Precision

25

fmv.w.x Floating-Point Move Single-Precision Word from Integer Register

fmv.x.w Floating-Point Move Single-Precision Word to Integer Register
fnmadd.s Floating-Point Negate-Multiply-Add Single-Precision

fnmsub.s Floating-Point Negate-Multiply-Subtract Single-Precision
fsgnj.s Floating-Point Sign-Inject Single-Precision

fsgnjn.s Floating-Point Sign-Inject Negate Single-Precision

fsgnjx.s Floating-Point Sign-Inject XOR Single-Precision

fsqrt.s Floating-Point Square Root Single-Precision

fsub.s Floating-Point Subtract Single-Precision

fsw Floating-Point Store Single-Precision

B.4.7. CSRs

The following 3 CSRs are added by extension version 2.2.0 (the minimum version of this extension that satifies the extension requirement).

Name Long Name Address Mode
fesr Floating-point control and status register (frm + fflags) 0x3 U
fflags Floating-Point Accrued Exceptions 0x1 U
frm Floating-Point Dynamic Rounding Mode 0x2 U

B.5. Extension I

Long Name: Base integer ISA (RV32I or RV64I)
Version Requirement: ~> 2.1
I Extension Presence

profile v2.1.0
RVA20U64 mandatory
RVA20S64 mandatory

B.5.1. Available Versions

Version 2.1.0

State ratified
Ratification date 2019-06
Changes * ratified RVWMO memory model and exclusion of FENCE.L, counters, and CSR instructions that were in

previous base ISA

B.5.2. Synopsis

Base integer instructions — TODO

RVI is the mandatory base ISA for RVA, and is little-endian.
As per the unprivileged architecture specification, the ecall instruction causes a requested trap to the execution environment.
Misaligned loads and stores might not be supported.

The fence.tso instruction is mandatory.

The fence.tso instruction was incorrectly described as optional in the 2019 ratified specifications. However,
fence.tso is encoded within the standard fence encoding such that implementations must treat it as a simple global

o fence if they do not natively support TSO-ordering optimizations. As software can always assume without any
penalty that fence.tso is being exploited by a hardware implementation, there is no advantage to making the
instruction a profile option. Later versions of the unprivileged ISA specifications correctly indicate that fence.tso is
mandatory.

B.5.3. Instructions

The following 43 instructions are added by extension version 2.1.0 (the minimum version of this extension that satifies the extension requirement).

add Integer add

26

addi Add immediate

and And

andi And immediate

auipc Add upper immediate to pc
beq Branch if equal

bge Branch if greater than or equal
bgeu Branch if greater than or equal unsigned
blt Branch if less than

bltu Branch if less than unsigned
bne Branch if not equal

ebreak Breakpoint exception

ecall Environment call

fence.tso Memory ordering fence, total store ordering
fence Memory ordering fence

jal Jump and link

jalr Jump and link register

b Load byte

lbu Load byte unsigned

1d Load doubleword

Ih Load halfword

lhu Load halfword unsigned

lui Load upper immediate

Iw Load word

or Or

ori Or immediate

sb Store byte

sd Store doubleword

sh Store halfword

sll Shift left logical

slli Shift left logical immediate

slt Set on less than

slti Set on less than immediate
sltiu Set on less than immediate unsigned
sltu Set on less than unsigned

sra Shift right arithmetic

srai Shift right arithmetic immediate
srl Shift right logical

srli Shift right logical immediate
sub Subtract

SW Store word

xXor Exclusive Or

xori Exclusive Or immediate

B.6. Extension M

Long Name: Integer multiply and divide
Version Requirement: ~> 2.0
M Extension Presence

profile v2.0.0
RVA20U64 mandatory
RVA20S64 mandatory

B.6.1. Available Versions

Version 2.0.0

State ratified
Ratification date 2019-12
B.6.2. Synopsis

This chapter describes the standard integer multiplication and division instruction extension, which is named M and contains instructions that
multiply or divide values held in two integer registers.

(r') We separate integer multiply and divide out from the base to simplify low-end implementations, or for applications where integer
- multiply and divide operations are either infrequent or better handled in attached accelerators.

B.6.3. Instructions

The following 8 instructions are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

div Signed division

divu Unsigned division

mul Signed multiply

mulh Signed multiply high

mulhsu Signed/unsigned multiply high
mulhu Unsigned multiply high

rem Signed remainder

remu Unsigned remainder

B.7. Extension S

Long Name: Supervisor mode
Version Requirement: ~> 1.11
S Extension Presence

profile v1.11.0 v1.12.0 v1.13.0
RVA20U64 - - -
RVA20S64 mandatory mandatory mandatory

B.7.1. Available Versions

Version 1.11.0

State ratified
Ratification date 2019-06
Version 1.12.0
State ratified
Ratification date 2021-12
Version 1.13.0
State ratified
Ratification date 2024-10
B.7.2. Synopsis

This chapter describes the RISC-V supervisor-level architecture, which contains a common core that is used with various supervisor-level address
translation and protection schemes.

Supervisor mode is deliberately restricted in terms of interactions with underlying physical hardware, such as physical memory
and device interrupts, to support clean virtualization. In this spirit, certain supervisor-level facilities, including requests for timer

o and interprocessor interrupts, are provided by implementation-specific mechanisms. In some systems, a supervisor execution
environment (SEE) provides these facilities in a manner specified by a supervisor binary interface (SBI). Other systems supply these
facilities directly, through some other implementation-defined mechanism.

28

B.7.3. Instructions

The following 2 instructions are added by extension version 1.11.0 (the minimum version of this extension that satifies the extension requirement).

sfence.vma Supervisor memory-management fence

sret Supervisor Mode Return from Trap

B.7.4. CSRs

The following 10 CSRs are added by extension version 1.11.0 (the minimum version of this extension that satifies the extension requirement).

Name Long Name Address Mode
medeleg ~ Machine Exception Delegation 0x302 M
satp Supervisor Address Translation and Protection 0x180 S
scause Supervisor Cause 0x142 S
scounteren Supervisor Counter Enable 0x106 S
sepc Supervisor Exception Program Counter 0x141 S
sip Supervisor Interrupt Pending 0x144 S
sscratch Supervisor Scratch Register 0x140 S
sstatus Supervisor Status 0x100 S
stval Supervisor Trap Value 0x143 S
stvec Supervisor Trap Vector 0x105 S

B.7.5. Parameters
The following parameters (implementation options) may affect the operation of this extension:

ASID_WIDTH
Number of implemented ASID bits. Maximum is 16 for XLEN==64, and 9 for XLEN==32

MSTATUS_TVM_IMPLEMENTED

Whether or not mstatus.TVM is implemented.
When not implemented mstatus.TVM will be read-only-zero.

REPORT_ENCODING_IN_STVAL_ON_ILLEGAL_INSTRUCTION

When true, stval is written with the encoding of an instruction that causes an I11legalInstruction exception.
When false stval is written with 0 when an Illegallnstruction exception occurs.

REPORT_VA_IN_MTVAL_ON_INSTRUCTION_PAGE_FAULT

When true, mtval is written with the virtual PC of an instructino when fetch causes an InstructionPageFault.
WHen false, mtval is written with 0 when an instruction fetch causes an InstructionPageFault.

REPORT_VA_IN_MTVAL_ON_LOAD_PAGE_FAULT

When true, mtval is written with the virtual address of a load when it causes a LoadPageFault.
WHen false, mtval is written with 0 when a load causes a LoadPageFault.

REPORT_VA_IN_MTVAL_ON_STORE_AMO_PAGE_FAULT

When true, mtval is written with the virtual address of a store when it causes a StoreAmoPageFault.
WHen false, mtval is written with 0 when a store causes a StoreAmoPageFault.

REPORT_VA_IN_STVAL_ON_BREAKPOINT

When true, stval is written with the virtual PC of the EBREAK instruction (same information as mepc).
When false, stval is written with 0 on an EBREAK instruction.
Regardless, stval is always written with a virtual PC when an external breakpoint is generated

REPORT_VA_IN_STVAL_ON_INSTRUCTION_ACCESS_FAULT

When true, stval is written with the virtual PC of an instructino when fetch causes an InstructionAccessFault.

WHen false, stval is written with 0 when an instruction fetch causes an InstructionAccessFault.

REPORT_VA_IN_STVAL_ON_INSTRUCTION_MISALIGNED

When true, stval is written with the virtual PC when an instruction fetch is misaligned.
When false, stval is written with 0 when an instruction fetch is misaligned.

Note that when IALIGN=16 (i.e., when the C or one of the Zc* extensions are implemented), it is impossible to generate a misaligned fetch, and so
this parameter has no effect.

REPORT_VA_IN_STVAL_ON_INSTRUCTION_PAGE_FAULT

When true, stval is written with the virtual PC of an instructino when fetch causes an InstructionPageFault.
WHen false, stval is written with 0 when an instruction fetch causes an InstructionPageFault.

REPORT_VA_IN_STVAL_ON_LOAD_ACCESS_FAULT

When true, stval is written with the virtual address of a load when it causes a LoadAccessFault.
WHen false, stval is written with 0 when a load causes a LoadAccessFault.

REPORT_VA_IN_STVAL_ON_LOAD_MISALIGNED

When true, stval is written with the virtual address of a load instruction when the address is misaligned and MISALIGNED_LDST is false.
When false, stval is written with 0 when a load address is misaligned and MISALIGNED_LDST is false.

REPORT_VA_IN_STVAL_ON_LOAD_PAGE_FAULT

When true, stval is written with the virtual address of a load when it causes a LoadPageFault.
WHen false, stval is written with 0 when a load causes a LoadPageFault.

REPORT_VA_IN_STVAL_ON_STORE_AMO_ACCESS_FAULT

When true, stval is written with the virtual address of a store when it causes a StoreAmoAccessFault.
WHen false, stval is written with 0 when a store causes a StoreAmoAccessFault.

REPORT_VA_IN_STVAL_ON_STORE_AMO_MISALIGNED

When true, stval is written with the virtual address of a store instruction when the address is misaligned and MISALIGNED_LDST is false.
When false, stval is written with 0 when a store address is misaligned and MISALIGNED_LDST is false.

REPORT_VA_IN_STVAL_ON_STORE_AMO_PAGE_FAULT

When true, stval is written with the virtual address of a store when it causes a StoreAmoPageFault.
WHen false, stval is written with 0 when a store causes a StoreAmoPageFault.

SATP_MODE_BARE
Whether or not satp.MODE == Bare is supported.

STVAL_WIDTH

The number of implemented bits in stval.
Must be greater than or equal to max(PHYS_ADDR_WIDTH, VA_SIZE)

STVEC_MODE_DIRECT
Whether or not stvec. MODE supports Direct (0).

STVEC_MODE_VECTORED
Whether or not stvec. MODE supports Vectored (1).

SXLEN
Set of XLENSs supported in S-mode. Can be one of:

» 32: SXLEN is always 32
* 64: SXLEN is always 64
* [32, 64]: SXLEN can be changed (via mstatus.SXL) between 32 and 64

S_MODE_ENDIANNESS

Endianness of data in S-mode. Can be one of:

« little: S-mode data is always little endian
* big: S-mode data is always big endian

» dynamic: S-mode data can be either little or big endian, depending on the CSR field mstatus.SBE

30

TRAP_ON_ECALL_FROM_S

Whether or not an ECALL-from-S-mode causes a synchronous exception.

The spec states that implementations may handle ECALLs transparently without raising a trap, in which case the EEI must provide a builtin.

B.8. Extension Ssccptr

Long Name: Cacheable and coherent main memory page table reads
Version Requirement: ~> 1.0
Ssceptr Extension Presence

profile v1.0.0
RVA20U64 -
RVA20S64 mandatory

B.8.1. Available Versions

Version 1.0.0

State ratified

Ratification date 2023-03

Ratification document github.com/riscv/riscv-profiles/releases/tag/v1.0
B.8.2. Synopsis

Main memory regions with both the cacheability and coherence PMAs must support hardware page-table reads.

o This extension was ratified with the RVA20 profiles.

o Ssceptr is a new extension name introduced with RVA20.

B.9. Extension Sstvala

Long Name: Supervisor Trap Value provides all needed values
Version Requirement: ~> 1.0
Sstvala Extension Presence

profile v1.0.0
RVA20U64 -
RVA20S64 mandatory

B.9.1. Available Versions

Version 1.0.0

State ratified

Ratification date 2023-03

Ratification document github.com/riscv/riscv-profiles/releases/tag/v1.0
B.9.2. Synopsis

stval must be written with the faulting virtual address for load, store, and instruction page-fault, access-fault, and misaligned exceptions, and for
breakpoint exceptions other than those caused by execution of the ebreak or "c.ebreak instructions.

For virtual-instruction and illegal-instruction exceptions, stval must be written with the faulting instruction.

o This extension was ratified with the RVA20 profiles.
0 Sstvala is a new extension name introduced with RVA20.

B.10. Extension Sstvecd

Long Name: Direct exception vectoring
Version Requirement: ~> 1.0
Sstvecd Extension Presence

31

https://github.com/riscv/riscv-profiles/releases/tag/v1.0
https://github.com/riscv/riscv-profiles/releases/tag/v1.0

profile v1.0.0
RVA20U64 -
RVA20S64 mandatory

B.10.1. Available Versions

Version 1.0.0

State ratified

Ratification date 2023-03

Ratification document github.com/riscv/riscv-profiles/releases/tag/v1.0
B.10.2. Synopsis

stvec.MODE must be capable of holding the value 0 (Direct). When stvec.MODE=Direct, stvec.BASE must be capable of holding any valid four-byte-
aligned address.

e Sstvecd is a new extension name introduced with RVA20.

B.11. Extension Ssu64xl

Long Name: 64-bit UXLEN
Version Requirement: ~> 1.0
Ssu64xl Extension Presence

profile v1.0.0
RVA20U64 -
RVA20S64 optional

B.11.1. Available Versions

Version 1.0.0

State ratified
Ratification date 2023-03
B.11.2. Synopsis

sstatus.UXL must be capable of holding the value 2 (i.e., UXLEN=64 must be supported).

o This extension is defined by RVA22.
e Ssu64xl is a new extension name introduced with RVA20.

B.12. Extension Sv39

Long Name: 39-bit virtual address translation (3 level)
Version Requirement: ~> 1.11
Sv39 Extension Presence

profile v1.11.0 v1.12.0 v1.13.0
RVA20U64 - - -
RVA20S64 mandatory mandatory mandatory

B.12.1. Available Versions

Version 1.11.0

State ratified
Ratification date 2019-05
Version 1.12.0
State ratified
Ratification date 2021-12

32

https://github.com/riscv/riscv-profiles/releases/tag/v1.0

Version 1.12.0

Ratification document github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

Version 1.13.0

State ratified
Ratification date 2024-10
B.12.2. Synopsis

39-bit virtual address translation (3 level)

B.13. Extension Sv48

Long Name: 48-bit virtual address translation (4 level)
Version Requirement: ~> 1.11
Sv48 Extension Presence

profile v1.11.0 v1.12.0 v1.13.0
RVA20U64 - - -
RVA20S64 optional optional optional

B.13.1. Available Versions

Version 1.11.0

State ratified

Ratification date 2019-05
Version 1.12.0

State ratified

Ratification date 2021-12

Ratification document github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
Version 1.13.0

State ratified

Ratification date 2024-10

B.13.2. Synopsis

48-bit virtual address translation (4 level)

B.14. Extension Svade

Long Name: Exception on PTE A/D Bits
Version Requirement: ~> 1.0
Svade Extension Presence

profile v1.0.0
RVA20U64 -
RVA20S64 mandatory

B.14.1. Available Versions

Version 1.0.0

State ratified

Ratification date 2023-11

Ratification document github.com/riscvarchive/riscv-svadu/releases/download/v1.0/riscv-svadu.pdf
B.14.2. Synopsis

The Svade extension indicates that hardware does not update the A/D bits of a page table during a page walk. Rather, encountering a PTE with the A
bit clear or the D bit clear when an operation is a write will cause a Page Fault.

33

https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscvarchive/riscv-svadu/releases/download/v1.0/riscv-svadu.pdf

Svbare is a new extension name introduced with RVA20.

B.15. Extension Svbare

It is subsequently defined in more detail with the ratification of Svadu.

Long Name: Bare virtual addressing
Version Requirement: ~> 1.0
Svbare Extension Presence

profile v1.0.0
RVA20U64 -
RVA20S64 mandatory

B.15.1. Available Versions

Version 1.0.0

State ratified
Ratification date 2023-03
B.15.2. Synopsis

This extension mandates that the satp mode Bare must be supported.

0 This extension was ratified as part of the RVA22 profile.

e Svbare is a new extension name introduced with RVA20.

B.16. Extension U

Long Name: User-mode privilege level
Version Requirement: ~> 2.0
U Extension Presence

profile v1.0.0
RVA20U64 mandatory
RVA20S64 mandatory

B.16.1. Available Versions

Version 1.0.0

State ratified
Ratification date 2019-12
B.16.2. Synopsis

User-mode privilege level is supported by an implementation if the U extension is present. Note that the RISC-V ISA doesn’t formally define a U
extension and it is only discussed in the Privileged ISA manual.

B.16.3. CSRs

The following 1 CSRs are added by extension version 1.0.0 (the minimum version of this extension that satifies the extension requirement).

Name Long Name Address Mode

mcounteren Machine Counter Enable 0x306 M

B.16.4. Parameters

The following parameters (implementation options) may affect the operation of this extension:

MCOUNTENABLE_EN

Indicates which counters can be delegated via mcounteren.

An unimplemented counter cannot be specified, i.e., if HPM_COUNTER_EN[3] is false, it would be illegal to set MCOUNTENABLE_EN[3] to true.

34

MCOUNTENABLE_EN[0:2] must all be false if Zicntr is not implemented. MCOUNTENABLE_EN[3:31] must all be false if Zihpm is not implemented.

TRAP_ON_ECALL_FROM_U

Whether or not an ECALL-from-U-mode causes a synchronous exception.
The spec states that implementations may handle ECALLs transparently without raising a trap, in which case the EEI must provide a builtin.

UXLEN
Set of XLENSs supported in U-mode. When both 32 and 64 are supported, SXLEN can be changed, via mstatus.UXL, between 32 and 64.

U_MODE_ENDIANNESS

Endianness of data in U-mode. Can be one of:

» little: U-mode data is always little endian
* big: U-mode data is always big endian

» dynamic: U-mode data can be either little or big endian, depending on the CSR field mstatus.UBE

B.17. Extension Za128rs

Long Name: Reservation set size of at most 128 bytes
Version Requirement: ~> 1.0
Zal128rs Extension Presence

profile v1.0.0
RVA20U64 mandatory
RVA20S64 mandatory

B.17.1. Available Versions

Version 1.0.0

State ratified
Ratification date 2023-03
B.17.2. Synopsis

Reservation sets must be contiguous, naturally aligned, and at most 128 bytes in size.

o This extension was ratified as part of the RVA20 profile.

0 The minimum reservation set size is effectively determined by the size of atomic accesses in the A extension.
o Zal128rs is a profile-defined extension introduced with RVA20. The minimum reservation set size is effectively determined by the
size of atomic accesses in the A extension.

B.18. Extension Zca

Long Name: C instructions excluding floating-point loads/stores
Version Requirement: ~> 1.0
Zca Extension Presence

profile v1.0.0
RVA20U64 optional
RVA20S64 optional

B.18.1. Available Versions

Version 1.0.0

State ratified
Ratification date 2023-04
B.18.2. Synopsis

The Zca extension is added as way to refer to instructions in the C extension that do not include the floating-point loads and stores.

Therefore it excludes all 16-bit floating point loads and stores: c.flw, c.flwsp, c.fsw, c.fswsp, c.fld, c.fldsp, c.fsd, c.fsdsp.

35

o The 'C' extension only includes F/D instructions when D and F are also specified.

B.18.3. Instructions

The following 26 instructions are added by extension version 1.0.0 (the minimum version of this extension that satifies the extension requirement).

c.add Add

c.addi Add a sign-extended non-zero immediate
c.addil6sp Add a sign-extended non-zero immediate
c.addi4spn Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer
c.and And

c.andi And immediate

c.beqz Branch if Equal Zero

c.bnez Branch if NOT Equal Zero

c.ebreak Breakpoint exception

C.j Jump

c.jalr Jump and Link Register

cjr Jump Register

c.li Load the sign-extended 6-bit immediate
c.lui Load Upper Immediate

clw Load word

clwsp Load word from stack pointer

c.mv Move Register

c.nop Non-operation

c.or Or

c.slli Shift left logical immediate

c.srai Shift right arithmetical immediate

c.srli Shift right logical immediate

c.sub Subtract

C.SW Store word

C.SWSD Store word to stack

C.X0r Exclusive Or

B.19. Extension Zcd

Long Name: Compressed double-precision floating-point loads/stores
Version Requirement: ~> 1.0
Zcd Extension Presence

profile v1.0.0
RVA20U64 optional
RVA20S64 optional

B.19.1. Available Versions

Version 1.0.0

State ratified
Ratification date 2023-04
B.19.2. Synopsis

Zcd is the existing set of compressed double precision floating point loads and stores: c.fld, c.fldsp, c.fsd, c.fsdsp.

B.19.3. Instructions

The following 4 instructions are added by extension version 1.0.0 (the minimum version of this extension that satifies the extension requirement).

36

c.fld Load double-precision

c.fldsp Load doubleword into floating-point register from stack
c.fsd Store double-precision
c.fsdsp Store double-precision value to stack

B.20. Extension Zcf

Long Name: Compressed single-precision floating-point loads/stores
Version Requirement: ~> 1.0
Zcf Extension Presence

profile v1.0.0
RVA20U64 optional
RVA20S64 optional

B.20.1. Available Versions

Version 1.0.0

State ratified
Ratification date 2023-04
B.20.2. Synopsis

Zcf is the existing set of compressed single precision floating point loads and stores (RV32 only): c.flw, c.flwsp, c.fsw, c.fswsp.

B.20.3. Instructions

The following 4 instructions are added by extension version 1.0.0 (the minimum version of this extension that satifies the extension requirement).

c.flw Load single-precision

c.flwsp Load word into floating-point register from stack
c.fsw Store single-precision

c.fswsp Store single-precision value to stack

B.21. Extension Ziccamoa

Long Name: Main memory supports all atomics in A extension
Version Requirement: ~> 1.0
Ziccamoa Extension Presence

profile v1.0.0
RVA20U64 mandatory
RVA20S64 mandatory

B.21.1. Available Versions

Version 1.0.0

State ratified
Ratification date 2023-03
B.21.2. Synopsis

Main memory regions with both the cacheability and coherence PMAs must support AMOArithmetic.

e This extension was ratified as part of the RVA20 profile.
e Ziccamo is a profile-defined extension introduced with RVA20.

B.22. Extension Ziccif

Long Name: Main memory supports instruction fetch with atomicity requirement
Version Requirement: ~> 1.0

Ziccif Extension Presence

profile v1.0.0
RVA20U64 mandatory
RVA20S64 mandatory

B.22.1. Available Versions

Version 1.0.0

State ratified
Ratification date 2023-03
B.22.2. Synopsis

Main memory regions with both the cacheability and coherence PMAs must support instruction fetch, and any instruction fetches of naturally
aligned power-of-2 sizes up to min(ILEN,XLEN) (i.e., 32 bits for RVA22) are atomic.

e This extension was ratified as part of the RVA20 profile.

o Ziccif is a profile-defined extension introduced with RVA20. The fetch atomicity requirement facilitates runtime patching of aligned
instructions.

B.23. Extension Zicclsm

Long Name: Main memory supports misaligned loads/stores
Version Requirement: ~> 1.0
Zicclsm Extension Presence

profile v1.0.0
RVA20U64 mandatory
RVA20S64 mandatory

B.23.1. Available Versions

Version 1.0.0

State ratified
Ratification date 2023-03
B.23.2. Synopsis

Misaligned loads and stores to main memory regions with both the cacheability and coherence PMAs must be supported.

0 This extension was ratified as part of the RVA20 profile.

This requires misaligned support for all regular load and store instructions (including scalar and vector) but not AMOs or other
o specialized forms of memory access. Even though mandated, misaligned loads and stores might execute extremely slowly. Standard
software distributions should assume their existence only for correctness, not for performance.

Zicclsm is a profile-defined extension introduced with RVA20. This requires misaligned support for all regular load and store

o instructions (including scalar and vector) but not AMOs or other specialized forms of memory access. Even though mandated,
misaligned loads and stores might execute extremely slowly. Standard software distributions should assume their existence only for
correctness, not for performance.

B.24. Extension Ziccrse

Long Name: Main memory supports forward progress on LR/SC sequences
Version Requirement: ~> 1.0
Ziccrse Extension Presence

profile v1.0.0
RVA20U64 mandatory
RVA20S64 mandatory

38

B.24.1. Available Versions

Version 1.0.0

State ratified
Ratification date 2023-03
B.24.2. Synopsis

Main memory regions with both the cacheability and coherence PMAs must support RsrvEventual.

o This extension was ratified as part of the RVA20 profile.

o Ziccrse is a profile-defined extension introduced with RVA20.

B.25. Extension Zicntr

Long Name: Base Counters and Timers
Version Requirement: ~> 2.0
Zicntr Extension Presence

profile v2.0.0
RVA20U64 mandatory
RVA20S64 mandatory

B.25.1. Available Versions

Version 2.0.0

State ratified
Ratification date 2019-12
B.25.2. Synopsis

The CYCLE, TIME, and INSTRET counters, which have dedicated functions (cycle count, real-time clock, and instructions retired, respectively).

B.25.3. CSRs

The following 3 CSRs are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

Name Long Name Address Mode
cycle Cycle counter for RDCYCLE Instruction 0xc00 U
instret Instructions retired counter for RDINSTRET Instruction 0xc02 U

time Timer for RDTIME Instruction 0xc01 U

B.25.4. Parameters

The following parameters (implementation options) may affect the operation of this extension:

TIME_CSR_IMPLEMENTED
Whether or not a real hardware time CSR exists. Implementations can either provide a real CSR or emulate access at M-mode.

Possible values:

true

time/timeh exists, and accessing it will not cause an Illegallnstruction trap

false

time/timeh does not exist. Accessing the CSR will cause an Illegallnstruction trap or enter an unpredictable state, depending on
TRAP_ON_UNIMPLEMENTED_CSR. Privileged software may emulate the time CSR, or may pass the exception to a lower level.

B.26. Extension Zicsr

Long Name: Control and status register instructions
Version Requirement: ~> 2.0
Zicsr Extension Presence

39

profile v2.0.0
RVA20U64 mandatory
RVA20S64 mandatory

B.26.1. Available Versions

Version 2.0.0

State ratified
Ratification date 2019-04
B.26.2. Synopsis

Control and status register instructions

B.26.3. Instructions

The following 6 instructions are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

csrre Atomic Read and Clear Bits in CSR

csrrci Atomic Read and Clear Bits in CSR with Immediate
Ccsrrs Atomic Read and Set Bits in CSR

csrrsi Atomic Read and Set Bits in CSR with Immediate
CSITW Atomic Read/Write CSR

csrrwi Atomic Read/Write CSR Immediate

B.27. Extension Zifencei

Long Name: Instruction fence
Version Requirement: ~> 2.0
Zifencei Extension Presence

profile v2.0.0
RVA20U64 -
RVA20S64 mandatory

B.27.1. Available Versions

Version 2.0.0

State ratified
Ratification date 2019-04
B.27.2. Synopsis

This chapter defines the "Zifencei" extension, which includes the FENCE.I instruction that provides explicit synchronization between writes to
instruction memory and instruction fetches on the same hart. Currently, this instruction is the only standard mechanism to ensure that stores visible
to a hart will also be visible to its instruction fetches.

We considered but did not include a "store instruction word" instruction as in cite:[majc]. JIT compilers may generate a large trace
o of instructions before a single FENCE.I, and amortize any instruction cache snooping/invalidation overhead by writing translated
instructions to memory regions that are known not to reside in the I-cache.

The FENCE.I instruction was designed to support a wide variety of implementations. A simple implementation can flush the local
instruction cache and the instruction pipeline when the FENCE.I is executed. A more complex implementation might snoop the
instruction (data) cache on every data (instruction) cache miss, or use an inclusive unified private L2 cache to invalidate lines from
the primary instruction cache when they are being written by a local store instruction. If instruction and data caches are kept
coherent in this way, or if the memory system consists of only uncached RAMs, then just the fetch pipeline needs to be flushed at a

o FENCE.L

The FENCE.I instruction was previously part of the base I instruction set. Two main issues are driving moving this out of the
mandatory base, although at time of writing it is still the only standard method for maintaining instruction-fetch coherence.

First, it has been recognized that on some systems, FENCE.I will be expensive to implement and alternate mechanisms are being

40

discussed in the memory model task group. In particular, for designs that have an incoherent instruction cache and an incoherent
data cache, or where the instruction cache refill does not snoop a coherent data cache, both caches must be completely flushed
when a FENCE.I instruction is encountered. This problem is exacerbated when there are multiple levels of I and D cache in front of
a unified cache or outer memory system.

Second, the instruction is not powerful enough to make available at user level in a Unix-like operating system environment. The
FENCE.I only synchronizes the local hart, and the OS can reschedule the user hart to a different physical hart after the FENCE.IL. This
would require the OS to execute an additional FENCE.I as part of every context migration. For this reason, the standard Linux ABI
has removed FENCE.I from user-level and now requires a system call to maintain instruction-fetch coherence, which allows the OS
to minimize the number of FENCE.I executions required on current systems and provides forward-compatibility with future
improved instruction-fetch coherence mechanisms.

Future approaches to instruction-fetch coherence under discussion include providing more restricted versions of FENCE.I that only
target a given address specified in rsi1, and/or allowing software to use an ABI that relies on machine-mode cache-maintenance
operations.

Zifencei is mandated as it is the only standard way to support instruction-cache coherence in RVA20 application processors. A new
instruction-cache coherence mechanism is under development which might be added as an option in the future.

B.27.3. Instructions

The following 1 instructions are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

fence.i

Instruction fence

B.28. Extension Zihpm

Long Name: Hardware Performance Counters
Version Requirement: ~> 2.0
Zihpm Extension Presence

profile

RVA20U64
RVA20S64

v2.0.0
optional

optional

B.28.1. Available Versions

Version 2.0.0

State ratified
Ratification date 2023-03
B.28.2. Synopsis

Hardware performance counters

The number of counters is platform-specific.

B.28.3. CSRs

The following 29 CSRs are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

Name

Long Name Address Mode

hpmcounter10 User-mode Hardware Performance Counter 7 0xcOa U

hpmcounter1l User-mode Hardware Performance Counter 8 0xcOb

hpmcounter12 User-mode Hardware Performance Counter 9 0xcOc
hpmcounter13 User-mode Hardware Performance Counter 10 0xcOd
hpmcounter14 User-mode Hardware Performance Counter 11 0xcOe
hpmcounter15 User-mode Hardware Performance Counter 12 0xcOf
hpmcounter16 User-mode Hardware Performance Counter 13 0xc10
hpmcounter17 User-mode Hardware Performance Counter 14 0xc11
hpmcounter18 User-mode Hardware Performance Counter 15 0xc12
hpmcounter19 User-mode Hardware Performance Counter 16 0xc13

hpmcounter20 User-mode Hardware Performance Counter 17 0xc14

c & ¢ o c c c o G

41

Name
hpmcounter21
hpmcounter22
hpmcounter23
hpmcounter24
hpmcounter25
hpmcounter26
hpmcounter27
hpmcounter28
hpmcounter29
hpmcounter3
hpmcounter30
hpmcounter31
hpmcounter4
hpmcounter5
hpmcounter6
hpmcounter?7
hpmcounter8

hpmcounter9

42

Long Name

User-mode Hardware Performance Counter 18
User-mode Hardware Performance Counter 19
User-mode Hardware Performance Counter 20
User-mode Hardware Performance Counter 21
User-mode Hardware Performance Counter 22
User-mode Hardware Performance Counter 23
User-mode Hardware Performance Counter 24
User-mode Hardware Performance Counter 25
User-mode Hardware Performance Counter 26
User-mode Hardware Performance Counter 0
User-mode Hardware Performance Counter 27
User-mode Hardware Performance Counter 28
User-mode Hardware Performance Counter 1
User-mode Hardware Performance Counter 2
User-mode Hardware Performance Counter 3
User-mode Hardware Performance Counter 4
User-mode Hardware Performance Counter 5

User-mode Hardware Performance Counter 6

Address Mode

0xc15
0xcl6
0xcl17
0xc18
0xc19
Oxcla
0xclb
Oxclc
Oxcld
0xc03
Oxcle
Oxclf
0xc04
0xc05
0xc06
0xc07
0xc08
0xc09

U

c & ¢ ¢ o o c g o c o o ac c

Appendix C: Instruction Details

43

C.1. add

Integer add

This instruction is defined by:

I
C.1.1. Encoding
31 25 24 20 19 15 14 12 11 7 6
0000000 XS2 xsl 000 xd 0110011
C.1.2. Description
Add the value in xs1 to xs2, and store the result in xd. Any overflow is thrown away.
C.1.3. Access
M S U
Always Always Always

C.1.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.1.5. IDL Operation

X[xd] = X[xs1] + X[xs2];

C.1.6. Sail Operation

{
let xs1_val = X(xs1);
let xs2 val = X(xs2);
let result : xlenbits = match op {
RISCV_ADD => xs1_val + xs2 val,
RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
RISCV_SLTU => zero_extend(bool_to_bits(xs1 val < u xs2 val)),
RISCV_AND => xs1 _val & xs2 val,
RISCV_OR => xs1_val | xs2_val,
RISCV_XOR => xs1_val A xs2_val,
RISCV SLL => if sizeof(xlen) == 32
then xs1_val << (xs2_val[4..0])
else xs1 val << (xs2 val[5..0]),
RISCV SRL => if sizeof(xlen) == 32
then xs1_val >> (xs2 _val[4..0])
else xs1 _val >> (xs2_val[5..0]),
RISCV_SUB => xs1_val - xs2_val,
RISCY_SRA => if sizeof(xlen) == 32
then shift_right_arith32(xs1_val, xs2_val[4..0])
else shift_right_arith64(xs1_val, xs2_val[5..0])
s

X(xd) = result;
RETIRE _SUCCESS
}

C.1.7. Exceptions

This instruction does not generate synchronous exceptions.

44

C.2. addi

Add

immediate

This instruction is defined by:

I
C.2.1. Encoding
31 20 19 15 14 12 11 7 6
imm xsl 000 xd 0010011
C.2.2. Description
Adds an immediate value to the value in xXs1, and store the result in xd
C.2.3. Access
M S U
Always Always Always

C.2.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.2.5. IDL Operation

X[xd] = X[xs1] + $signed(imm);

C.2.6. Sail Operation

{

}

C.2.7. Exceptions

let xs1_val = X(xs1);

let immext : xlenbits

sign_extend(imm);

let result : xlenbits = match op {

RISCV_ADDI =>
RISCV_SLTI =>
RISCV_SLTIU =>
RISCV_ANDI =>

RISCV_ORI =

RISCV_XORI =>

b
X(xd) = result;
RETIRE _SUCCESS

xs1 val + immext,
zero_extend(bool_to_bits(xs1 val < s immext)),
zero_extend(bool_to_bits(xs1 val < u immext)),
xs1 val & immext,
xs1_val | immext,
xs1 val N immext

This instruction does not generate synchronous exceptions.

45

C.3. and
And

This instruction is defined by:

I
C.3.1. Encoding
31 25 24 20 19 15 14 12 11 7 6
0000000 XS2 xsl 111 xd 0110011
C.3.2. Description
And xs1 with xs2, and store the result in xd
C.3.3. Access
M S U
Always Always Always

C.3.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.3.5. IDL Operation

X[xd] = X[xs1] & X[xs2];

C.3.6. Sail Operation

{
let xs1_val = X(xs1);
let xs2 val = X(xs2);
let result : xlenbits = match op {
RISCV_ADD => xs1_val + xs2 val,
RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
RISCV_SLTU => zero_extend(bool_to_bits(xs1 val < u xs2 val)),
RISCV_AND => xs1 _val & xs2 val,
RISCV_OR => xs1_val | xs2_val,
RISCV_XOR => xs1_val A xs2_val,
RISCV SLL => if sizeof(xlen) == 32
then xs1_val << (xs2_val[4..0])
else xs1 val << (xs2 val[5..0]),
RISCV SRL => if sizeof(xlen) == 32
then xs1_val >> (xs2 _val[4..0])
else xs1 _val >> (xs2_val[5..0]),
RISCV_SUB => xs1_val - xs2_val,
RISCY_SRA => if sizeof(xlen) == 32
then shift_right_arith32(xs1_val, xs2_val[4..0])
else shift_right_arith64(xs1_val, xs2_val[5..0])
s

X(xd) = result;
RETIRE _SUCCESS
}

C.3.7. Exceptions

This instruction does not generate synchronous exceptions.

46

C.4. andi

And

immediate

This instruction is defined by:

I

C.4.1. Encoding
31 20 19 15 14 12 11 7 6
imm xsl 111 xd 0010011
C.4.2. Description
And an immediate to the value in xs1, and store the result in xd
C.4.3. Access
M S U
Always Always Always

C.4.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.4.5. IDL Operation

X[xd] = X[xs1] & $signed(imm);

C.4.6. Sail Operation

{

}

C.4.7. Exceptions

let xs1_val = X(xs1);

let immext : xlenbits

sign_extend(imm);

let result : xlenbits = match op {

RISCV_ADDI =>
RISCV_SLTI =>
RISCV_SLTIU =>
RISCV_ANDI =>

RISCV_ORI =

RISCV_XORI =>

b
X(xd) = result;
RETIRE _SUCCESS

xs1 val + immext,
zero_extend(bool_to_bits(xs1 val < s immext)),
zero_extend(bool_to_bits(xs1 val < u immext)),
xs1 val & immext,
xs1_val | immext,
xs1 val N immext

This instruction does not generate synchronous exceptions.

47

C.5. auipc
Add upper immediate to pc
This instruction is defined by:

I

C.5.1. Encoding
31 12 11 7 6
imm[31:12] xd 0010111
C.5.2. Description
Add an immediate to the current PC.
C.5.3. Access
M S U
Always Always Always

C.5.4. Decode Variables

Bits<32> imm = {$encoding[31:12], 12'd0};
Bits<5> xd = $encoding[11:7];

C.5.5. IDL Operation

X[xd] = $pc + $signed(imm);

C.5.6. Sail Operation

{
let off : xlenbits = sign_extend(imm @ 0x000);
let ret : xlenbits = match op {
RISCV_LUI => off,
RISCV_AUIPC => get_arch_pc() + off

+;

X(xd) = ret;

RETIRE_SUCCESS
}

C.5.7. Exceptions

This instruction does not generate synchronous exceptions.

48

C.6. beq

Branch if equal

This instruction is defined by:

I
C.6.1. Encoding
31 25 24 20 19 15 14 12 11 7
imm[12|10:5] XS2 xsl 000 imm[4:1]|11] 1100011
C.6.2. Description
Branch to PC + imm if the value in register xs1 is equal to the value in register xs2.
Raise a MisalignedAddress exception if PC + imm is misaligned.
C.6.3. Access
M S U
Always Always Always

C.6.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.6.5. IDL Operation
XReg lhs = X[xs1];
XReg rhs = X[xs2];

if (lhs == rhs) {
jump_halfword($pc + $signed(imm));
}

C.6.6. Sail Operation

{
let xs1 val = X(xs1);

let xs2_val = X(xs2);

let taken : bool = match op {
RISCV_BEQ => xs1_val == xs2_val,
RISCV_BNE => xs1_val != xs2_val,
RISCV _BLT => xs1 _val <_s xs2 val,
RISCV_BGE => xs1_val >=_s xs2_val,
RISCV_BLTU => xs1_val <_u xs2_val,
RISCV_BGEU => xs1_val >=_u xs2_val

fi
let t : xlenbits = PC + sign_extend(imm);
if taken then {
/* Extensions get the first checks on the prospective target address. */
match ext_control_check_pc(t) {
Ext _ControlAddr _Error(e) => {
ext_handle_control_check error(e);
RETIRE_FAIL
I
Ext_ControlAddr_OK(target) => {
if bit_to_bool(target[1]) & not(extension("C")) then {
handle_mem_exception(target, E_Fetch_Addr_Align());
RETIRE_FAIL;
} else {
set_next_pc(target);
RETIRE_SUCCESS
}
}

49

}
} else RETIRE_SUCCESS

}

C.6.7. Exceptions
This instruction may result in the following synchronous exceptions:

* InstructionAddressMisaligned

50

C.7. bge

Branch if greater than or equal

This instruction is defined by:

I
C.7.1. Encoding
31 25 24 20 19 15 14 12 11 7
imm[12|10:5] XS2 xsl 101 imm[4:1]|11] 1100011
C.7.2. Description
Branch to PC + imm if the signed value in register xs1 is greater than or equal to the signed value in register xs2.
Raise a MisalignedAddress exception if PC + imm is misaligned.
C.7.3. Access
M S U
Always Always Always

C.7.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.7.5. IDL Operation

XReg lhs = X[xs1];

XReg rhs = X[xs2];

if ($signed(lhs) >= $signed(rhs)) {
jump_halfword($pc + $signed(imm));

}

C.7.6. Sail Operation

{
let xs1 val = X(xs1);

let xs2_val = X(xs2);
let taken : bool = match op {
RISCV_BEQ => xs1_val == xs2_val,
RISCV_BNE => xs1_val != xs2_val,
RISCV _BLT => xs1 _val <_s xs2 val,
RISCV_BGE => xs1_val >=_s xs2_val,
RISCV_BLTU => xs1_val <_u xs2_val,
RISCV_BGEU => xs1_val >=_u xs2_val
fi
let t : xlenbits = PC + sign_extend(imm);
if taken then {
/* Extensions get the first checks on the prospective target address. */
match ext_control_check_pc(t) {
Ext _ControlAddr _Error(e) => {
ext_handle_control_check error(e);
RETIRE_FAIL
I
Ext_ControlAddr_OK(target) => {
if bit_to_bool(target[1]) & not(extension("C")) then {
handle_mem_exception(target, E_Fetch_Addr_Align());
RETIRE_FAIL;
} else {
set_next_pc(target);
RETIRE_SUCCESS
}
}

51

}
} else RETIRE_SUCCESS

}

C.7.7. Exceptions
This instruction may result in the following synchronous exceptions:

* InstructionAddressMisaligned

52

C.8. bgeu

Branch if greater than or equal unsigned
This instruction is defined by:

I

C.8.1. Encoding

31 25 24 20 19 15 14 12 11 7 6
imm[12|10:5] XS2 xsl 111 imm[4:1]|11] 1100011
C.8.2. Description
Branch to PC + imm if the unsigned value in register xs1 is greater than or equal to the unsigned value in register xs2.
Raise a MisalignedAddress exception if PC + imm is misaligned.
C.8.3. Access
M S U
Always Always Always

C.8.4. Decode Variables

Bits<13> imm = {$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.8.5. IDL Operation
XReg lhs = X[xs1];
XReg rhs = X[xs2];

if (lhs >= rhs) {
jump_halfword($pc + $signed(imm));
}

C.8.6. Sail Operation

{
let xs1 val = X(xs1);

let xs2_val = X(xs2);

let taken : bool = match op {
RISCV_BEQ => xs1_val == xs2_val,
RISCV_BNE => xs1_val != xs2_val,
RISCV _BLT => xs1 _val <_s xs2 val,
RISCV_BGE => xs1_val >=_s xs2_val,
RISCV_BLTU => xs1_val <_u xs2_val,
RISCV_BGEU => xs1_val >=_u xs2_val

fi
let t : xlenbits = PC + sign_extend(imm);
if taken then {
/* Extensions get the first checks on the prospective target address. */
match ext_control_check_pc(t) {
Ext _ControlAddr _Error(e) => {
ext_handle_control_check error(e);
RETIRE_FAIL
I
Ext_ControlAddr_OK(target) => {
if bit_to_bool(target[1]) & not(extension("C")) then {
handle_mem_exception(target, E_Fetch_Addr_Align());
RETIRE_FAIL;
} else {
set_next_pc(target);
RETIRE_SUCCESS
}
}

53

}
} else RETIRE_SUCCESS

}

C.8.7. Exceptions
This instruction may result in the following synchronous exceptions:

* InstructionAddressMisaligned

54

C.9. blt

Branch if less than

This instruction is defined by:

I
C.9.1. Encoding
31 25 24 20 19 15 14 12 11 7
imm[12|10:5] XS2 xsl 100 imm[4:1]|11] 1100011
C.9.2. Description
Branch to PC + imm if the signed value in register xs1 is less than the signed value in register xs2.
Raise a MisalignedAddress exception if PC + imm is misaligned.
C.9.3. Access
M S U
Always Always Always

C.9.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.9.5. IDL Operation

XReg lhs = X[xs1];

XReg rhs = X[xs2];

if ($signed(lhs) < $signed(rhs)) {
jump_halfword($pc + $signed(imm));

}

C.9.6. Sail Operation

{
let xs1 val = X(xs1);

let xs2_val = X(xs2);
let taken : bool = match op {
RISCV_BEQ => xs1_val == xs2_val,
RISCV_BNE => xs1_val != xs2_val,
RISCV _BLT => xs1 _val <_s xs2 val,
RISCV_BGE => xs1_val >=_s xs2_val,
RISCV_BLTU => xs1_val <_u xs2_val,
RISCV_BGEU => xs1_val >=_u xs2_val
fi
let t : xlenbits = PC + sign_extend(imm);
if taken then {
/* Extensions get the first checks on the prospective target address. */
match ext_control_check_pc(t) {
Ext _ControlAddr _Error(e) => {
ext_handle_control_check error(e);
RETIRE_FAIL
I
Ext_ControlAddr_OK(target) => {
if bit_to_bool(target[1]) & not(extension("C")) then {
handle_mem_exception(target, E_Fetch_Addr_Align());
RETIRE_FAIL;
} else {
set_next_pc(target);
RETIRE_SUCCESS
}
}

55

}
} else RETIRE_SUCCESS

}

C.9.7. Exceptions
This instruction may result in the following synchronous exceptions:

* InstructionAddressMisaligned

56

C.10. bltu

Branch if less than unsigned

This instruction is defined by:

I
C.10.1. Encoding
31 25 24 20 19 15 14 12 11 7 6
imm[12|10:5] XS2 xsl 110 imm[4:1]|11] 1100011
C.10.2. Description
Branch to PC + imm if the unsigned value in register xs1 is less than the unsigned value in register xs2.
Raise a MisalignedAddress exception if PC + imm is misaligned.
C.10.3. Access
M S U
Always Always Always

C.10.4. Decode Variables

Bits<13> imm = {$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.10.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if (lhs < rhs) {
jump_halfword($pc + $signed(imm));
}

C.10.6. Sail Operation

{
let xs1 val = X(xs1);

let xs2_val = X(xs2);
let taken : bool = match op {
RISCV_BEQ => xs1_val == xs2_val,
RISCV_BNE => xs1_val != xs2_val,
RISCV _BLT => xs1 _val <_s xs2 val,
RISCV_BGE => xs1_val >=_s xs2_val,
RISCV_BLTU => xs1_val <_u xs2_val,
RISCV_BGEU => xs1_val >=_u xs2_val
fi
let t : xlenbits = PC + sign_extend(imm);
if taken then {
/* Extensions get the first checks on the prospective target address. */
match ext_control_check_pc(t) {
Ext _ControlAddr _Error(e) => {
ext_handle_control_check error(e);
RETIRE_FAIL
I
Ext_ControlAddr_OK(target) => {
if bit_to_bool(target[1]) & not(extension("C")) then {
handle_mem_exception(target, E_Fetch_Addr_Align());
RETIRE_FAIL;
} else {
set_next_pc(target);
RETIRE_SUCCESS
}
}

}
} else RETIRE_SUCCESS

}

C.10.7. Exceptions
This instruction may result in the following synchronous exceptions:

* InstructionAddressMisaligned

38

C.11. bne

Branch if not equal

This instruction is defined by:

I
C.11.1. Encoding
31 25 24 20 19 15 14 12 11 7
imm[12|10:5] XS2 xsl 001 imm[4:1]|11] 1100011
C.11.2. Description
Branch to PC + imm if the value in register xs1 is not equal to the value in register xs2.
Raise a MisalignedAddress exception if PC + imm is misaligned.
C.11.3. Access
M S U
Always Always Always

C.11.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.11.5. IDL Operation
XReg lhs = X[xs1];
XReg rhs = X[xs2];

if (lhs != rhs) {
jump_halfword($pc + $signed(imm));
}

C.11.6. Sail Operation

{
let xs1 val = X(xs1);

let xs2_val = X(xs2);
let taken : bool = match op {
RISCV_BEQ => xs1_val == xs2_val,
RISCV_BNE => xs1_val != xs2_val,
RISCV _BLT => xs1 _val <_s xs2 val,
RISCV_BGE => xs1_val >=_s xs2_val,
RISCV_BLTU => xs1_val <_u xs2_val,
RISCV_BGEU => xs1_val >=_u xs2_val
fi
let t : xlenbits = PC + sign_extend(imm);
if taken then {
/* Extensions get the first checks on the prospective target address. */
match ext_control_check_pc(t) {
Ext _ControlAddr _Error(e) => {
ext_handle_control_check error(e);
RETIRE_FAIL
I
Ext_ControlAddr_OK(target) => {
if bit_to_bool(target[1]) & not(extension("C")) then {
handle_mem_exception(target, E_Fetch_Addr_Align());
RETIRE_FAIL;
} else {
set_next_pc(target);
RETIRE_SUCCESS
}
}

59

}
} else RETIRE_SUCCESS

}

C.11.7. Exceptions
This instruction may result in the following synchronous exceptions:

* InstructionAddressMisaligned

60

C.12. c.add
Add

This instruction is defined by:

Zca
C.12.1. Encoding

15 12 11 7 6 2

1001 xd!=0 xs2!1=0 10
C.12.2. Description
Add the value in xs2 to xd, and store the result in xd. C.ADD expands into add xd, xd, xs2.
C.12.3. Access
M S U
Always Always Always

C.12.4. Decode Variables

Bits<5> xs2 = $encoding[6:2];
Bits<5> xd = $encoding[11:7];

C.12.5. IDL Operation

XReg t0 = X[xd];
XReg t1 = X[xs2];
X[xd] = t0 + t1;

C.12.6. Sail Operation

{
let rs1 val = X(rd);

let rs2 val = X(rs2);
X(rd) = rs1_val + rs2 val;
RETIRE _SUCCESS

}

C.12.7. Exceptions

This instruction does not generate synchronous exceptions.

61

C.13. c.addi

Add a sign-extended non-zero immediate
This instruction is defined by:

Zca

C.13.1. Encoding

15 13 12 11 7 6 2 1 0
000 imm !'=0[p imm != 0[4:0] 01

2
>
o
N
o

C.13.2. Description

C.ADDI adds the non-zero sign-extended 6-bit immediate to the value in register xd then writes the result to xd. C.ADDI expands into <code>addi xd,
xd, imm</code>. C.ADDI is only valid when xd ≠ X0 and imm ≠ 0. The code points with xd=x0 encode the C.NOP instruction; the remaining
code points with imm=0 encode HINTS.

C.13.3. Access
M S U

Always Always Always

C.13.4. Decode Variables

Bits<6> imm = {$encoding[12], $encoding[6:2]1};
Bits<5> xd = $encoding[11:7];

C.13.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);

}
X[xd] = X[xd] + $signed(imm);

C.13.6. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

62

C.14. c.addil6sp

Add a sign-extended non-zero immediate
This instruction is defined by:

Zca

C.14.1. Encoding

15 13 12 11 7 6 2 1 0

imm != 0[4|6|8:7|5] 01

011 imm !'= 0[P] 00010

C.14.2. Description

C.ADDI16SP adds the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where the immediate is scaled to represent
multiples of 16 in the range (-512,496). C.ADDI16SP is used to adjust the stack pointer in procedure prologues and epilogues. It expands into
<code>addi x2, x2, nzimm[9:4]</code>. C.ADDI16SP is only valid when nzimm ≠ 0; the code point with nzimm=0 is reserved.

C.14.3. Access

M S §)

Always Always Always

C.14.4. Decode Variables

Bits<10> imm = {$encoding[12], $encoding[4:3], $encoding[5], $encoding[2], $encoding[6], 4'd0};

C.14.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b@)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
X[2] = X[2] + $signed(imm);

C.14.6. Exceptions

This instruction may result in the following synchronous exceptions:

* Illegallnstruction

63

C.15. c.addi4spn

Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer

This instruction is defined by:
Zca
C.15.1. Encoding

15 13 12

000 imm != 0[5:4/9:6/2|3]

00

C.15.2. Description

Adds a zero-extended non-zero immediate, scaled by 4, to the stack pointer, x2, and writes the result to rd'. This instruction is used to generate
pointers to stack-allocated variables. It expands to <code>addi rd', X2, nzuimm[9:2]</code>. C.ADDI4SPN is only valid when nzuimm ≠ 0; the code

points with nzuimm=0 are reserved.

C.15.3. Access

M S

Always Always

C.15.4. Decode Variables

Bits<10> imm = {$encoding[10:7], $encoding[12:11], $encoding[5], $encoding[6], 2'de};

Bits<3> xd = $encoding[4:2];

C.15.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);

+
X[creg2reg(xd)] = X[2] + imm;

C.15.6. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

64

C.16. c.and
And

This instruction is defined by:

Zca

C.16.1. Encoding

15 10 9 7 6 5 4 2 1 0
100011 xd 11 XS2 01

C.16.2. Description

And xd with xs2, and store the result in xd The xd and xs2 register indexes should be used as xd+8 and xs2+8 (registers x8-x15). C.AND expands into
and xd, xd, xs2

C.16.3. Access

M S U
Always Always Always

C.16.4. Decode Variables

Bits<3> xs2 = $encoding[4:2];
Bits<3> xd = $encoding[9:7];

C.16.5. IDL Operation
XReg t@ = X[creg2reg(xd)];
XReg t1 = X[creg2reg(xs2)];

X[creg2reg(xd)] = t0 & t1;

C.16.6. Sail Operation
{
let rs1 val = X(rd+8);
let rs2 val = X(rs2+48);

let result : xlenbits = match op {
RISCV_ADD => rs1_val + rs2 val,
RISCV_SLT => zero_extend(bool_to_bits(rs1_val <_s rs2_val)),
RISCV _SLTU => zero_extend(bool to_bits(rs1 _val < u rs2 val)),
RISCV_AND => rs1_val & rs2_val,
RISCV.OR => rs1_val | rs2_val,
RISCV_XOR => rs1_val A rs2 val,
RISCV SLL => if sizeof(xlen) == 32
then rs1_val << (rs2_val[4..0])
else rs1_val << (rs2_val[5..0]),
RISCV_SRL => if sizeof(xlen) == 32
then rs1_val >> (rs2 val[4..0])
else rs1_val >> (rs2 val[5..0]),
RISCV _SUB => rs1 _val - rs2 val,
RISCY_SRA => if sizeof(xlen) == 32
then shift_right_arith32(rs1_val, rs2_val[4..0])
else shift_right_arith64(rs1_val, rs2_val[5..0])
i
X(rd+8) = result;
RETIRE_SUCCESS
}

C.16.7. Exceptions

This instruction does not generate synchronous exceptions.

65

C.17. c.andi

And immediate

This instruction is defined by:

Zca
C.17.1. Encoding
15 13 12 11 10 9 7 6 2 1 0
100 imm{[5] 10 xd imm{[4:0] 01
C.17.2. Description

And an immediate to the value in xd, and store the result in xd. The xd register index should be used as xd+8 (registers x8-x15). C.ANDI expands into
andi xd, xd, imm.

C.17.3. Access

M S U
Always Always Always

C.17.4. Decode Variables

Bits<6> imm = {$encoding[12], $encoding[6:2]1};
Bits<3> xd = $encoding[9:7];

C.17.5. IDL Operation

X[creg2reg(xd)] = X[creg2reg(xd)] & $signed(imm);

C.17.6. Sail Operation

{
let rd_val = X(rd+8);
let immext : xlenbits = sign_extend(imm);
let result : xlenbits = match op {
RISCY ADDI => rd val + immext,
RISCV_SLTI => zero_extend(bool_to_bits(rd_val < s immext)),
RISCV SLTIU => zero_extend(bool to bits(rd val < u immext)),
RISCV_ANDI => rd_val & immext,
RISCV_.ORI => rd_val | immext,
RISCV_XORI => rd_val M immext
i
X(rd+8) = result;
RETIRE _SUCCESS
}

C.17.7. Exceptions

This instruction does not generate synchronous exceptions.

66

C.18. c.beqz

Branch if Equal Zero
This instruction is defined by:

Zca

C.18.1. Encoding

15 13 12 10 9 7 6 2 1 0
110 imm[8|4:3] xsl imm|[7:6|2:1|5] 01

C.18.2. Description

C.BEQZ performs conditional control transfers. The offset is sign-extended and added to the pc to form the branch target address. It can therefore
target a ±256 B range. C.BEQZ takes the branch if the value in register xs1' is zero. It expands to beq
<code>xs1, x0, offset</code>.

C.18.3. Access

M S §)

Always Always Always

C.18.4. Decode Variables

signed Bits<9> imm = sext({$encoding[12], $encoding[6:5], $encoding[2], $encoding[11:10], $encoding[4:3], 1'de});
Bits<3> xs1 = $encoding[9:7];

C.18.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
+
if (X[creg2reg(xs1)] == 0) {
jump($pc + $signed(imm));
}

C.18.6. Sail Operation

{
let rs1_val = X(rs1);
let rs2_val = X(0);
let taken : bool = match op {
RISCV_BEQ => rs1_val == rs2 val,
RISCV_BNE => rs1_val != rs2 val,
RISCV _BLT => rs1_val <_s rs2 val,
RISCV_BGE => rs1_val >=_s rs2_val,
RISCV_BLTU => rs1_val < u rs2_val,
RISCV _BGEU => rs1 _val >=_u rs2 val
s
let t : xlenbits = PC + sign_extend(imm);
if taken then {
/* Extensions get the first checks on the prospective target address. */
match ext_control_check_pc(t) {
Ext_ControlAddr _Error(e) => {
ext_handle_control_check error(e);
RETIRE_FAIL
I,
Ext_ControlAddr_OK(target) => {
if bit_to_bool(target[1]) & not(extension("C")) then {
handle_mem_exception(target, E_Fetch_Addr_Align());
RETIRE_FAIL;
} else {
set_next_pc(target);
RETIRE_SUCCESS
}
}

67

}
} else RETIRE_SUCCESS

}

C.18.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

¢ InstructionAddressMisaligned

68

C.19. c.bnez
Branch if NOT Equal Zero

This instruction is defined by:

Zca

C.19.1. Encoding

15 13 12 10 9 7 6 2 1 0
111 imm[8|4:3] xsl imm|[7:6|2:1|5] 01

C.19.2. Description

C.BEQZ performs conditional control transfers. The offset is sign-extended and added to the pc to form the branch target address. It can therefore
target a ±256 B range. C.BEQZ takes the branch if the value in register xs1' is NOT zero. It expands to beq
<code>xs1, x0, offset</code>.

C.19.3. Access

M S §)

Always Always Always

C.19.4. Decode Variables

signed Bits<9> imm = sext({$encoding[12], $encoding[6:5], $encoding[2], $encoding[11:10], $encoding[4:3], 1'de});
Bits<3> xs1 = $encoding[9:7];

C.19.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
+
if (X[creg2reg(xs1)] !'=0) {
jump($pc + $signed(imm));
}

C.19.6. Sail Operation

{
let rs1_val = X(rs1);
let rs2_val = X(0);
let taken : bool = match op {
RISCV_BEQ => rs1_val == rs2 val,
RISCV_BNE => rs1_val != rs2 val,
RISCV _BLT => rs1_val <_s rs2 val,
RISCV_BGE => rs1_val >=_s rs2_val,
RISCV_BLTU => rs1_val < u rs2_val,
RISCV _BGEU => rs1 _val >=_u rs2 val
s
let t : xlenbits = PC + sign_extend(imm);
if taken then {
/* Extensions get the first checks on the prospective target address. */
match ext_control_check_pc(t) {
Ext_ControlAddr _Error(e) => {
ext_handle_control_check error(e);
RETIRE_FAIL
I,
Ext_ControlAddr_OK(target) => {
if bit_to_bool(target[1]) & not(extension("C")) then {
handle_mem_exception(target, E_Fetch_Addr_Align());
RETIRE_FAIL;
} else {
set_next_pc(target);
RETIRE_SUCCESS
}
}

69

}
} else RETIRE_SUCCESS

}

C.19.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

¢ InstructionAddressMisaligned

70

C.20. c.ebreak

Breakpoint exception
This instruction is defined by:

Zca

C.20.1. Encoding

15 0
1001000000000010

C.20.2. Description

The C.EBREAK instruction is used by debuggers to cause control to be transferred back to a debugging environment. Unless overridden by an
external debug environment, C.EBREAK raises a breakpoint exception and performs no other operation.

o As described in the C Standard Extension for Compressed Instructions, the c.ebreak instruction performs the same operation as the
EBREAK instruction.

EBREAK causes the receiving privilege mode’s epc register to be set to the address of the EBREAK instruction itself, not the address of the following
instruction. As EBREAK causes a synchronous exception, it is not considered to retire, and should not increment the minstret CSR.

C.20.3. Access

M S 8)

Always Always Always

C.20.4. Decode Variables

C.20.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b@)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
if (TRAP_ON_EBREAK) {

raise_precise(ExceptionCode::Breakpoint, mode(), $pc);
} else {
eei_ebreak();

}

C.20.6. Sail Operation

{
handle_mem_exception(PC, E_Breakpoint());

RETIRE_FAIL
}

C.20.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Breakpoint

* Illegallnstruction

71

C.21. c.fld

Load double-precision

This instruction is defined by:

Zcd
C.21.1. Encoding
15 13 12 10 9 7 6 5 4 2 1 0
001 imm([5:3] xsl imm([7:6] fd 00
C.21.2. Description

Loads a double precision floating-point value from memory into register fd. It computes an effective address by adding the zero-extended offset,
scaled by 8, to the base address in register xs1. It expands to fld fd, offset(xs1).

C.21.3. Access

M S U
Always Always Always

C.21.4. Decode Variables

Bits<8> imm = {$encoding[6:5], $encoding[12:10], 3'd0};
Bits<3> fd = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.21.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa]l.C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
XReg virtual_address = X[creg2reg(xs1)] + imm;
f[fd] = sext(read_memory<64>(virtual_address, $encoding), 64);

C.21.6. Exceptions

This instruction may result in the following synchronous exceptions:

Nllegallnstruction

* LoadAccessFault

LoadAddressMisaligned

* LoadPageFault

72

C.22. c.fldsp

Load doubleword into floating-point register from stack

This instruction is defined by:

Zcd
C.22.1. Encoding
15 13 12 11 7 6 2 1 0
001 imm{[5] fd imm{[4:3|8:6] 10
C.22.2. Description

Loads a double-precision floating-point value from memory into floating-point register fd. It computes its effective address by adding the zero-
extended offset, scaled by 8, to the stack pointer, x2. It expands to fld fd, offset(x2).

C.22.3. Access

M S §)

Always Always Always

C.22.4. Decode Variables

Bits<9> imm = {$encoding[4:2], $encoding[12], $encoding[6:5], 3'd0};
Bits<5> fd = $encoding[11:7];

C.22.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
if (implemented?(ExtensionName::D) && (CSR[misa]l.D == 1'b@)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
XReg virtual_address = X[2] + imm;
f[fd] = read_memory<64>(virtual_address, $encoding);

C.22.6. Exceptions

This instruction may result in the following synchronous exceptions:

[legallnstruction

e LoadAccessFault

LoadAddressMisaligned

* LoadPageFault

73

C.23. c.flw

Load single-precision

This instruction is defined by:

Zcf
C.23.1. Encoding
15 13 12 10 9 7 6 5 4 2 1 0
011 imm([5:3] xsl imm][2|6] fd 00
C.23.2. Description

Loads a single precision floating-point value from memory into register fd. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the base address in register xs1. It expands to flw fd, offset(xs1).

C.23.3. Access

M S U
Always Always Always

C.23.4. Decode Variables

Bits<7> imm = {$encoding[5], $encoding[12:10], $encoding[6], 2'd0};
Bits<3> fd = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.23.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa]l.C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
XReg virtual_address = X[creg2reg(xs1)] + imm;
X[creg2reg(fd)] = sext(read_memory<32>(virtual_address, $encoding), 32);

C.23.6. Exceptions

This instruction may result in the following synchronous exceptions:

Nllegallnstruction

* LoadAccessFault

LoadAddressMisaligned

* LoadPageFault

74

C.24. c.flwsp

Load word into floating-point register from stack

This instruction is defined by:

Zcf
C.24.1. Encoding
15 13 12 11 7 6 2 1 0
011 imm{[5] fd imm[4:2|7:6] 10
C.24.2. Description

Loads a single-precision floating-point value from memory into floating-point register fd. It computes its effective address by adding the zero-
extended offset, scaled by 4, to the stack pointer, x2. It expands to flw fd, offset(x2).

C.24.3. Access

M S §)

Always Always Always

C.24.4. Decode Variables

Bits<8> imm = {$encoding[3:2], $encoding[12], $encoding[6:4], 2'd0};
Bits<5> fd = $encoding[11:7];

C.24.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
if (implemented?(ExtensionName::F) && (CSR[misa].F == 1'b@)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
XReg virtual_address = X[2] + imm;
f[fd] = read_memory<32>(virtual_address, $encoding);

C.24.6. Exceptions

This instruction may result in the following synchronous exceptions:

[legallnstruction

e LoadAccessFault

LoadAddressMisaligned

* LoadPageFault

75

C.25. c.fsd

Store double-precision

This instruction is defined by:

Zcd
C.25.1. Encoding
15 13 12 10 9 7 6 5 4 2 1 0
101 imm([5:3] xsl imm([7:6] fs2 00
C.25.2. Description

Stores a double precision floating-point value in register fs2 to memory. It computes an effective address by adding the zero-extended offset, scaled
by 8, to the base address in register xs1. It expands to fsd fs2, offset(xs1).

C.25.3. Access

M S U
Always Always Always

C.25.4. Decode Variables

Bits<8> imm = {$encoding[6:5], $encoding[12:10], 3'd0};
Bits<3> fs2 = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.25.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa]l.C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
XReg virtual_address = X[creg2reg(xs1)] + imm;
write_memory<64>(virtual_address, X[creg2reg(fs2)], $encoding);

C.25.6. Exceptions

This instruction may result in the following synchronous exceptions:

Nllegallnstruction
* LoadAccessFault

e StoreAmoAccessFault

StoreAmoAddressMisaligned

StoreAmoPageFault

76

C.26. c.fsdsp

Store double-precision value to stack
This instruction is defined by:

Zcd

C.26.1. Encoding

15 13 12 7 6 2 1 0

101 imm|[5:3|8:6] fs2 10

C.26.2. Description

Stores a double-precision floating-point value in floating-point register fs2 to memory. It computes an effective address by adding the zero-extended
offset, scaled by 8, to the stack pointer, x2. It expands to fsd fs2, offset(x2).

C.26.3. Access

M S §)

Always Always Always

C.26.4. Decode Variables

Bits<9> imm = {$encoding[9:7], $encoding[12:10], 3'd0};
Bits<5> fs2 = $encoding[6:2];

C.26.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
if (implemented?(ExtensionName::D) && (CSR[misa]l.D == 1'b@)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
XReg virtual_address = X[2] + imm;
write_memory<64>(virtual_address, f[fs2][63:0], $encoding);

C.26.6. Exceptions

This instruction may result in the following synchronous exceptions:

[legallnstruction

e LoadAccessFault

StoreAmoAccessFault

StoreAmoAddressMisaligned

StoreAmoPageFault

77

C.27. c.fsw

Store single-precision

This instruction is defined by:

Zcf
C.27.1. Encoding
15 13 12 10 9 7 6 5 4 2 1 0
111 imm([5:3] xsl imm][2|6] fs2 00
C.27.2. Description

Stores a single precision floating-point value in register fs2 to memory. It computes an effective address by adding the zero-extended offset, scaled by
4, to the base address in register xs1. It expands to fsw fs2, offset(xs1).

C.27.3. Access

M S U
Always Always Always

C.27.4. Decode Variables

Bits<7> imm = {$encoding[5], $encoding[12:10], $encoding[6], 2'd0};
Bits<3> fs2 = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.27.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa]l.C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
XReg virtual_address = X[creg2reg(xs1)] + imm;
write_memory<32>(virtual_address, X[creg2reg(fs2)]1[31:0], $encoding);

C.27.6. Exceptions

This instruction may result in the following synchronous exceptions:

Nllegallnstruction
* LoadAccessFault

e StoreAmoAccessFault

StoreAmoAddressMisaligned

StoreAmoPageFault

78

C.28. c.fswsp
Store single-precision value to stack
This instruction is defined by:

Zcf

C.28.1. Encoding

15 13 12 7 6 2 1 0

111 imm[5:2|7:6] fs2 10

C.28.2. Description

Stores a single-precision floating-point value in floating-point register fs2 to memory. It computes an effective address by adding the zero-extended
offset, scaled by 4, to the stack pointer, x2. It expands to fsw fs2, offset(x2).

C.28.3. Access

M S §)

Always Always Always

C.28.4. Decode Variables

Bits<8> imm = {$encoding[8:7], $encoding[12:9], 2'd0};
Bits<5> fs2 = $encoding[6:2];

C.28.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
if (implemented?(ExtensionName::F) && (CSR[misa].F == 1'b@)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
XReg virtual_address = X[2] + imm;
write_memory<32>(virtual_address, f[fs2][31:0], $encoding);

C.28.6. Exceptions

This instruction may result in the following synchronous exceptions:

[legallnstruction

e LoadAccessFault

StoreAmoAccessFault

StoreAmoAddressMisaligned

StoreAmoPageFault

79

C.29. c.j

Jump
This instruction is defined by:

Zca

C.29.1. Encoding

15 13 12 2 1 0
101 imm[11]4|9:8|10|6|7|3:1|5] 01

C.29.2. Description

C.J performs an unconditional control transfer. The offset is sign-extended and added to the pc to form the jump target address. C.J] can therefore
target a ±2 KiB range. It expands to jal <code>x0, offset</code>.

C.29.3. Access

M S U
Always Always Always

C.29.4. Decode Variables

signed Bits<12> imm = sext({$encoding[12], $encoding[8], $encoding[10:9], $encoding[6], $encoding[7], $encoding[2], $encoding[11],
$encoding[5:3], 1'd0});

C.29.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
jump($pc + $signed(imm));

C.29.6. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

* InstructionAddressMisaligned

80

C.30. c.jalr

Jump and Link Register
This instruction is defined by:

Zca

C.30.1. Encoding

15 12 11

1001

0000010

C.30.2. Description

C.JALR (jump and link register) performs the same operation as C.JR, but additionally writes the address of the instruction following the jump (pc+2)

to the link register, x1. C.JALR expands to jalr x1, 0(xs1).

C.30.3. Access

M

Always
C.30.4. Decode Variables

Bits<5> xs1 = $encoding[11:7];

C.30.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa]l.C == 1'b0)) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);

+

XReg addr = X[xs1];
XReg returnaddr;
returnaddr = $pc + 2;
X[1] = returnaddr;
jump(addr);

C.30.6. Exceptions

This instruction may result in the following synchronous exceptions:

* Illegallnstruction

* InstructionAddressMisaligned

Always

Always

81

C.31. c.jr

Jump Register
This instruction is defined by:

Zca

C.31.1. Encoding

15 12 11

1000

0000010

C.31.2. Description

C.JR (jump register) performs an unconditional control transfer to the address in register xs1. C.JR expands to jalr x0, 0(xs1).

C.31.3. Access
M S
Always Always

C.31.4. Decode Variables

Bits<5> xs1 = $encoding[11:7];

C.31.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);

}
jump(X[xs1]);

C.31.6. Exceptions
This instruction may result in the following synchronous exceptions:

¢ Illegallnstruction

¢ InstructionAddressMisaligned

82

Always

C.32. c.li

Load the sign-extended 6-bit immediate

This instruction is defined by:

Zca
C.32.1. Encoding
15 13 12 11 7 6 2 1 0
010 imm{[5] xd!=0 imm{[4:0] 01
C.32.2. Description

C.LI loads the sign-extended 6-bit immediate, imm, into register xd. C.LI expands into <code>addi xd, x0, imm</code>. C.LI is only valid when xd ≠
x0; the code points with xd=x0 encode HINTSs.

C.32.3. Access

M S §)

Always Always Always

C.32.4. Decode Variables

Bits<6> imm = {$encoding[12], $encoding[6:2]1};
Bits<5> xd = $encoding[11:7];

C.32.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
X[xd] = $signed(imm);

C.32.6. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

83

C.33. c.lui

Load Upper Immediate

This instruction is defined by:

Zca
C.33.1. Encoding
15 13 12 11 7 6 2 1 0
011 imm{[17] xd = {0,2} imm[16:12] 01
C.33.2. Description

C.LUI loads the non-zero 6-bit immediate field into bits 17-12 of the destination register, clears the bottom 12 bits, and sign-extends bit 17 into all
higher bits of the destination. C.LUI expands into <code>lui xd, imm</code>. C.LUI is only valid when xd≠x0 and xd≠x2, and when the
immediate is not equal to zero. The code points with imm=0 are reserved; the remaining code points with xd=x0 are HINTSs; and the remaining code
points with xd=x2 correspond to the C.ADDI16SP instruction

C.33.3. Access

M S §)

Always Always Always

C.33.4. Decode Variables

Bits<18> imm = {$encoding[12], $encoding[6:2], 12'd0};
Bits<5> xd = $encoding[11:7];

C.33.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa]l.C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
X[xd] = $signed(imm);

C.33.6. Exceptions

This instruction may result in the following synchronous exceptions:

* Illegallnstruction

84

C.34.c.lw

Load word

This instruction is defined by:

Zca
C.34.1. Encoding
15 13 12 10 9 7 6 5 4 2 1 0
010 imm([5:3] xsl imm][2|6] xd 00
C.34.2. Description

Loads a 32-bit value from memory into register xd. It computes an effective address by adding the zero-extended offset, scaled by 4, to the base
address in register xs1. It expands to lw xd, offset(xs1).

C.34.3. Access

M S §)

Always Always Always

C.34.4. Decode Variables

Bits<7> imm = {$encoding[5], $encoding[12:10], $encoding[6], 2'd0};
Bits<3> xd = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.34.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa]l.C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}

XReg virtual_address = X[creg2reg(xs1)] + imm;

X[creg2reg(xd)] = sext(read_memory<32>(virtual_address, $encoding), 32);

C.34.6. Sail Operation

{
let offset : xlenbits = sign_extend(imm);
/* Get the address, X(rs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(rs1, offset, Read(Data), width) {
Ext _DataAddr_Error(e) => { ext_handle_data_check _error(e); RETIRE FAIL },
Ext DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Read(Data)) {
TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(paddr, _) =>
match (width) {
BYTE =>
process_load(rd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
HALF =>
process_load(rd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
WORD =>
process_load(rd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
DOUBLE if sizeof(xlen) >= 64 =>
process_load(rd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
_ => report_invalid_width(__FILE__, __LINE__, width, "load")

85

C.34.7. Exceptions

This instruction may result in the following synchronous exceptions:

Illegallnstruction

e LoadAccessFault

LoadAddressMisaligned

LoadPageFault

86

C.35. c.lwsp
Load word from stack pointer

This instruction is defined by:

Zca
C.35.1. Encoding
15 13 12 11 7 6 2 1 0
010 imm{[5] xd!=0 imm[4:2|7:6] 10
C.35.2. Description

Loads a 32-bit value from memory into register xd. It computes an effective address by adding the zero-extended offset, scaled by 4, to the stack
pointer, x2. It expands to lw <code>xd, offset(x2)</code>. C.LWSP is only valid when xd ≠ x0. The code points
with xd=x0 are reserved.

C.35.3. Access

M S §)

Always Always Always

C.35.4. Decode Variables

Bits<8> imm = {$encoding[3:2], $encoding[12], $encoding[6:4], 2'd0};
Bits<5> xd = $encoding[11:7];

C.35.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);

¥
XReg virtual_address = X[2] + imm;
X[xd] = sext(read_memory<32>(virtual_address, $encoding), 32);

C.35.6. Exceptions

This instruction may result in the following synchronous exceptions:

* Illegallnstruction
* LoadAccessFault
* LoadAddressMisaligned

* LoadPageFault

87

C.36. c.mv

Move Register

This instruction is defined by:
Zca

C.36.1. Encoding

15 12 11 7 6 2 1

1000 xd!=0 xs21=0 10

C.36.2. Description

C.MV (move register) performs copy of the data in register xs2 to register xd C.MV expands to addi xd, x0, Xs2.

C.36.3. Access

M S §)

Always Always Always

C.36.4. Decode Variables

Bits<5> xd = $encoding[11:7];
Bits<5> xs2 = $encoding[6:2];

C.36.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b@)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
X[xd] = X[xs2];

C.36.6. Sail Operation

{
let xs2_val = X(xs2);
X(rs) = xs2_val
RETIRE_SUCCESS

}

C.36.7. Exceptions

This instruction may result in the following synchronous exceptions:

* Illegallnstruction

88

C.37. c.nop
Non-operation

This instruction is defined by:

Zca
C.37.1. Encoding
15
0000000000000001
C.37.2. Description
C.NOP expands into addi x0, x0, 0.
C.37.3. Access
M S
Always Always

C.37.4. Decode Variables

C.37.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}

C.37.6. Exceptions

This instruction may result in the following synchronous exceptions:

* Illegallnstruction

Always

89

C.38. c.or
Or

This instruction is defined by:

Zca

C.38.1. Encoding

15 10 9 7 6 5 4 2 1 0
100011 xd 10 XS2 01

C.38.2. Description

Or xd with xs2, and store the result in xd The xd and xs2 register indexes should be used as xd+8 and xs2+8 (registers x8-x15). C.OR expands into or
xd, xd, xs2.

C.38.3. Access

M S U
Always Always Always

C.38.4. Decode Variables

Bits<3> xs2 = $encoding[4:2];
Bits<3> xd = $encoding[9:7];

C.38.5. IDL Operation
XReg t@ = X[creg2reg(xd)];
XReg t1 = X[creg2reg(xs2)];

X[creg2reg(xd)] = t@ | t1;

C.38.6. Sail Operation
{
let rs1 val = X(rd+8);
let rs2 val = X(rs2+48);

let result : xlenbits = match op {
RISCV_ADD => rs1_val + rs2 val,
RISCV_SLT => zero_extend(bool_to_bits(rs1_val <_s rs2_val)),
RISCV _SLTU => zero_extend(bool to_bits(rs1 _val < u rs2 val)),
RISCV_AND => rs1_val & rs2_val,
RISCV.OR => rs1_val | rs2_val,
RISCV_XOR => rs1_val A rs2 val,
RISCV SLL => if sizeof(xlen) == 32
then rs1_val << (rs2_val[4..0])
else rs1_val << (rs2_val[5..0]),
RISCV_SRL => if sizeof(xlen) == 32
then rs1_val >> (rs2 val[4..0])
else rs1_val >> (rs2 val[5..0]),
RISCV _SUB => rs1 _val - rs2 val,
RISCY_SRA => if sizeof(xlen) == 32
then shift_right_arith32(rs1_val, rs2_val[4..0])
else shift_right_arith64(rs1_val, rs2_val[5..0])
i
X(rd+8) = result;
RETIRE_SUCCESS
}

C.38.7. Exceptions

This instruction does not generate synchronous exceptions.

90

C.39. c.slli

Shift left logical immediate
This instruction is defined by:
Zca

C.39.1. Encoding

0 This instruction has different encodings in RV32 and RV64.

RV32
15 12 11 7 6 2 1 0
| OOIOO | | | xd | | | s'hamt I= '0 | 1I0
RV64
15 13 12 11 7 6 2 1 0
| 000 | shamt != 0‘[5] | | xd | | | sha;mt I= 0[14:0] | 1I0

C.39.2. Description

Shift the value in xd left by shamt, and store the result back in xd. C.SLLI expands into s11i xd, xd, shamt.

C.39.3. Access

M S §)

Always Always Always
C.39.4. Decode Variables

RV32

Bits<5> shamt = $encoding[6:2];
Bits<5> xd = $encoding[11:7];

RV64

Bits<6> shamt = {$encoding[12], $encoding[6:2]};
Bits<5> xd = $encoding[11:7];

C.39.5. IDL Operation

X[xd] = X[xd] << shamt;

C.39.6. Sail Operation

{
let rd_val = X(rd);
/* the decoder guard should ensure that shamt[5] = @ for RV32 */
let result : xlenbits = match op {
RISCV_SLLI => if sizeof(xlen) == 32
then rd_val << shamt[4..0]
else rd_val << shamt,
RISCV_SRLI => if sizeof(xlen) == 32
then rd_val >> shamt[4..0]
else rd_val >> shamt,
RISCV SRAI => if sizeof(xlen) == 32
then shift_right_arith32(rd_val, shamt[4..0])
else shift_right_arith64(rd_val, shamt)
s
X(rd) = result;
RETIRE_SUCCESS

91

C.39.7. Exceptions

This instruction does not generate synchronous exceptions.

92

C.40. c.srai

Shift right arithmetical immediate
This instruction is defined by:

Zca

C.40.1. Encoding

0 This instruction has different encodings in RV32 and RV64.

RV32
15 10 9 7 6 2 1 0
| | 100IOOl | | | xd | | s'hamt I= '0 | Oll
RV64
15 13 12 11 10 9 7 6 2 1 0
| 100 | shamt != 0‘[5] Oll | xd | | sha;mt I= 0[14:0] | Oll

C.40.2. Description

Arithmetic shift (the original sign bit is copied into the vacated upper bits) the value in xd right by shamt, and store the result in xd. The xd register
index should be used as xd+8 (registers x8-x15). C.SRAI expands into srai xd, xd, shamt.

C.40.3. Access

M S U
Always Always Always

C.40.4. Decode Variables

RV32

Bits<5> shamt = $encoding[6:2];
Bits<3> xd = $encoding[9:7];

RV64

Bits<6> shamt = {$encoding[12], $encoding[6:2]};
Bits<3> xd = $encoding[9:7];

C.40.5. IDL Operation

X[creg2reg(xd)] = X[creg2reg(xd)] >>> shamt;

C.40.6. Sail Operation

{
let rd_val = X(rd+8);
/* the decoder guard should ensure that shamt[5] = @ for RV32 */
let result : xlenbits = match op {
RISCV SLLI => if sizeof(xlen) == 32
then rd_val << shamt[4..0]
else rd_val << shamt,
RISCV_SRLI => if sizeof(xlen) == 32
then rd_val >> shamt[4..0]
else rd_val >> shamt,
RISCV_SRAI => if sizeof(xlen) == 32
then shift_right_arith32(rd_val, shamt[4..0])
else shift_right_arith64(rd_val, shamt)
}
X(rd+8) = result;

93

RETIRE_SUCCESS
}

C.40.7. Exceptions

This instruction does not generate synchronous exceptions.

94

C.41. c.srli

Shift right logical immediate
This instruction is defined by:
Zca

C.41.1. Encoding

0 This instruction has different encodings in RV32 and RV64.

RV32
15 10 9 7 6 2 1 0
| | 100IOOO | | | xd | | s'hamt I= '0 | Oll
RV64
15 13 12 11 10 9 7 6 2 1 0
| 100 | shamt != 0‘[5] OIO | xd | | sha;mt I= 0[14:0] | Oll

C.41.2. Description

Shift the value in xd right by shamt, and store the result back in xd. The xd register index should be used as xd+8 (registers x8-x15). C.SRLI expands
into srli xd, xd, shamt

C.41.3. Access

M S U
Always Always Always

C.41.4. Decode Variables

RV32

Bits<5> shamt = $encoding[6:2];
Bits<3> xd = $encoding[9:7];

RV64

Bits<6> shamt = {$encoding[12], $encoding[6:2]};
Bits<3> xd = $encoding[9:7];

C.41.5. IDL Operation

X[creg2reg(xd)] = X[creg2reg(xd)] >> shamt;

C.41.6. Sail Operation

{
let rd_val = X(rd+8);
/* the decoder guard should ensure that shamt[5] = @ for RV32 */
let result : xlenbits = match op {
RISCV SLLI => if sizeof(xlen) == 32
then rd_val << shamt[4..0]
else rd_val << shamt,
RISCV_SRLI => if sizeof(xlen) == 32
then rd_val >> shamt[4..0]
else rd_val >> shamt,
RISCV_SRAI => if sizeof(xlen) == 32
then shift_right_arith32(rd_val, shamt[4..0])
else shift_right_arith64(rd_val, shamt)
}
X(rd+8) = result;

95

RETIRE_SUCCESS
}

C.41.7. Exceptions

This instruction does not generate synchronous exceptions.

96

C.42. c.sub

Subtract
This instruction is defined by:

Zca

C.42.1. Encoding

15 10 9 7 6 5 4 2 1 0
100011 xd 00 XS2 01

C.42.2. Description

Subtract the value in xs2 from xd, and store the result in xd. The xd and xs2 register indexes should be used as xd+8 and xs2+8 (registers x8-x15).
C.SUB expands into sub xd, xd, xs2.

C.42.3. Access

M S U
Always Always Always

C.42.4. Decode Variables

Bits<3> xs2 = $encoding[4:2];
Bits<3> xd = $encoding[9:7];

C.42.5. IDL Operation
XReg t@ = X[creg2reg(xd)];
XReg t1 = X[creg2reg(xs2)];

X[creg2reg(xd)] = t0 - t1;

C.42.6. Sail Operation
{
let rs1 val = X(rd+8);
let rs2 val = X(rs2+48);

let result : xlenbits = match op {
RISCV_ADD => rs1_val + rs2 val,
RISCV_SLT => zero_extend(bool_to_bits(rs1_val <_s rs2_val)),
RISCV _SLTU => zero_extend(bool to_bits(rs1 _val < u rs2 val)),
RISCV_AND => rs1_val & rs2_val,
RISCV.OR => rs1_val | rs2_val,
RISCV_XOR => rs1_val A rs2 val,
RISCV SLL => if sizeof(xlen) == 32
then rs1_val << (rs2_val[4..0])
else rs1_val << (rs2_val[5..0]),
RISCV_SRL => if sizeof(xlen) == 32
then rs1_val >> (rs2 val[4..0])
else rs1_val >> (rs2 val[5..0]),
RISCV _SUB => rs1 _val - rs2 val,
RISCY_SRA => if sizeof(xlen) == 32
then shift_right_arith32(rs1_val, rs2_val[4..0])
else shift_right_arith64(rs1_val, rs2_val[5..0])
i
X(rd+8) = result;
RETIRE_SUCCESS
}

C.42.7. Exceptions

This instruction does not generate synchronous exceptions.

97

C.43. c.sw

Store word

This instruction is defined by:

Zca
C.43.1. Encoding
15 13 12 10 9 7 6 5 4 2 1 0
110 imm([5:3] xsl imm][2|6] XS2 00
C.43.2. Description

Stores a 32-bit value in register xs2 to memory. It computes an effective address by adding the zero-extended offset, scaled by 4, to the base address
in register xs1. It expands to sw rs2, offset(xs1).

C.43.3. Access

M S U
Always Always Always

C.43.4. Decode Variables

Bits<7> imm = {$encoding[5], $encoding[12:10], $encoding[6], 2'd0};
Bits<3> xs2 = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.43.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa]l.C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
XReg virtual_address = X[creg2reg(xs1)] + imm;
write_memory<32>(virtual_address, X[creg2reg(xs2)]1[31:0], $encoding);

C.43.6. Exceptions

This instruction may result in the following synchronous exceptions:

Nllegallnstruction
* LoadAccessFault

e StoreAmoAccessFault

StoreAmoAddressMisaligned

StoreAmoPageFault

98

C.44. c.swsp
Store word to stack
This instruction is defined by:

Zca

C.44.1. Encoding

15 13 12 7 6 2 1 0

110 imm[5:2|7:6] XS2 10

C.44.2. Description

Stores a 32-bit value in register xs2 to memory. It computes an effective address by adding the zero-extended offset, scaled by 4, to the stack pointer,
x2. It expands to sw xs2, offset(x2).

C.44.3. Access

M S U
Always Always Always

C.44.4. Decode Variables

Bits<8> imm = {$encoding[8:7], $encoding[12:9], 2'd0};
Bits<5> xs2 = $encoding[6:2];

C.44.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
XReg virtual_address = X[2] + imm;
write_memory<32>(virtual_address, X[xs2][31:0], $encoding);

C.44.6. Exceptions

This instruction may result in the following synchronous exceptions:

* Illegallnstruction
* LoadAccessFault

¢ StoreAmoAccessFault

StoreAmoAddressMisaligned

» StoreAmoPageFault

99

C.45. c.xor

Exclusive Or
This instruction is defined by:

Zca

C.45.1. Encoding

15 10 9 7 6 5 4 2 1 0
100011 xd 01 XS2 01

C.45.2. Description

Exclusive or xd with xs2, and store the result in xd The xd and xs2 register indexes should be used as xd+8 and xs2+8 (registers x8-x15). C.XOR
expands into xor xd, xd, xs2.

C.45.3. Access

M S U
Always Always Always

C.45.4. Decode Variables

Bits<3> xs2 = $encoding[4:2];
Bits<3> xd = $encoding[9:7];

C.45.5. IDL Operation
XReg t@ = X[creg2reg(xd)];
XReg t1 = X[creg2reg(xs2)];

X[creg2reg(xd)] = t0 » t1;

C.45.6. Sail Operation
{
let rs1 val = X(rd+8);
let rs2 val = X(rs2+48);

let result : xlenbits = match op {
RISCV_ADD => rs1_val + rs2 val,
RISCV_SLT => zero_extend(bool_to_bits(rs1_val <_s rs2_val)),
RISCV _SLTU => zero_extend(bool to_bits(rs1 _val < u rs2 val)),
RISCV_AND => rs1_val & rs2_val,
RISCV.OR => rs1_val | rs2_val,
RISCV_XOR => rs1_val A rs2 val,
RISCV SLL => if sizeof(xlen) == 32
then rs1_val << (rs2_val[4..0])
else rs1_val << (rs2_val[5..0]),
RISCV_SRL => if sizeof(xlen) == 32
then rs1_val >> (rs2 val[4..0])
else rs1_val >> (rs2 val[5..0]),
RISCV _SUB => rs1 _val - rs2 val,
RISCY_SRA => if sizeof(xlen) == 32
then shift_right_arith32(rs1_val, rs2_val[4..0])
else shift_right_arith64(rs1_val, rs2_val[5..0])
i
X(rd+8) = result;
RETIRE_SUCCESS
}

C.45.7. Exceptions

This instruction does not generate synchronous exceptions.

100

C.46. csrrc
Atomic Read and Clear Bits in CSR
This instruction is defined by:

Zicsr

C.46.1. Encoding

15 14

12 11

011

1110011

C.46.2. Description

The CSRRC (Atomic Read and Clear Bits in CSR) instruction reads the value of the CSR, zero-extends the value to XLEN bits, and writes it to integer
register xd. The initial value in integer register xs1 is treated as a bit mask that specifies bit positions to be cleared in the CSR. Any bit that is high in
xs1 will cause the corresponding bit to be cleared in the CSR, if that CSR bit is writable.

For CSRRC, if xs1=x0, then the instruction will not write to the CSR at all, and so shall not cause any of the side effects that might otherwise occur on a
CSR write, nor raise illegal- instruction exceptions on accesses to read-only CSRs. CSRRC always reads the addressed CSR and cause any read side
effects regardless of xs1 and xd fields. Note that if xs1 specifies a register other than x0, and that register holds a zero value, the instruction will not

action any attendant per-field side effects, but will action any side effects caused by writing to the entire CSR.

C.46.3. Access

M

Always
C.46.4. Decode Variables

Bits<12> csr = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.46.5. IDL Operation

Csr csr_handle = direct_csr_lookup(csr);

Boolean will write = xs1 != 0;

if (csr_handle.valid == false) {
unimplemented_csr($encoding);

} else if (!compatible_mode?(csr_handle.mode, mode())) {

raise(ExceptionCode::I1legalInstruction, mode(), $encoding);

} else if (will write && csr_handle.writable == false) {

raise(ExceptionCode::I1legalInstruction, mode(), $encoding);

}
XReg initial_csr_value = csr_sw_read(csr_handle);
if (xs1 1=0) {
XReg mask = X[xs1];
csr_sw write(esr_handle, initial_csr_value & ~mask);

}

X[xd] = initial_csr_value;

C.46.6. Exceptions

This instruction may result in the following synchronous exceptions:

* Illegallnstruction

Always

Always

101

C.47. csrrci

Atomic Read and Clear Bits in CSR with Immediate
This instruction is defined by:

Zicsr

C.47.1. Encoding

31 20 19

15 14

12 11

111

xd

1110011

C.47.2. Description

The CSRRCI variant is similar to CSRRC, except this updates the CSR using an XLEN-bit value obtained by zero-extending a 5-bit unsigned immediate
(imm[4:0]) field encoded in the xs1 field instead of a value from an integer register. For CSRRCI, if the imm[4:0] field is zero, then this instruction will
not write to the CSR, and shall not cause any of the side effects that might otherwise occur on a CSR write, nor raise illegal-instruction exceptions on
accesses to read-only CSRs. The CSRRCI will always read the CSR and cause any read side effects regardless of xd and xs1 fields.

C.47.3. Access

M

Always
C.47.4. Decode Variables

Bits<12> csr = $encoding[31:20];
Bits<5> imm = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.47.5. IDL Operation

Boolean will write = imm != 0;
Csr csr_handle = direct_csr_lookup(csr);
if (csr_handle.valid == false) {
unimplemented_csr($encoding);
} else if (!compatible_mode?(csr_handle.mode, mode())) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
} else if (will_write && csr_handle.writable == false) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
XReg initial_csr_value = csr_sw_read(csr_handle);
if (will write) {
XReg mask = imm;
csr_sw write(esr_handle, initial_csr_value & ~mask);
}

X[xd] = initial_csr_value;

C.47.6. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

102

Always

Always

C.48. csrrs
Atomic Read and Set Bits in CSR
This instruction is defined by:

Zicsr

C.48.1. Encoding

31 20 19

15 14

010

12 11

xd

C.48.2. Description

Atomically read and set bits in a CSR.

Reads the value of the CSR, zero-extends the value to XLEN bits, and writes it to integer register xd. The initial value in integer register xs1 is treated as
a bit mask that specifies bit positions to be set in the CSR. Any bit that is high in xs1 will cause the corresponding bit to be set in the CSR, if that CSR

bit is writable. Other bits in the CSR are not explicitly written.

C.48.3. Access

M S

Always Always

C.48.4. Decode Variables

Bits<12> csr = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.48.5. IDL Operation

Boolean will write = xs1 != 0;
Csr csr_handle = direct_csr_lookup(csr);
if (csr_handle.valid == false) {
unimplemented_csr($encoding);
} else if (!compatible_mode?(csr_handle.mode, mode())) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
} else if (will_write && csr_handle.writable == false) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
XReg initial_csr_value = csr_sw_read(csr_handle);
if (will write) {
XReg mask = X[xs1];
csr_sw_write(csr_handle, initial_csr_value | mask);
}

X[xd] = initial_csr_value;

C.48.6. Sail Operation

{

let rs1_val : xlenbits = if is_imm then zero_extend(rs1) else X(rs1);
let isWrite : bool = match op {
CSRRW => true,

=> if is_imm then unsigned(rs1_val) != @ else unsigned(rs1) != 0

s

if not(check_CSR(csr, cur_privilege, isWrite))

then { handle_illegal(); RETIRE_FAIL }

else if not(ext_check_CSR(csr, cur_privilege, isWrite))
then { ext _check CSR fail(); RETIRE FAIL }

else {

Always

let csr_val = readCSR(csr); /* could have side-effects, so technically shouldn't perform for CSRW[I] with rd == @ */

if isWrite then {
let new_val : xlenbits = match op {
CSRRW => rs1_val,
CSRRS => csr_val | rs1_val,

103

CSRRC => csr_val & ~(rs1_val)

Iis
writeCSR(csr, new_val)

Iy

X(rd) = csr_val;

RETIRE_SUCCESS

by
}

C.48.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

104

C.49. csrrsi
Atomic Read and Set Bits in CSR with Immediate
This instruction is defined by:

Zicsr

C.49.1. Encoding

31 20 19 15 14 12 11 7 6 0

csr imm 110 xd 1110011

C.49.2. Description

The CSRRSI variant is similar to CSRRS, except this updates the CSR using an XLEN-bit value obtained by zero-extending a 5-bit unsigned immediate
(imm[4:0]) field encoded in the xs1 field instead of a value from an integer register. For CSRRS], if the imm[4:0] field is zero, then this instruction will
not write to the CSR, and shall not cause any of the side effects that might otherwise occur on a CSR write, nor raise illegal-instruction exceptions on
accesses to read-only CSRs. The CSRRSI will always read the CSR and cause any read side effects regardless of xd and xs1 fields.

C.49.3. Access

M S §)

Always Always Always

C.49.4. Decode Variables

Bits<12> csr = $encoding[31:20];
Bits<5> imm = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.49.5. IDL Operation

Boolean will write = imm != 0;
Csr csr_handle = direct_csr_lookup(csr);
if (csr_handle.valid == false) {
unimplemented_csr($encoding);
} else if (!compatible_mode?(csr_handle.mode, mode())) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
} else if (will_write && csr_handle.writable == false) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
XReg initial_csr_value = csr_sw_read(csr_handle);
if (will write) {
XReg mask = imm;
csr_sw_write(csr_handle, initial_csr_value | mask);
}

X[xd] = initial_csr_value;

C.49.6. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

105

C.50. csrrw

Atomic Read/Write CSR

This instruction is defined by:

Zicsr

C.50.1. Encoding

31 20 19

15 14

csr xsl 001

12 11

xd

C.50.2. Description

Atomically swap values in the CSRs and integer registers.

Read the old value of the CSR, zero-extends the value to XLEN bits, and then write it to integer register xd. The initial value in xs1 is written to the CSR.
If xd=x0, then the instruction shall not read the CSR and shall not cause any of the side effects that might occur on a CSR read.

C.50.3. Access

M S

Always Always

C.50.4. Decode Variables

Bits<12> csr = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.50.5. IDL Operation

Csr csr_handle = direct_csr_lookup(csr);
Bits<MXLEN> initial_value = X[xs1];
if (csr_handle.valid == false) {

unimplemented_csr($encoding);

} else if (!compatible_mode?(csr_handle.mode, mode())) {

raise(ExceptionCode::I1legalInstruction, mode(), $encoding);

} else if (csr_handle.writable == false) {

}

raise(ExceptionCode::I1legalInstruction, mode(), $encoding);

if (xd 1= 0) {

}

X[xd] = csr_sw read(csr_handle);

csr_sw write(esr_handle, initial_value);

C.50.6. Sail Operation

{

106

let rs1_val : xlenbits = if is_imm then zero_extend(rs1) else X(rs1);
let isWrite : bool = match op {
CSRRW => true,
_ => if is_imm then unsigned(rs1_val) != @ else unsigned(rs1) != 0
fi
if not(check_CSR(csr, cur_privilege, isWrite))
then { handle_illegal(); RETIRE_FAIL }
else if not(ext_check_CSR(csr, cur_privilege, isWrite))
then { ext_check CSR_fail(); RETIRE_FAIL }
else {

Always

let csr_val = readCSR(csr); /* could have side-effects, so technically shouldn't perform for CSRW[I] with rd == @ */

if isWrite then {
let new_val : xlenbits = match op {
CSRRW => rs1 _val,
CSRRS => csr_val | rs1_val,
CSRRC => csr_val & ~(rs1_val)
Iis

writeCSR(csr, new_val)

Iy
X(rd) = csr_val;
RETIRE _SUCCESS

}
}

C.50.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

107

C.51. csrrwi

Atomic Read/Write CSR Immediate

This

instruction is defined by:

Zicsr

C.51.1. Encoding

31

15 14

csr imm 101

12 11

xd

C.51.2. Description

Atomically write CSR using a 5-bit immediate, and load the previous value into 'xd'.

Read the old value of the CSR, zero-extends the value to XLEN bits, and then write it to integer register xd. The 5-bit uimm field is zero-extended and
written to the CSR. If xd=x0, then the instruction shall not read the CSR and shall not cause any of the side effects that might occur on a CSR read.

C.51.3. Access

M S

Always Always

C.51.4. Decode Variables

Bi
Bi
Bi

ts<12> csr = $encoding[31:20];
ts<5> imm = $encoding[19:15];
ts<5> xd = $encoding[11:7];

C.51.5. IDL Operation

Cs
if

}
}

}
if

}

CS

r csr_handle = direct_csr_lookup(csr);

(csr_handle.valid == false) {
unimplemented_csr($encoding);
else if (!compatible_mode?(csr_handle.mode, mode())) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
else if (csr_handle.writable == false) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

(xd !
X[xd]

0) {

csr_sw_read(csr_handle);

r sw write(csr_handle, {{MXLEN - 5{1'b0}}, imm});

C.51.6. Sail Operation

{

108

let rs1_val : xlenbits = if is_imm then zero_extend(rs1) else X(rs1);
let isWrite : bool = match op {
CSRRW => true,
_ => if is_imm then unsigned(rs1_val) != @ else unsigned(rs1) != 0
s
if not(check_CSR(csr, cur_privilege, isWrite))
then { handle_illegal(); RETIRE_FAIL }
else if not(ext_check_CSR(csr, cur_privilege, isWrite))
then { ext _check CSR fail(); RETIRE FAIL }
else {

Always

let csr_val = readCSR(csr); /* could have side-effects, so technically shouldn't perform for CSRW[I] with rd == @ */

if isWrite then {
let new_val : xlenbits = match op {
CSRRW => rs1_val,
CSRRS => csr_val | rs1_val,
CSRRC => csr_val & ~(rs1_val)
I
writeCSR(csr, new_val)

+;

X(rd) = csr_val;
RETIRE_SUCCESS

}
}

C.51.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

109

C.52. div

Signed division

This instruction is defined by:

M
C.52.1. Encoding
31 25 24 20 19 15 14 12 11
0000001 Xs2 xsl 100 xd 0110011
C.52.2. Description
Divide xs1 by xs2, and store the result in xd. The remainder is discarded.
Division by zero will put -1 into xd.
Division resulting in signed overflow (when most negative number is divided by -1) will put the most negative number into xd;
C.52.3. Access
M S U
Always Always Always

C.52.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.52.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b@)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
XReg src1 = X[xs1];
XReg src2 = X[xs2];

XReg signed_min = (xlen() == 32) ? $signed({1'b1, {31{1'b0}}}) : {1'b1, {63{1'b0}}};

if (src2 == 0) {

X[xd] = {MXLEN{1'b1}};

} else if ((srcl == signed_min) && (src2 == {MXLEN{1'b1}})) {

X[xd] = signed_min;
} else {

X[xd] = $signed(src1) / $signed(src2);

}

C.52.6. Sail Operation

{

if extension("M") then {
let rs1_val = X(rs1);
let rs2 val = X(rs2);

let rs1_int :
let rs2_int :

int = if s then
int = if s then signed(rs2_val) else unsigned(rs2_val);

signed(rs1_val) else unsigned(rs1_val);

let q : int = if rs2_int == @ then -1 else quot_round_zero(rs1_int, rs2_int);
/* check for signed overflow */

let q': int = if s & q > xlen_max_signed then xlen_min_signed else q;
X(rd) = to_bits(sizeof(xlen), q');

RETIRE_SUCCESS
} else {
handle_illegal();
RETIRE_FAIL
}
}

110

C.52.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

111

C.53. divu

Unsigned division
This instruction is defined by:

M

C.53.1. Encoding

31 25 24

0000001 Xs2 xsl 101

xd 0110011

C.53.2. Description
Divide unsigned values in xs1 by xs2, and store the result in xd.
The remainder is discarded.

If the value in xs2 is zero, xd gets the largest unsigned value.

C.53.3. Access

M S

Always Always

C.53.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.53.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b@)) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
if (src2 == 0) {
X[xd] = {MXLEN{1'b1}};
} else {
X[xd] = src1 / src2;
}

C.53.6. Sail Operation

{
if extension("M") then {

let rs1_val = X(rs1);
let rs2 val = X(rs2);
let rs1_int : int = if s then signed(rs1_val) else unsigned(rs1_val);
let rs2_int : int = if s then signed(rs2_val) else unsigned(rs2_val);
let q : int = if rs2_int == @ then -1 else quot_round_zero(rs1_int, rs2_int);
/* check for signed overflow */
let q': int = if s & q > xlen_max_signed then xlen_min_signed else q;
X(rd) = to_bits(sizeof(xlen), q');
RETIRE_SUCCESS

} else {
handle_illegal();
RETIRE_FAIL

}

}

C.53.7. Exceptions

This instruction may result in the following synchronous exceptions:

112

Always

¢ Illegallnstruction

113

C.54. ebreak

Breakpoint exception
This instruction is defined by:

I

C.54.1. Encoding

00000000000100000000000001110011

C.54.2. Description

The EBREAK instruction is used by debuggers to cause control to be transferred back to a debugging environment. Unless overridden by an external
debug environment, EBREAK raises a breakpoint exception and performs no other operation.

o As described in the C Standaxd Extension for Compressed Instructions, the c.ebreak instruction performs the same operation as the
EBREAK instruction.

EBREAK causes the receiving privilege mode’s epc register to be set to the address of the EBREAK instruction itself, not the address of the following
instruction. As EBREAK causes a synchronous exception, it is not considered to retire, and should not increment the minstret CSR.

C.54.3. Access

M S 8)

Always Always Always

C.54.4. Decode Variables

C.54.5. IDL Operation

if (TRAP_ON_EBREAK) {
raise_precise(ExceptionCode::Breakpoint, mode(), $pc);
} else {
eei_ebreak();

}

C.54.6. Sail Operation

{
handle_mem_exception(PC, E_Breakpoint());

RETIRE_FAIL
}

C.54.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Breakpoint

114

C.55. ecall

Environment call
This instruction is defined by:

I

C.55.1. Encoding

00000000000000000000000001110011

C.55.2. Description

Makes a request to the supporting execution environment. When executed in U-mode, S-mode, or M-mode, it generates an environment-call-from-U-
mode exception, environment-call-from-S-mode exception, or environment-call-from-M-mode exception, respectively, and performs no other
operation.

ECALL generates a different exception for each originating privilege mode so that environment call exceptions can be selectively
0 delegated. A typical use case for Unix-like operating systems is to delegate to S-mode the environment-call-from-U-mode exception
but not the others.

ECALL causes the receiving privilege mode’s epc register to be set to the address of the ECALL instruction itself, not the address of the following
instruction. As ECALL causes a synchronous exception, it is not considered to retire, and should not increment the minstret CSR.

C.55.3. Access

M S §)

Always Always Always

C.55.4. Decode Variables

C.55.5. IDL Operation

if (mode() == PrivilegeMode::M) {
if (TRAP_ON_ECALL_FROM_M) {
raise_precise(ExceptionCode::Mcall, PrivilegeMode::M, 0);
} else {
eei_ecall_from_m();
}
} else if (mode() == PrivilegeMode::S) {
if (TRAP_ON_ECALL_FROM_S) {
raise_precise(ExceptionCode::Scall, PrivilegeMode::S, 0);
} else {
eei_ecall_from_s();
}
} else if (mode() == PrivilegeMode::U || mode() == PrivilegeMode::VU) {
if (TRAP_ON_ECALL_FROM_U) {
raise_precise(ExceptionCode::Ucall, mode(), 0);
} else {
eei_ecall from u();
}
} else if (mode() == PrivilegeMode::VS) {
if (TRAP_ON_ECALL_FROM_VS) {
raise_precise(ExceptionCode::VScall, PrivilegeMode::VS, 0);
} else {
eei_ecall_from_vs();
}
}

C.55.6. Sail Operation

{
let t : sync_exception =
struct { trap = match (cur_privilege) {

115

User => E_U_EnvCall(),
Supervisor => E_S_EnvCall(),
Machine => E_M_EnvCall()

}I

excinfo = (None() : option(xlenbits)),

ext None() };
set_next_pc(exception_handler(cur_privilege, CTL_TRAP(t), PC));
RETIRE_FAIL

}

C.55.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Mcall
* Scall
 Ucall
» VScall

116

C.56. fadd.d

Floating-Point Add Double-Precision
This instruction is defined by:

(D D Zdinx)

C.56.1. Encoding

31 25 24

0000001 fs2

15 14

rm

12 11

fd

1010011

C.56.2. Description

The fadd.d instruction is analogous to fadd.s and performs double-precision floating-point addition of fs1 and fs2 and writes the final result to fd.

C.56.3. Access

M

Always

C.56.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.56.5. IDL Operation

C.56.6. Exceptions

This instruction does not generate synchronous exceptions.

Always

Always

117

C.57. fadd.s

Floating-Point Add Single-Precision

This instruction is defined by:

F
C.57.1. Encoding
31 25 24 20 19 15 14 12 11
0000000 fs2 fs1 rm fd 1010011
C.57.2. Description
The fadd.s instruction performs single-precision floating-point addition of fs1 and fs2 and writes the final result to fd.
C.57.3. Access
M S U
Always Always Always

C.57.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.57.5. IDL Operation

check_f_ok($encoding);
RoundingMode mode = rm_to_mode(rm, $encoding);
f[fd] = 32 add(f[fs1], f[fs2], mode);

C.57.6. Sail Operation

{
let rs1_val 32b = F or_X_S(rs1);
let rs2 val_32b = F_or_X_S(rs2);
match (select_instr_or_fcsr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm"');
let (fflags, rd_val_32b) : (bits(5), bits(32)) = match op {
FADD S => riscv_f32Add (rm_3b, rs1_val_32b, rs2 val 32b),
FSUB_S => riscv_f32Sub (rm_3b, rs1_val_32b, rs2_val_32b),
FMUL_S => riscv_f32Mul (rm_3b, rs1_val_32b, rs2_val_32b),
FDIV.S => riscv_f32Div (rm_3b, rs1 _val 32b, rs2 val 32b)
b
accrue_fflags(fflags);
F or X S(rd) = rd_val_32b;
RETIRE_SUCCESS

C.57.7. Exceptions
This instruction may result in the following synchronous exceptions:

¢ Illegallnstruction

118

C.58. fclass.d

Floating-Point Classify Double-Precision
This instruction is defined by:

(D D Zdinx)

C.58.1. Encoding

31 20 19 15 14 12 11 7 6 0

111000100000 fs1 001 xd 1010011

C.58.2. Description

The fclass.d instruction is defined analogously to its single-precision counterpart, but operates on double-precision operands. It examines the value
in floating-point register fs1 and writes to integer register xd a 10-bit mask that indicates the class of the floating point number.

The format of the mask is described in the table below. The corresponding bit in xd will be set if the property is true and clear otherwise. All other
bits in xd are cleared. Note that exactly one bit in xd will be set.
Table 9. Format of result of fclass instruction.
xd bit Meaning
fs1is -\infty.
fs1 is a negative normal number.
fs1 is a negative subnormal number.

fs1is -0.

= W N =, O

fs1 is +0.

fs1 is a positive subnormal number.
fs1 is a positive normal number.
fs1is+\infty.

fs1 is a signaling NaN.

© o0 4 o Ul

fs1is a quiet NaN.

C.58.3. Access

M S §)

Always Always Always

C.58.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.58.5. IDL Operation

C.58.6. Exceptions

This instruction does not generate synchronous exceptions.

119

C.59. fclass.s

Floating-Point Classify Single-Precision
This instruction is defined by:

F

C.59.1. Encoding

15 14 12 11 7 6 0
111000000000 fs1 001 xd 1010011

C.59.2. Description

The fclass.s instruction examines the value in floating-point register fs1 and writes to integer register xd a 10-bit mask that indicates the class of the
floating-point number.

The format of the mask is described in the table below. The corresponding bit in xd will be set if the property is true and clear otherwise. All other
bits in xd are cleared. Note that exactly one bit in xd will be set. fclass.s does not set the floating-point exception flags.
Table 10. Format of result of fclass instruction.
xd bit Meaning
fs11is -\infty.
fs1 is a negative normal number.
fs1 is a negative subnormal number.

fs1is -0.

= W N =, O

fs1 is +0.

fs1 is a positive subnormal number.
fs1 is a positive normal number.
fs1is +\infty.

fs1 is a signaling NaN.

© o0 4 o Ul

fs1is a quiet NaN.

C.59.3. Access

M S §)

Always Always Always

C.59.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.59.5. IDL Operation

check_f_ok($encoding);

Bits<32> sp_value = f[fs1][31:0];

if (is_sp_neg_inf?(sp_value)) {
X[xd] = 1 << 0;

} else if (is_sp_neg_norm?(sp_value)) {
X[xd] = 1 ‘< 1;

} else if (is_sp_neg_subnorm?(sp_value)) {
X[xd] = 1 ‘<< 2;

} else if (is_sp_neg_zero?(sp_value)) {
X[xd] = 1 ‘<< 3;

} else if (is_sp_pos_zero?(sp_value)) {
X[xd] = 1 ‘<< 4;

} else if (is_sp_pos_subnorm?(sp_value)) {
X[xd] = 1 ‘<< b5;

} else if (is_sp_pos_norm?(sp_value)) {
X[xd] = 1 ‘<< 6;

} else if (is_sp_pos_inf?(sp_value)) {
X[xd] =1 ‘<« 7;

120

} else if (is_sp_signaling_nan?(sp_value)) {
X[xd] = 1 ‘<< 8;

} else {
assert(is_sp_quiet_nan?(sp_value), "Unexpected SP value");
X[xd] = 1 ‘<< 9;

}

C.59.6. Sail Operation

{
let rs1_val X = X(rs1);
let rd_val_ S = rs1 _val X [31..0];
F(rd) = nan_box (rd_val_S);
RETIRE_SUCCESS
}

C.59.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

121

C.60. fcvt.d.s

Floating-Point Convert Single-Precision to Double-Precision
This instruction is defined by:

(D D Zdinx)

C.60.1. Encoding

15 14

010000100000 fs1 rm

12 11

fd

1010011

C.60.2. Description

The single-precision to double-precision conversion instruction, fcvt.d.s is encoded in the OP-FP major opcode space and both the source and
destination are floating-point registers. The xs2 field encodes the datatype of the source, and the fmt field encodes the datatype of the destination.

fcvt.d.s will never round.

C.60.3. Access

M S

Always Always

C.60.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.60.5. IDL Operation

C.60.6. Exceptions

This instruction does not generate synchronous exceptions.

122

Always

C.61. fcvt.d.w

Floating-Point Convert Word to Double-Precision
This instruction is defined by:

(D D Zdinx)

C.61.1. Encoding

15 14 12 11 7 6 0
110100100000 xsl rm fd 1010011

C.61.2. Description

The fcvt.d.w instruction converts a 32-bit signed integer, in integer register xs1 into a double-precision floating-point number in floating-point
register fd. Note fcvt.d.w always produces an exact result and is unaffected by rounding mode.

C.61.3. Access

M S U
Always Always Always

C.61.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.61.5. IDL Operation

C.61.6. Exceptions

This instruction does not generate synchronous exceptions.

123

C.62. fcvt.d.wu

Floating-Point Convert Unsigned Word to Double-Precision
This instruction is defined by:

(D D Zdinx)

C.62.1. Encoding

15 14 12 11 7 6 0
110100100001 xsl rm fd 1010011

C.62.2. Description

The fcvt.d.wu instruction converts a 32-bit unsigned integer in integer register xs1 into a double-precision floating-point number in floating-point
register fd. Note fcvt.d.wu always produces an exact result and is unaffected by rounding mode.

C.62.3. Access

M S U
Always Always Always

C.62.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.62.5. IDL Operation

C.62.6. Exceptions

This instruction does not generate synchronous exceptions.

124

C.63. fcvt.s.d

Floating-Point Convert Double-Precision to Single-Precision
This instruction is defined by:

(DO Zdinx)

C.63.1. Encoding

15 14

12 11

010000000001 fs1 rm

fd

1010011

C.63.2. Description

The fcvt.s.d instruction converts a double-precision floating-point number to a single-precision floating-point number. This is encoded in the OP-FP
major opcode space and both the source and destination are floating-point registers. The xs2 field encodes the datatype of the source, and the fmt

field encodes the datatype of the destination. fcvt.s.d rounds according to the rm field.

C.63.3. Access

M S

Always Always

C.63.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.63.5. IDL Operation

C.63.6. Exceptions

This instruction does not generate synchronous exceptions.

Always

125

C.64. fcvt.s.w

Floating-Point Convert Word to Single-Precision
This instruction is defined by:

F

C.64.1. Encoding

15 14

110100000000 xsl rm

12 11

fd

1010011

C.64.2. Description

The fcvt.s.w instruction converts a 32-bit signed integer in integer register xs1 into a floating-point number in floating-point register fd.

All floating-point to integer and integer to floating-point conversion instructions round according to the rm field.

A floating-point register can be initialized to floating-point positive zero using fcvt.s.w fd, x0@, which will never set any exception flags.

All floating-point conversion instructions set the Inexact exception flag if the rounded result differs from the operand value and the Invalid

exception flag is not set.

C.64.3. Access

M S

Always Always

C.64.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.64.5. IDL Operation

check_f_ok($encoding);

RoundingMode rounding_mode = rm_to_mode(rm, $encoding);
f[fd] = 132_to_f32(X[xs1], rounding_mode);
mark_f_state_dirty();

C.64.6. Sail Operation

{
assert(sizeof(xlen) >= 64);
let rs1_val LU = X(rs1)[63..0];
match (select_instr_or_fcsr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm"');
let (fflags, rd_val_S) = riscv_ui64ToF32 (rm_3b, rs1_val_LU);

accrue_fflags(fflags);

F or X S(rd) = rd_val_S;
RETIRE _SUCCESS

C.64.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

126

Always

C.65. fcvt.s.wu

Floating-Point Convert Unsigned Word to Single-Precision
This instruction is defined by:

F

C.65.1. Encoding

15 14

110100000001 xsl rm

12 11

fd

1010011

C.65.2. Description

The fcvt.s.wu instruction converts a 32-bit unsigned integer in integer register xs1 into a floating-point number in floating-point register fd.

All floating-point to integer and integer to floating-point conversion instructions round according to the rm field.

A floating-point register can be initialized to floating-point positive zero using fcvt.s.w rd, x@, which will never set any exception flags.

All floating-point conversion instructions set the Inexact exception flag if the rounded result differs from the operand value and the Invalid

exception flag is not set.

C.65.3. Access

M S

Always Always
C.65.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.65.5. IDL Operation

check_f_ok($encoding);

RoundingMode rounding_mode = rm_to_mode(rm, $encoding);
flfd] = vi32_to_f32(X[xs1], rounding_mode);
mark_f_state_dirty();

C.65.6. Sail Operation

{
assert(sizeof(xlen) >= 64);
let rs1_val LU = X(rs1)[63..0];
match (select_instr_or_fcsr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm"');
let (fflags, rd_val_S) = riscv_ui64ToF32 (rm_3b, rs1_val_LU);

accrue_fflags(fflags);

F or X S(rd) = rd_val_S;
RETIRE _SUCCESS

C.65.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

Always

127

C.66. fcvt.w.d

Floating-Point Convert Double-Precision to Word
This instruction is defined by:

(D D Zdinx)

C.66.1. Encoding

15 14 12 11 7 6 0
110000100000 fs1 rm xd 1010011

C.66.2. Description

The fcvt.w.d instruction converts a double-precision floating-point number in floating-point register fs1 to a signed 32-bit integer, in integer register
xd.

C.66.3. Access

M S U
Always Always Always

C.66.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> xd = $encoding[11:7];

C.66.5. IDL Operation

C.66.6. Exceptions

This instruction does not generate synchronous exceptions.

128

C.67. fcvt.w.s

Floating-Point Convert Single-Precision to Word
This instruction is defined by:

F

C.67.1. Encoding

15 14 12 11 7 6 0
110000000000 fs1 rm xd 1010011

C.67.2. Description

The fcvt.w.s instruction converts a floating-point number in floating-point register fs1 to a signed 32-bit integer in integer register xd. For XLEN >32,
fecvt.w.s sign-extends the 32-bit result to the destination register width.

If the rounded result is not representable as a 32-bit signed integer, it is clipped to the nearest value and the invalid flag is set.

The range of valid inputs and behavior for invalid inputs are:

Value
Minimum valid input (after rounding) -2°31
Maximum valid input (after rounding) 2031 - 1
Output for out-of-range negative input -2M31
Output for <code>-∞</code> -2731
Output for out-of-range positive input 2031 - 1
Output for <code>+∞</code> for <code>NaN</code> 2031 - 1

All floating-point to integer and integer to floating-point conversion instructions round according to the rm field.
A floating-point register can be initialized to floating-point positive zero using fcvt.s.w xd, x0, which will never set any exception flags.

All floating-point conversion instructions set the Inexact exception flag if the rounded result differs from the operand value and the Invalid
exception flag is not set.

C.67.3. Access

M S §)

Always Always Always
C.67.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> xd = $encoding[11:7];

C.67.5. IDL Operation

check_f_ok($encoding);
RoundingMode rounding_mode = rm_to_mode(rm, $encoding);
X[xd] = f32_to_i32(f[fs1], rounding_mode);

C.67.6. Sail Operation

{
assert(sizeof(xlen) >= 64);
let rs1_val LU = X(rs1)[63..0];
match (select_instr_or_fesr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm"');
let (fflags, rd_val_S) = riscv_ui64ToF32 (rm_3b, rs1_val_LU);

129

accrue_fflags(fflags);
F or X S(rd) = rd_val_S;
RETIRE _SUCCESS

}
}
}

C.67.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

130

C.68. fcvt.wu.d

Floating-Point Convert Double-Precision to Unsigned Word
This instruction is defined by:

(D D Zdinx)

C.68.1. Encoding

15 14 12 11 7 6 0
110000100001 fs1 rm xd 1010011

C.68.2. Description

The fcvt.wu.d instruction converts a double-precision floating-point number in floating-point register fs1 to an unsigned 32-bit integer, in integer
register xd.

C.68.3. Access

M S U
Always Always Always

C.68.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> xd = $encoding[11:7];

C.68.5. IDL Operation

C.68.6. Exceptions

This instruction does not generate synchronous exceptions.

131

C.69. fcvt.wu.s

Floating-Point Convert Single-Precision to Unsigned Word
This instruction is defined by:

F

C.69.1. Encoding

15 14 12 11 7 6 0
110000000001 fs1 rm xd 1010011

C.69.2. Description

Converts a floating-point number in floating-point register fs1 to an unsigned 32-bit integer in integer register xd. For XLEN >32, fcvt.wu.s sign-
extends the 32-bit result to the destination register width.

If the rounded result is not representable as a 32-bit unsigned integer, it is clipped to the nearest value and the invalid flag is set.

The range of valid inputs and behavior for invalid inputs are:

Value
Minimum valid input (after rounding) 0
Maximum valid input (after rounding) 2032 -1
Output for out-of-range negative input 0
Output for <code>-∞</code> 0
Output for out-of-range positive input 2032 -1
Output for <code>+∞</code> for <code>NaN</code> 2032 -1

All floating-point to integer and integer to floating-point conversion instructions round according to the rm field.
A floating-point register can be initialized to floating-point positive zero using fcvt.s.w xd, x0, which will never set any exception flags.

All floating-point conversion instructions set the Inexact exception flag if the rounded result differs from the operand value and the Invalid
exception flag is not set.

C.69.3. Access

M S §)

Always Always Always
C.69.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> xd = $encoding[11:7];

C.69.5. IDL Operation

check_f_ok($encoding);
RoundingMode rounding_mode = rm_to_mode(rm, $encoding);
X[xd] = f32_to_ui32(f[fs1], rounding_mode);

C.69.6. Sail Operation

{
assert(sizeof(xlen) >= 64);
let rs1_val LU = X(rs1)[63..0];
match (select_instr_or_fesr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm"');
let (fflags, rd_val_S) = riscv_ui64ToF32 (rm_3b, rs1_val_LU);

132

accrue_fflags(fflags);
F or X S(rd) = rd_val_S;
RETIRE _SUCCESS

}
}
}

C.69.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

133

C.70. fdiv.d

Floating-Point Divide Double-Precision
This instruction is defined by:

(D D Zdinx)

C.70.1. Encoding

31 25 24 15 14 12 11 7 6 0

0001101 fs2 fs1 rm fd 1010011

C.70.2. Description

The fdiv.d instruction performs the double-precision floating-point division of fs1 by fs2. It is defined analogously to its single-precision counterpart,
but operates on double-precision operands and produces double-precision results.

C.70.3. Access

M S U
Always Always Always

C.70.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.70.5. IDL Operation

C.70.6. Exceptions

This instruction does not generate synchronous exceptions.

134

C.71. fdiv.s

Floating-Point Divide Single-Precision

This instruction is defined by:

F
C.71.1. Encoding
31 25 24 20 19 15 14 12 11 0
0001100 fs2 fs1 rm fd 1010011
C.71.2. Description
The fdiv.s instruction performs the single-precision floating-point division of fs1 by fs2, and writes the final result to fd.
C.71.3. Access
M S U
Always Always Always

C.71.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.71.5. IDL Operation

C.71.6. Sail Operation

{
let rs1 val 32b = F or_X _S(rs1);
let rs2_val_32b = F_or_X_S(rs2);
match (select instr_or_fesr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm');
let (fflags, rd_val_32b) : (bits(5), bits(32)) = match op {
FADD S => riscv_f32Add (rm_3b, rs1_val 32b, rs2 val 32b),
FSUB_S => riscv_f32Sub (rm_3b, rs1_val_32b, rs2 val 32b),
FMUL_ S => riscv_f32Mul (rm_3b, rs1_val_32b, rs2 val 32b),
FDIV_ S => riscv_f32Div (rm_3b, rs1_val_32b, rs2 val_32b)
Iis
accrue_fflags(fflags);
F_ or_X S(rd) = rd_val_32b;
RETIRE_SUCCESS

C.71.7. Exceptions

This instruction does not generate synchronous exceptions.

135

C.72. fence

Memory ordering fence

This instruction is defined by:

I

C.72.1. Encoding

31

20 19

15 14

12 11

fm

28 27

pred

24 23

Succ

000

0001111

C.72.2. Description
Orders memory operations.

The fence instruction is used to order device I/O and memory accesses as viewed by other RISC-V harts and external devices or coprocessors. Any
combination of device input (I), device output (O), memory reads (R), and memory writes (W) may be ordered with respect to any combination of the
same. Informally, no other RISC-V hart or external device can observe any operation in the successor set following a fence before any operation in
the predecessor set preceding the fence.

The predecessor and successor fields have the same format to specify operation types:

pred succ
27 26 25 24 23 22 21 20
PI PO PR PW SI SO SR SW

Table 11. Fence mode encoding
fmfield Mnemonic Meaning

0000 none Normal Fence

1000 TSO With FENCE RW,RW: exclude write-to-read ordering; otherwise: Reserved for future use.

other Reserved for future use.

When the mode field fim is 9001 and both the predecessor and successor sets are '/RW’, then the instruction acts as a special-case fence.tso. fence.tso
orders all load operations in its predecessor set before all memory operations in its successor set, and all store operations in its predecessor set
before all store operations in its successor set. This leaves non-AMO store operations in the 'fence.tso’s predecessor set unordered with non-AMO
loads in its successor set.

When mode field fm is not 0001, or when mode field fim is 0001 but the pred and succ fields are not both 'RW" (0x3), then the fence acts as a baseline
fence (e.g., fm is effectively 0000). This is unaffected by the FIOM bits, described below (implicit promotion does not change how fence.tso is decoded).

The xs1 and xd fields are unused and ignored.
In modes other than M-mode, fence is further affected by menvcfg. FIOM, senvcfg. FIOM<% if ext?(:H) %>, and/or henvcfg. FIOM<% end %> as follows:

Table 12. Effective PR/PW/SR/SW in (H)S-mode

menvcfg. FIOM pred.PI - effective PR
pred.P0 - effective PW
succ.SI - effective SR

succ.S0 — effective SW
0 - from encoding
1 0 from encoding
1 1 1

Table 13. Effective PR/PW/SR/SW in U-mode

menvcfg.FIOM senvcfg.FIOM pred.PI

effective PR

pred.P0 - effective PW
succ.SI - effective SR
succ.S0 — effective SW
0 0 - from encoding
0 1 0 from encoding
0 1 1 1
1 - 0 from encoding

136

menvcfg.FIOM senvcfg.FIOM pred.PI - effective PR
pred.P0 effective PW
succ.SI — effective SR
succ.S0 — effective SW

i

1 - 1 1
<%- if ext?(:H) -%> .Effective PR/PW/SR/SW in VS-mode and VU-mode

menvcfg.FIOM henvcfg.FIOM pred.PI - effective PR
pred.P0 - effective PW
succ.SI - effective SR
succ.SO - effective SW

0 0 - from encoding
0 1 0 from encoding
0 1 1 1
1 - 0 from encoding
1 - 1 1
<%- end -%>
C.72.3. Access
M S U
Always Always Always

C.72.4. Decode Variables

Bits<4> fm = $encoding[31:28];
Bits<4> pred = $encoding[27:24];
Bits<4> succ = $encoding[23:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.72.5. IDL Operation
Boolean pred_i = pred[3] == 1;
Boolean pred_o = pred[2] == 1;
Boolean pred_r = pred[1] == 1;
Boolean pred_w = pred[0] == 1;
Boolean succ_i = succ[3] == 1;
Boolean succ_o = succ[2] == 1;
Boolean succ_r = succ[1] == 1;
Boolean succ_w = succ[@] == 1;

if (mode() == PrivilegeMode::S) {
if (CSR[menvcfg].FIOM == 1) {
if (pred_i) {
pred_r = true;
}
if (pred_o) {
pred_w = true;
}
if (succ_i) {
succ_r = true;
}
if (succ_o) {
succ_w = true;
}
}
} else if (mode() == PrivilegeMode::U) {
if ((CSR[menvcfg].FIOM | CSR[senvcfg].FIOM) == 1) {
if (pred_i) {
pred_r = true;
}
if (pred_o) {
pred_w = true;
}
if (succ_i) {

137

} else if (mode() ==

}

succ_r = true;

}

if (succ_o) {
succ_w = true;

}
}

PrivilegeMode::VS || mode() == PrivilegeMode::VU) {

if ((CSR[menvcfg].FIOM | CSR[henvcfg].FIOM) == 1) {
if (pred_i) {

pred_r =

}

if (pred_o) {
pred_w = true;

}

if (succ_i) {
succ_r = true;

}

if (succ_o) {
succ_w = true;

}
}

true;

fence(pred_i, pred_o, pred_r, pred_w, succ_i, succ_o, succ_r, succ_w);

C.72.6. Sail Operation

(_ : bits(2) @ @b11, _
(_ : bits(2) @ ob1o,
(_ : bits(2) @ @b10,
(_ @ bits(2) @ 0b11,
(_ : bits(2) @ 0b0o1,
(_ : bits(2) @ 0b0o1,
(_ : bits(2) @ 0b11,
(_ : bits(2) @ ob10,
(_ : bits(2) @ 0be1,
(_ : bits(4) ,
(_ : bits(2) @ 0boo,
()}
s
RETIRE_SUCCESS
}
C.72.7. Exceptions

// If the FIOM bit in menvcfg/senvcfg is set then the I/0 bits can imply R/W.
let fiom = is_fiom_active();

let pred
let succ =

match (pred, succ) {

: bits(2) @
: bits(2) @
: bits(2) @
: bits(2) @
: bits(2) @
: bits(2) @
: bits(2) @
: bits(2) @
: bits(2) @

: bits(2) @
: bits(4)

effective_fence_set(pred, fiom);
effective _fence_set(succ,

fiom);
0b11) => __barrier(Barrier_RISCV_rw_rw()),
0b11) => __barrier(Barrier_RISCV_ r_rw()),
0b10) => _barrier(Barrier RISCV r_r()),
0b01) => _barrier(Barrier_RISCV_rw w()),
0b01) => _barrier(Barrier RISCV w w()),
0b11) => __barrier(Barrier_RISCV_w_rw()),
0b10) => __barrier(Barrier_RISCV_ rw r()),
0b01) => __barrier(Barrier_RISCV_r_w()),
0b10) => __barrier(Barrier_RISCV_w_r()),
0b00) => (),

) => (0,

_ =>{ print("FIXME: unsupported fence");

This instruction does not generate synchronous exceptions.

138

C.73. fence.i

Instruction fence
This instruction is defined by:

Zifencei

C.73.1. Encoding

15 14

12 11

001

0001111

C.73.2. Description

The FENCE.I instruction is used to synchronize the instruction and data streams. RISC-V does not guarantee that stores to instruction memory will be
made visible to instruction fetches on a RISC-V hart until that hart executes a FENCE.I instruction. A FENCE.I instruction ensures that a subsequent
instruction fetch on a RISC-V hart will see any previous data stores already visible to the same RISC-V hart. FENCE.I does not ensure that other RISC-V
harts' instruction fetches will observe the local hart’s stores in a multiprocessor system. To make a store to instruction memory visible to all RISC-V
harts, the writing hart also has to execute a data FENCE before requesting that all remote RISC-V harts execute a FENCE.L

The unused fields in the FENCE.I instruction, imm/[11:0], xs1, and xd, are reserved for finer-grain fences in future extensions. For forward

compatibility, base implementations shall ignore these fields, and standard software shall zero these fields.

Because FENCE.I only orders stores with a hart’s own instruction fetches, application code should only rely upon FENCE.I if the
0 application thread will not be migrated to a different hart. The EEI can provide mechanisms for efficient multiprocessor instruction-

stream synchronization.

C.73.3. Access

M

Always
C.73.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.73.5. IDL Operation

ifence();

C.73.6. Sail Operation

{ /* __barrier(Barrier _RISCV_i); */ RETIRE_SUCCESS }

C.73.7. Exceptions

This instruction does not generate synchronous exceptions.

Always

Always

139

C.74. fence.tso
Memory ordering fence, total store ordering
This instruction is defined by:

I

C.74.1. Encoding

31 20 19 15 14 12 11 7 6 0

100000110011 xsl 000 xd 0001111

C.74.2. Description
Orders memory operations.

fence.tso orders all load operations in its predecessor set before all memory operations in its successor set, and all store operations in its predecessor
set before all store operations in its successor set. This leaves non-AMO store operations in the 'fence.tso’s predecessor set unordered with non-AMO
loads in its successor set.

The xs1 and xd fields are unused and ignored.

In modes other than M-mode, fence.tso is further affected by menvcfg.FIOM, senvcfg. FIOM<% if ext?(:H) %>, and/or henvcfg. FIOM<% end %>.

C.74.3. Access

M S U
Always Always Always

C.74.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.74.5. IDL Operation

fence_tso();

C.74.6. Sail Operation

{
match (pred, succ) {
(_ : bits(2) @ @b11, _ : bits(2) @ 0b11) => sail _barrier(Barrier_RISCV tso),
(_ : bits(2) @ 0b0@, _ : bits(2) @ 0b00) => (),
_ =>{ print("FIXME: unsupported fence");
O}
b
RETIRE_SUCCESS
}
C.74.7. Exceptions

This instruction does not generate synchronous exceptions.

140

C.75. feq.d

Floating-Point Equal Double-Precision
This instruction is defined by:

(D D Zdinx)

C.75.1. Encoding

15 14 12 11 7 6 0
1010001 fs2 fs1 010 xd 1010011

C.75.2. Description

The feq.d instruction writes 1 to xd if fs1 and fs2 are equal, and 0 otherwise. It is defined analogously to its single-precision counterpart, but operates
on double-precision operands.

C.75.3. Access

M S U
Always Always Always

C.75.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.75.5. IDL Operation

C.75.6. Exceptions

This instruction does not generate synchronous exceptions.

141

C.76. feq.s

Floating-Point Equal Single-Precision
This instruction is defined by:

F

C.76.1. Encoding

15 14 12 11 7 6 0
1010000 fs2 fs1 010 xd 1010011

C.76.2. Description

The feq.s instruction writes 1 to xd if fs1 and fs2 are equal, and 0 otherwise. If either operand is NaN, the result is 0 (not equal). If either operand is a
signaling NaN, the invalid flag is set. Positive zero is considered equal to negative zero.

C.76.3. Access

M S U
Always Always Always

C.76.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.76.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value_a = f[fs1][31:0];
Bits<32> sp_value_b = f[fs1][31:0];
if (is_sp_nan?(sp_value_a) || is_sp_nan?(sp_value_b)) {
if (is_sp_signaling_nan?(sp_value_a) || is_sp_signaling_nan?(sp_value_b)) {
set_fp_flag(FpFlag::NV);

}

X[xd] = 0;
} else {

X[xd] = sp_value_a == sp_value_b) || ((sp_value_a | sp_value_b)[30:0] ==0 ? 1 : 0;
}

C.76.6. Sail Operation

{
let rs1_val S
let rs2 val_S

F or X S(rs1);
F or X S(rs2);

let (fflags, rd_val) : (bits_fflags, bool) =
riscv_f32Le (rs1_val S, rs2 val. S);

accrue_fflags(fflags);
X(rd) = zero_extend(bool_to_bits(rd val));

RETIRE_SUCCESS
}

C.76.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

142

C.77. fld

Floating-Point Load Double-Precision
This instruction is defined by:

D

C.77.1. Encoding

31 20 19

15 14

imm xsl 011

12 11

fd

0000111

C.77.2. Description

The fld instruction loads a double-precision floating-point value from memory into floating-point register fd. It is guaranteed to execute atomically if
the effective address is naturally aligned and XLEN>64. It doesn’t modify the bits being transferred; in particular, the payloads of non-canonical

NaNs are preserved.

C.77.3. Access

M S

Always Always

C.77.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.77.5. IDL Operation

C.77.6. Exceptions

This instruction does not generate synchronous exceptions.

Always

143

C.78. fle.d

Floating-Point Less Than or Equal Double-Precision
This instruction is defined by:

(D D Zdinx)

C.78.1. Encoding

15 14 12 11 7 6 0
1010001 fs2 fs1 000 xd 1010011

C.78.2. Description

The fle.d instruction writes 1 to xd if fs1 is less than or equal to fs2, and 0 otherwise. It is defined analogously to its single-precision counterpart, but
operates on double-precision operands.

C.78.3. Access

M S U
Always Always Always

C.78.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.78.5. IDL Operation

C.78.6. Exceptions

This instruction does not generate synchronous exceptions.

144

C.79. fle.s

Floating-Point Less Than or Equal Single-Precision
This instruction is defined by:

F

C.79.1. Encoding

15 14 12 11 7 6 0
1010000 fs2 fs1 000 xd 1010011

C.79.2. Description

The fle.s instruction writes 1 to xd if fs1 is less than or equal to fs2, and 0 otherwise. If either operand is NaN, the result is 0 (not equal). If either
operand is a NaN (signaling or quiet), the invalid flag is set. Positive zero and negative zero are considered equal.

C.79.3. Access

M S U
Always Always Always

C.79.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.79.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value_a = f[fs1][31:0];
Bits<32> sp_value_b = f[fs2][31:0];
if (is_sp_nan?(sp_value_a) || is_sp_nan?(sp_value_b)) {
if (is_sp_signaling_nan?(sp_value_a) || is_sp_signaling_nan?(sp_value_b)) {
set_fp_flag(FpFlag::NV);

}

X[xd] = 0;
} else {

X[xd] = sp_value_a == sp_value_b) || ((sp_value_a | sp_value_b)[30:0] ==0 ? 1 : 0;
}

C.79.6. Sail Operation

{
let rs1_val S
let rs2 val_S

F or X S(rs1);
F or X S(rs2);

let (fflags, rd_val) : (bits_fflags, bool) =
riscv_f32Le (rs1_val S, rs2 val. S);

accrue_fflags(fflags);
X(rd) = zero_extend(bool_to_bits(rd val));

RETIRE_SUCCESS
}

C.79.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

145

C.80. flit.d

Floating-Point Less Than Double-Precision
This instruction is defined by:

(D D Zdinx)

C.80.1. Encoding

15 14 12 11 7 6 0
1010001 fs2 fs1 001 xd 1010011

C.80.2. Description

The flt.d instruction writes 1 to xd if fs1 is less than fs2, and 0 otherwise. It is defined analogously to its single-precision counterpart, but operates on
double-precision operands.

C.80.3. Access

M S U
Always Always Always

C.80.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.80.5. IDL Operation

C.80.6. Exceptions

This instruction does not generate synchronous exceptions.

146

C.81. flt.s

Floating-Point Less Than Single-Precision
This instruction is defined by:

F

C.81.1. Encoding

15 14 12 11 7 6 0
1010000 fs2 fs1 001 xd 1010011

C.81.2. Description

The flt.s instruction writes 1 to xd if fs1 is less than fs2, and 0 otherwise. If either operand is NaN, the result is 0 (not equal). If either operand is a
NaN (signaling or quiet), the invalid flag is set.

C.81.3. Access

M S §)

Always Always Always

C.81.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.81.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value_a = f[fs1][31:0];
Bits<32> sp_value_b = f[fs2][31:0];
if (is_sp_nan?(sp_value_a) || is_sp_nan?(sp_value_b)) {
set_fp_flag(FpFlag::NV);
X[xd] = 0;
} else {
Boolean sign_a = sp_value_a[31] == 1;
Boolean sign_b = sp_value_b[31] == 1;
Boolean a_lt_b = (sign_a != sign_b) ? (sign_a && sp_value_a[30:0] | sp_value_b[30:0]) != @ : sp_value_a != sp_value_b) && (sign_a
I= (sp_value_a < sp_value_b);
X[xd] = a 1ltb?1:0;
+

C.81.6. Sail Operation

{
let rs1_val S
let rs2 val_S

F or X S(rs1);
F or X S(rs2);

let (fflags, rd_val) : (bits_fflags, bool) =
riscv_f32Le (rs1 val S, rs2 val S);

accrue_fflags(fflags);
X(rd) = zero_extend(bool_to_bits(rd val));

RETIRE_SUCCESS
}

C.81.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

147

C.82. flw

Floating-Point Load Single-Precision
This instruction is defined by:

F

C.82.1. Encoding

31 20 19 15 14 12 11 7 6 0

imm xsl 010 fd 0000111

C.82.2. Description

The flw instruction loads a single-precision floating-point value from memory at address xs1 + imm into floating-point register fd. It does not modify
the bits being transferred; in particular, the payloads of non-canonical NaNs are preserved.

C.82.3. Access

M S U
Always Always Always

C.82.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.82.5. IDL Operation

check_f_ok($encoding);
XReg virtual_address = X[xs1] + $signed(imm);
Bits<32> sp_value = read_memory<32>(virtual_address, $encoding);
if (implemented?(ExtensionName::D)) {
f[fd] = nan_box<32, 64>(sp_value);
} else {
f[fd] = sp_value;
}
mark_f_state_dirty();

C.82.6. Sail Operation

{

let offset : xlenbits = sign_extend(imm);
/* Get the address, X(rs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(rs1, offset, Read(Data), width) {
Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
Ext DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Read(Data)) {
TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(addr,) => {
let (ag, r1, res) = (false, false, false);
match (width) {
BYTE => { handle_illegal(); RETIRE_FAIL },
HALF =>
process_fload16(rd, vaddr, mem_read(Read(Data), addr, 2, aq, rl, res)),
WORD =>
process_fload32(rd, vaddr, mem_read(Read(Data), addr, 4, aqg, rl, res)),
DOUBLE if sizeof(flen) >= 64 =>
process_fload64(rd, vaddr, mem_read(Read(Data), addr, 8, aqg, rl, res)),
_ => report_invalid_width(__FILE__, __LINE__, width, "floating point load"),

148

C.82.7. Exceptions

This instruction may result in the following synchronous exceptions:

Illegallnstruction

* LoadAccessFault

LoadAddressMisaligned

* LoadPageFault

149

C.83. fmadd.d

Floating-Point Multiply-Add Double-Precision

This instruction is defined by:

(D O Zdinx)
C.83.1. Encoding
31 27 26 25 24 20 19 15 14 12 11
fs3 01 fs2 fsl rm fd 1000011
C.83.2. Description
The fmadd.d instruction multiplies the values in fs1 and fs2, adds the value in fs3, and writes the final result to fd.
C.83.3. Access
M S U
Always Always Always

C.83.4. Decode Variables

Bits<h>
Bits<h>
Bits<h>
Bits<3>
Bits<h>

fs3 = $encoding[31:27];
fs2 = $encoding[24:20];
fs1 = $encoding[19:15];
rm = $encoding[14:12];
fd = $encoding[11:7];

C.83.5. IDL Operation

C.83.6. Exceptions

This instruction does not generate synchronous exceptions.

150

C.84. fmadd.s

Floating-Point Multiply-Add Single-Precision

This instruction is defined by:

F
C.84.1. Encoding
31 27 26 25 24 20 19 15 14 12 11 0
fs3 00 fs2 fsl rm fd 1000011
C.84.2. Description
The fmadd.s multiplies the values in fs1 and fs2, adds the value in fs3, and writes the final result to fd.
C.84.3. Access
M S
Always Always Always

C.84.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.84.5. IDL Operation

C.84.6. Sail Operation

let rs1_val_32b
let rs2 val 32b
let rs3_val _32b

F or_X S(rs1);
F or X S(rs2);
F or_X S(rs3);

match (select_instr_or_fesr_rm (rm)) {

}
}

C.84.7. Exceptions

match op {
FMADD_S
FMSUB_S

b

accrue_fflags(fflags);
F or X S(rd) = rd_val_32b;
RETIRE _SUCCESS

=> riscv_f32MulAdd (rm_3b,
=> riscv_f32MulAdd (rm_3b,
FNMSUB_S => riscv_f32MulAdd (rm_3b,
FNMADD_S => riscv_f32MulAdd (rm_3b,

None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm');
let (fflags, rd_val_32b) : (bits(5), bits(32)) =

rs1_val_32b, rs2 val _32b, rs3_val_32b),

rs1_val_32b, rs2_val_32b, negate_S (rs3_val_32b)),
negate_S (rs1_val_32b), rs2_val_32b, rs3_val_32b),
negate_S (rs1_val_32b), rs2_val_32b, negate_S (rs3_val_32b))

This instruction does not generate synchronous exceptions.

151

C.85. fmax.d

Floating-Point Maximum-Number Double-Precision

This instruction is defined by:

(D D Zdinx)

C.85.1. Encoding

31 25 24

15 14

12 11

0010101

001

fd

1010011

C.85.2. Description

The fmax.d instruction writes larger of fs1 and fs2 to fd. For the purposes of this instruction, the value -0.0 is considered to be less than the value
+0.0. If both inputs are NaNs, the result is the canonical NaN. If only one operand is a NaN, the result is the non-NaN operand. Signaling NaN inputs
set the invalid operation exception flag, even when the result is not NaN.

C.85.3. Access
M
Always

C.85.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.85.5. IDL Operation

C.85.6. Exceptions

This instruction does not generate synchronous exceptions.

152

Always

Always

C.86. fmax.s

Floating-Point Maximum-Number Single-Precision
This instruction is defined by:

F

C.86.1. Encoding

31 25 24 15 14

12 11

0010100 fs2 fs1 001

fd

1010011

C.86.2. Description

The fmax.s instruction writes larger of fs1 and fs2 to fd. For the purposes of this instruction, the value -0.0 is considered to be less than the value
+0.0. If both inputs are NaNs, the result is the canonical NaN. If only one operand is a NaN, the result is the non-NaN operand. Signaling NaN inputs

set the invalid operation exception flag, even when the result is not NaN.

Note that in version 2.2 of the F extension, the fmin.s and fmax.s instructions were amended to implement the proposed IEEE 754-
o 201x minimumNumber and maximumNumber operations, rather than the IEEE 754-2008 minNum and maxNum operations. These operations

differ in their handling of signaling NaNs.

C.86.3. Access

M S
Always Always

C.86.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.86.5. IDL Operation

C.86.6. Sail Operation

{
let rs1_val_S
let rs2 val S

F or X S(rs1);
F or X S(rs2);

let (fflags, rd_val) : (bits_fflags, bool) =
riscv_f32Le (rs1_val S, rs2 val.S);

accrue_fflags(fflags);
X(rd) = zero_extend(bool_to_bits(rd val));

RETIRE_SUCCESS
}

C.86.7. Exceptions

This instruction does not generate synchronous exceptions.

Always

153

C.87. fmin.d

Floating-Point Minimum-Number Double-Precision

This instruction is defined by:

(D D Zdinx)

C.87.1. Encoding

31 25 24

15 14

12 11

0010101

000

fd

1010011

C.87.2. Description

The fmin.d instruction writes smaller of fs1 and fs2 to fd. For the purposes of this instruction, the value -0.0 is considered to be less than the value
+0.0. If both inputs are NaNs, the result is the canonical NaN. If only one operand is a NaN, the result is the non-NaN operand. Signaling NaN inputs
set the invalid operation exception flag, even when the result is not NaN.

C.87.3. Access
M
Always

C.87.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.87.5. IDL Operation

C.87.6. Exceptions

This instruction does not generate synchronous exceptions.

154

Always

Always

C.88. fmin.s

Floating-Point Minimum-Number Single-Precision
This instruction is defined by:

F

C.88.1. Encoding

31 25 24 15 14

12 11

0010100 fs2 fs1 000

fd

1010011

C.88.2. Description

The fmin.s instruction writes smaller of fs1 and fs2 to fd. For the purposes of this instruction, the value -0.0 is considered to be less than the value
+0.0. If both inputs are NaNs, the result is the canonical NaN. If only one operand is a NaN, the result is the non-NaN operand. Signaling NaN inputs

set the invalid operation exception flag, even when the result is not NaN.

Note that in version 2.2 of the F extension, the fmin.s and fmax.s instructions were amended to implement the proposed IEEE 754-
o 201x minimumNumber and maximumNumber operations, rather than the IEEE 754-2008 minNum and maxNum operations. These operations

differ in their handling of signaling NaNs.

C.88.3. Access

M S
Always Always

C.88.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.88.5. IDL Operation

C.88.6. Sail Operation

{
let rs1_val_S
let rs2 val S

F or X S(rs1);
F or X S(rs2);

let (fflags, rd_val) : (bits_fflags, bool) =
riscv_f32Le (rs1_val S, rs2 val.S);

accrue_fflags(fflags);
X(rd) = zero_extend(bool_to_bits(rd val));

RETIRE_SUCCESS
}

C.88.7. Exceptions

This instruction does not generate synchronous exceptions.

Always

155

C.89. fmsub.d

Floating-Point Multiply-Subtract Double-Precision

This instruction is defined by:

(D O Zdinx)
C.89.1. Encoding
31 27 26 25 24 20 19 15 14 12 11
fs3 01 fs2 fsl rm fd 1000111
C.89.2. Description
The fmsub.d instruction multiplies the values in fs1 and fs2, subtracts the value in fs3, and writes the final result to fd.
C.89.3. Access
M S U
Always Always Always

C.89.4. Decode Variables

Bits<h>
Bits<h>
Bits<h>
Bits<3>
Bits<h>

fs3 = $encoding[31:27];
fs2 = $encoding[24:20];
fs1 = $encoding[19:15];
rm = $encoding[14:12];
fd = $encoding[11:7];

C.89.5. IDL Operation

C.89.6. Exceptions

This instruction does not generate synchronous exceptions.

156

C.90. fmsub.s

Floating-Point Multiply-Subtract Single-Precision

This instruction is defined by:

F
C.90.1. Encoding
31 27 26 25 24 20 19 15 14 12 11 0
fs3 00 fs2 fsl rm fd 1000111
C.90.2. Description
The fmsub.s multiplies the values in fs1 and fs2, subtracts the value in fs3, and writes the final result to fd.
C.90.3. Access
M S
Always Always Always

C.90.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.90.5. IDL Operation

C.90.6. Sail Operation

let rs1_val_32b
let rs2 val 32b = F or_X S(rs2);
let rs3_val 32b = F_or_X_S(rs3);
match (select_instr_or_fesr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm');
let (fflags, rd_val_32b) : (bits(5), bits(32)) =
match op {

F or_X S(rs1);

FMADD_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2 val _32b, rs3_val_32b),

FMSUB_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2_val_32b, negate_S (rs3_val_32b)),
FNMSUB_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, rs3_val_32b),
FNMADD_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, negate_S (rs3_val_32b))

Ir5
accrue_fflags(fflags);
F or X S(rd) = rd_val_32b;
RETIRE_SUCCESS
}
}
}

C.90.7. Exceptions

This instruction does not generate synchronous exceptions.

157

C.91. fmul.d

Floating-Point Multiply Double-Precision
This instruction is defined by:

(D D Zdinx)

C.91.1. Encoding

31 25 24 15 14 12 11 7 6 0

0001001 fs2 fs1 rm fd 1010011

C.91.2. Description

The fmul.d instruction performs the double-precision floating-point multiplication between fs1 and fs2. It is defined analogously to its single-
precision counterpart, but operates on double-precision operands and produces double-precision results.

C.91.3. Access

M S U
Always Always Always

C.91.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.91.5. IDL Operation

C.91.6. Exceptions

This instruction does not generate synchronous exceptions.

158

C.92. fmul.s

Floating-Point Multiply Single-Precision
This instruction is defined by:

F

C.92.1. Encoding

31 25 24

0001000 fs2 fs1

15 14

rm

12 11

fd

1010011

C.92.2. Description

The fmul.s instruction performs the single-precision floating-point multiplication between fs1 and fs2, and writes the result in fd.

C.92.3. Access

M S
Always Always

C.92.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.92.5. IDL Operation

C.92.6. Sail Operation

{
let rs1 val 32b = F or_X _S(rs1);
let rs2_val_32b = F_or_X_S(rs2);
match (select instr_or_fesr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm');
let (fflags, rd_val_32b) : (bits(5), bits(32)) = match op {
FADD S => riscv_f32Add (rm_3b, rs1_val 32b, rs2 val 32b),
FSUB_S => riscv_f32Sub (rm_3b, rs1_val_32b, rs2 val 32b),
FMUL_ S => riscv_f32Mul (rm_3b, rs1_val_32b, rs2 val 32b),
FDIV_ S => riscv_f32Div (rm_3b, rs1_val_32b, rs2 val_32b)
Iis
accrue_fflags(fflags);
F_ or_X S(rd) = rd_val_32b;
RETIRE_SUCCESS

C.92.7. Exceptions

This instruction does not generate synchronous exceptions.

Always

159

C.93. fmv.w.x

Floating-Point Move Single-Precision Word from Integer Register

This instruction is defined by:

F

C.93.1. Encoding

111100000000 xsl

15 14
000

12 11

fd

1010011

C.93.2. Description

The fmv.w.x instruction moves the single-precision value encoded in IEEE 754-2008 standard encoding from the lower 32 bits of integer register xs1 to
the floating-point register fd. The bits are not modified in the transfer, and in particular, the payloads of non-canonical NaNs are preserved.

C.93.3. Access

M

Always
C.93.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.93.5. IDL Operation

check_f_ok($encoding);

Bits<32> sp_value = X[xs1][31:0];

if (implemented?(ExtensionName::D)) {
f[fd] = nan_box<32, 64>(sp_value);

} else {
f[fd] = sp_value;

}

mark_f_state_dirty();

C.93.6. Sail Operation
{
let rs1 val X = X(rs1);
let rd_val_$S = rsl_val X [31..0];

F(rd) = nan_box (rd_val_S);
RETIRE_SUCCESS
}

C.93.7. Exceptions

This instruction may result in the following synchronous exceptions:

* Illegallnstruction

160

Always

Always

C.94. fmv.x.w
Floating-Point Move Single-Precision Word to Integer Register
This instruction is defined by:

F

C.94.1. Encoding

15 14 12 11 7 6 0
111000000000 fs1 000 xd 1010011

C.94.2. Description

The fmv.x.w instruction moves the single-precision value in floating-point register fs1' represented in IEEE 754-2008 encoding to the lower 32 bits of
integer register xd. The bits are not modified in the transfer, and in particular, the payloads of non-canonical NaNs are preserved. For RV64, the
higher 32 bits of the destination register are filled with copies of the floating-point number’s sign bit.

C.94.3. Access

M S §)

Always Always Always

C.94.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.94.5. IDL Operation

check_f_ok($encoding);
X[xd] = sext(f[fs1][31:0], 32);

C.94.6. Sail Operation

{
let rs1_val X
let rd_val_ S
F(rd) = nan_box (rd_val.S);
RETIRE_SUCCESS

}

X(rs1);
rs1_val X [31..0];

C.94.7. Exceptions
This instruction may result in the following synchronous exceptions:

¢ Illegallnstruction

161

C.95. fnmadd.d

Floating-Point Negate-Multiply-Add Double-Precision

This instruction is defined by:

(D 0 Zdinx)
C.95.1. Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6
fs3 01 fs2 fs1 rm fd 1001111
C.95.2. Description

The fnmadd.d instruction multiplies the values in fs1 and fs2, negates the product, subtracts the value in fs3, and writes the final result to fd.

C.95.3. Access

M S §)

Always Always Always

C.95.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.95.5. IDL Operation

C.95.6. Exceptions

This instruction does not generate synchronous exceptions.

162

C.96. fnmadd.s

Floating-Point Negate-Multiply-Add Single-Precision

This instruction is defined by:

F
C.96.1. Encoding
31 27 26 25 24 20 19 15 14 12 11 0
fs3 00 fs2 fs1 rm fd 1001111
C.96.2. Description

The fnmadd.s multiplies the values in fs1 and fs2, negates the product, subtracts the value in fs3, and writes the final result to fd.

C.96.3. Access

M S

Always Always

C.96.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.96.5. IDL Operation

C.96.6. Sail Operation

let rs1_val_32b
let rs2 val 32b = F or_X S(rs2);
let rs3_val 32b = F_or_X_S(rs3);
match (select_instr_or_fesr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm');
let (fflags, rd_val_32b) : (bits(5), bits(32)) =
match op {

F or_X S(rs1);

FMADD_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2 val _32b, rs3_val_32b),

FMSUB_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2_val_32b, negate_S (rs3_val_32b)),
FNMSUB_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, rs3_val_32b),
FNMADD_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, negate_S (rs3_val_32b))

Ir5
accrue_fflags(fflags);
F or X S(rd) = rd_val_32b;
RETIRE_SUCCESS
}
}
}

C.96.7. Exceptions

This instruction does not generate synchronous exceptions.

Always

163

C.97. fnmsub.d

Floating-Point Negate-Multiply-Subtract Double-Precision

This instruction is defined by:

(D 0 Zdinx)
C.97.1. Encoding
31 27 26 25 24 20 19 15 14 12 11
fs3 01 fs2 fs1 rm fd 1001011
C.97.2. Description

The fnmsub.d instruction multiplies the values in fs1 and fs2, negates the product, adds the value in fs3, and writes the final result to fd.

C.97.3. Access

M

Always

C.97.4. Decode Variables

Bits<h>
Bits<h>
Bits<h>
Bits<3>
Bits<h>

fs3 = $encoding[31:27];
fs2 = $encoding[24:20];
fs1 = $encoding[19:15];
rm = $encoding[14:12];
fd = $encoding[11:7];

C.97.5. IDL Operation

C.97.6. Exceptions

This instruction does not generate synchronous exceptions.

164

Always

Always

C.98. fnmsub.s

Floating-Point Negate-Multiply-Subtract Single-Precision

This instruction is defined by:

F
C.98.1. Encoding
31 27 26 25 24 20 19 15 14 12 11 0
fs3 00 fs2 fs1 rm fd 1001011
C.98.2. Description

The fnmsub.s instruction multiplies the values in fs1 and fs2, negates the product, adds the value in fs3, and writes the final result to fd.

C.98.3. Access

M

Always

C.98.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.98.5. IDL Operation

C.98.6. Sail Operation

let rs1_val_32b
let rs2 val 32b = F or_X S(rs2);
let rs3_val 32b = F_or_X_S(rs3);
match (select_instr_or_fesr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm');
let (fflags, rd_val_32b) : (bits(5), bits(32)) =
match op {

F or_X S(rs1);

Always

FMADD_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2 val _32b, rs3_val_32b),

FMSUB_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2_val_32b, negate_S (rs3_val_32b)),
FNMSUB_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, rs3_val_32b),
FNMADD_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, negate_S (rs3_val_32b))

Ir5
accrue_fflags(fflags);
F or X S(rd) = rd_val_32b;
RETIRE_SUCCESS
}
}
}

C.98.7. Exceptions

This instruction does not generate synchronous exceptions.

Always

165

C.99. fsd

Floating-Point Store Double-Precision
This instruction is defined by:

D

C.99.1. Encoding

7

31 25 24 15 14

imm[11:5] fs2 xsl 011

12 11

imlm[4;0]

0100111

C.99.2. Description

The fsd instruction stores a double-precision value from the floating-point registers to memory. It is guaranteed to execute atomically if the effective
address is naturally aligned and XLEN>64. It doesn’t modify the bits being transferred; in particular, the payloads of non-canonical NaNs are

preserved.

C.99.3. Access

M S

Always Always

C.99.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:71};
Bits<5> fs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.99.5. IDL Operation

C.99.6. Exceptions

This instruction does not generate synchronous exceptions.

166

Always

C.100. fsgnj.d

Floating-Point Sign-Inject Double-Precision
This instruction is defined by:

(D D Zdinx)

C.100.1. Encoding

31 25 24 15 14

0010001 fs2 fs1 000

12 11

fd

1010011

C.100.2. Description

The fsgnj.d instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is taken from fs20s sign bit, and the
result is written to the destination register ‘fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize

NaNs.

C.100.3. Access

M S

Always Always

C.100.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.100.5. IDL Operation

C.100.6. Exceptions

This instruction does not generate synchronous exceptions.

Always

167

C.101. fsgnj.s

Floating-Point Sign-Inject Single-Precision
This instruction is defined by:

F

C.101.1. Encoding

31 25 24 15 14

0010000 fs2 fs1 000

12 11

fd

1010011

C.101.2. Description

The fsgnj.s instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is taken from fs20s sign bit, and the
result is written to the destination register ‘fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize

NaNs.

C.101.3. Access

M S

Always Always

C.101.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.101.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value = {f[fs2][31], f[fs1][30:0]};
if (implemented?(ExtensionName::D)) {
f[fd] = nan_box<32, 64>(sp_value);
} else {
f[fd] = sp_value;
}
mark_f_state_dirty();

C.101.6. Sail Operation

{
let rs1 val S = F or_X S(rs1);
let rs2 val S = F or_X S(rs2);

let (fflags, rd_val) : (bits_fflags, bool) =
riscv_f32Le (rs1_val S, rs2 val.S);

accrue_fflags(fflags);
X(rd) = zero_extend(bool _to_bits(rd val));

RETIRE_SUCCESS
}

C.101.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

168

Always

C.102. fsgnjn.d

Floating-Point Sign-Inject Negate Double-Precision
This instruction is defined by:

(D D Zdinx)

C.102.1. Encoding

31 25 24 15 14

0010001 fs2 fs1 001

12 11

fd

1010011

C.102.2. Description

The fsgnjn.d instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is opposite of fs20s sign bit, and the
result is written to the destination register ‘fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize

NaNs.

C.102.3. Access

M S

Always Always

C.102.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.102.5. IDL Operation

C.102.6. Exceptions

This instruction does not generate synchronous exceptions.

Always

169

C.103. fsgnjn.s
Floating-Point Sign-Inject Negate Single-Precision
This instruction is defined by:

F

C.103.1. Encoding

31 25 24 15 14

0010000 fs2 fs1 001

12 11

fd

1010011

C.103.2. Description

The fsgnjn.s instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is opposite of fs20s sign bit, and the
result is written to the destination register ‘fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize

NaNs.

C.103.3. Access

M S

Always Always

C.103.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.103.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value = {~f[fs2][31], f[fs1][30:0]};
if (implemented?(ExtensionName::D)) {
f[fd] = nan_box<32, 64>(sp_value);
} else {
f[fd] = sp_value;
}
mark_f_state_dirty();

C.103.6. Sail Operation

{
let rs1 val S = F or_X S(rs1);
let rs2 val S = F or_X S(rs2);

let (fflags, rd_val) : (bits_fflags, bool) =
riscv_f32Le (rs1_val S, rs2 val.S);

accrue_fflags(fflags);
X(rd) = zero_extend(bool _to_bits(rd val));

RETIRE_SUCCESS
}

C.103.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

170

Always

C.104. fsgnjx.d

Floating-Point Sign-Inject XOR Double-Precision
This instruction is defined by:

(D D Zdinx)

C.104.1. Encoding

31 25 24 15 14 12 11 7 6 0

0010001 fs2 fs1 010 fd 1010011

C.104.2. Description

The fsgnjx.d instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is the XOR of sign bits of fs1 and fs2, and
the result is written to the destination register fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize NaNs.

C.104.3. Access

M S U
Always Always Always

C.104.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.104.5. IDL Operation

C.104.6. Exceptions

This instruction does not generate synchronous exceptions.

171

C.105. fsgnjx.s
Floating-Point Sign-Inject XOR Single-Precision
This instruction is defined by:

F

C.105.1. Encoding

31 25 24 15 14

0010000 fs2 fs1 010

12 11

fd

1010011

C.105.2. Description

The fsgnjx.s instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is the XOR of sign bits of fs1 and fs2, and
the result is written to the destination register fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize NaNs.

C.105.3. Access

M S
Always Always

C.105.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.105.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value = {f[fs1][31] A f[fs2][31], f[fs1][30:0]};
if (implemented?(ExtensionName::D)) {
f[fd] = nan_box<32, 64>(sp_value);
} else {
f[fd] = sp_value;
}
mark_f_state_dirty();

C.105.6. Sail Operation

{
let rs1 val S = F or_X S(rs1);
let rs2 val S = F or_X S(rs2);

let (fflags, rd_val) : (bits_fflags, bool) =
riscv_f32Le (rs1_val S, rs2 val S);

accrue_fflags(fflags);
X(rd) = zero_extend(bool_to_bits(rd val));

RETIRE_SUCCESS
}

C.105.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

172

Always

C.106. fsqrt.d

Floating-Point Square Root Double-Precision
This instruction is defined by:

(D D Zdinx)

C.106.1. Encoding

31 20 19 15 14 12 11 7 6 0

010110100000 fs1 rm fd 1010011

C.106.2. Description

The fsqrt.d instruction computes the square root of fs1 and result is written in fd. It is defined analogously to its single-precision counterpart, but
operates on double-precision operands and produces double-precision results.

C.106.3. Access

M S U
Always Always Always

C.106.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.106.5. IDL Operation

C.106.6. Exceptions

This instruction does not generate synchronous exceptions.

173

C.107. fsqrt.s

Floating-Point Square Root Single-Precision

This instruction is defined by:

F
C.107.1. Encoding
31 20 19 15 14 12 11
010110000000 fs1 rm fd 1010011
C.107.2. Description
The fsqrt.s instruction computes the square root of fs1 and writes the result is written to fd.
C.107.3. Access
M S U
Always Always Always

C.107.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.107.5. IDL Operation

C.107.6. Sail Operation

{
assert(sizeof(xlen) >= 64);
let rs1 val LU = X(rs1)[63..0];
match (select_instr_or_fecsr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm") => {
let rm_3b = encdec_rounding_mode(rm"');
let (fflags, rd_val_S) = riscv_uib4ToF32 (rm_3b,

accrue_fflags(fflags);

F or X S(rd) = rd_val_S;
RETIRE_SUCCESS

C.107.7. Exceptions

This instruction does not generate synchronous exceptions.

174

rs1_val_LU);

C.108. fsub.d

Floating-Point Subtract Double-Precision
This instruction is defined by:

(D D Zdinx)

C.108.1. Encoding

31 25 24 15 14 12 11 7 6 0

0000101 fs2 fs1 rm fd 1010011

C.108.2. Description

The fsub.d instruction is analogous to fsub.s and performs double-precision floating-point subtraction between fs1 and fs2 and writes the final result
to fd.

C.108.3. Access

M S U
Always Always Always

C.108.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.108.5. IDL Operation

C.108.6. Exceptions

This instruction does not generate synchronous exceptions.

175

C.109. fsub.s

Floating-Point Subtract Single-Precision

This instruction is defined by:

F
C.109.1. Encoding
31 25 24 20 19 15 14 12 11
0000100 fs2 fs1 rm fd 1010011
C.109.2. Description
The fsub.s instruction performs the single-precision floating-point subtraction of fs2 from fs1 and writes the result in fd.
C.109.3. Access
M S U
Always Always Always

C.109.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.109.5. IDL Operation

check_f_ok($encoding);
RoundingMode mode = rm_to_mode(rm, $encoding);
f[fd] = 32 sub(f[fs1], f[fs2], mode);

C.109.6. Sail Operation

{
let rs1_val 32b = F or_X_S(rs1);
let rs2 val_32b = F_or_X_S(rs2);
match (select_instr_or_fcsr_rm (rm)) {
None() => { handle_illegal(); RETIRE_FAIL },
Some(rm') => {
let rm_3b = encdec_rounding_mode(rm"');
let (fflags, rd_val_32b) : (bits(5), bits(32)) = match op {
FADD S => riscv_f32Add (rm_3b, rs1_val_32b, rs2 val 32b),
FSUB_S => riscv_f32Sub (rm_3b, rs1_val_32b, rs2_val_32b),
FMUL_S => riscv_f32Mul (rm_3b, rs1_val_32b, rs2_val_32b),
FDIV.S => riscv_f32Div (rm_3b, rs1 _val 32b, rs2 val 32b)
b
accrue_fflags(fflags);
F or X S(rd) = rd_val_32b;
RETIRE_SUCCESS

C.109.7. Exceptions
This instruction may result in the following synchronous exceptions:

¢ Illegallnstruction

176

C.110. fsw

Floating-Point Store Single-Precision
This instruction is defined by:

F

C.110.1. Encoding

31 25 24

15 14 12 11 7 6 0

0100111

imm[11:5] fs2 xsl 010 imm[4:0]

C.110.2. Description

The fsw instruction stores a single-precision floating-point value in fs2 to memory at address xs1 + imm. It does not modify the bits being transferred;
in particular, the payloads of non-canonical NaNs are preserved.

C.110.3. Access

M S U
Always Always Always

C.110.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:71};
Bits<5> fs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.110.5. IDL Operation

check_f_ok($encoding);
XReg virtual_address = X[xs1] + $signed(imm);
write_memory<32>(virtual_address, f[fs2][31:0], $encoding);

C.110.6. Sail Operation

let offset : xlenbits = sign_extend(imm);
let (ag, rl, con) = (false, false, false);
/* Get the address, X(rs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(rs1, offset, Write(Data), width) {
Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
Ext_DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Write(Data)) {
TR_Failure(e,) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(addr,) => {
let eares : MemoryOpResult(unit) = match width {
BYTE => MemValue () /* bogus placeholder for illegal size */,
HALF => mem_write_ea(addr, 2, aq, rl, false),
WORD => mem_write_ea(addr, 4, aq, rl, false),
DOUBLE => mem_write_ea(addr, 8, aq, rl, false)
75
match (eares) {
MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
MemValue(_) => {
let rs2 val = F(rs2);
match (width) {
BYTE => { handle_illegal(); RETIRE_FAIL },
HALF => process_fstore (vaddr, mem_write_value(addr, 2, rs2_val[15..0], aq, rl, con)),
WORD => process_fstore (vaddr, mem_write_value(addr, 4, rs2_val[31..0], aqg, rl, con)),
DOUBLE if sizeof(flen) >= 64 =>
process_fstore (vaddr, mem_write_value(addr, 8, rs2_val, aq, rl, con)),
_ => report_invalid_width(__FILE LINE width, "floating point store"),

+

e a——— u—

177

C.110.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction
e LoadAccessFault
e StoreAmoAccessFault

» StoreAmoAddressMisaligned

StoreAmoPageFault

178

C.111. jal

Jump and link
This instruction is defined by:

I

C.111.1. Encoding

31 12 11 7 6 0
imm[20]10:1|11]19:12] xd 1101111

C.111.2. Description

Jump to a PC-relative offset and store the return address in xd.

C.111.3. Access

M S U
Always Always Always

C.111.4. Decode Variables

signed Bits<21> imm = sext({$encoding[31], $encoding[19:12], $encoding[20], $encoding[30:21], 1'd0});
Bits<5> xd = $encoding[11:7];

C.111.5. IDL Operation

XReg return_addr = $pc + 4;
X[xd] = return_addr;
jump_halfword($pc + $signed(imm));

C.111.6. Sail Operation

{
let t : xlenbits = PC + sign_extend(imm);
/* Extensions get the first checks on the prospective target address. */
match ext_control_check_pc(t) {
Ext_ControlAddr _Error(e) => {
ext_handle_control_check error(e);
RETIRE_FAIL
Iy
Ext_ControlAddr_OK(target) => {
/* Perform standaxd alignment check */
if bit_to_bool(target[1]) & not(extension("C"))
then {
handle_mem_exception(target, E_Fetch_Addr_Align());
RETIRE_FAIL
} else {
X(xd) = get_next_pc();
set_next_pc(target);
RETIRE_SUCCESS
}
}
}
}

C.111.7. Exceptions
This instruction may result in the following synchronous exceptions:

¢ InstructionAddressMisaligned

179

C.112. jalr

Jump and link register
This instruction is defined by:

I

C.112.1. Encoding

31 20 19 15 14 12 11

imm xsl 000

xd

1100111

C.112.2. Description

Jump to an address formed by adding xs1 to a signed offset then clearing the least significant bit, and store the return address in xd.

C.112.3. Access
M S

Always Always

C.112.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.112.5. IDL Operation

XReg addr = (X[xs1] + $signed(imm)) & ~MXLEN'1;
XReg returnaddr;

returnaddr = $pc + 4;

X[xd] = returnaddr;

jump(addr);

C.112.6. Sail Operation

/* For the sequential model, the memory-model definition doesn't work directly

* if xs1 = xd. We would effectively have to keep a regfile for reads and another for
* writes, and swap on instruction completion. This could perhaps be optimized in

* some manner, but for now, we just keep a reoxdered definition to improve simulator
* performance.

*/

let t : xlenbits = X(xs1) + sign_extend(imm);
/* Extensions get the first checks on the prospective target address. */
match ext_control_check addr(t) {
Ext _ControlAddr Error(e) => {
ext_handle_control_check _error(e);
RETIRE_FAIL
I
Ext_ControlAddr_OK(addr) => {
let target = [addr with @ = bitzero]; /* clear addr[0] */
if bit_to_bool(target[1]) & not(extension("C")) then {
handle_mem_exception(target, E_Fetch_Addr_Align());
RETIRE_FAIL
} else {
X(xd) = get_next_pc();
set_next_pc(target);
RETIRE_SUCCESS
}
}
}
}

180

Always

C.112.7. Exceptions
This instruction may result in the following synchronous exceptions:

* InstructionAddressMisaligned

181

C.113.1b

Load byte
This instruction is defined by:

I

C.113.1. Encoding

31 20 19 15 14 12 11 7 6

imm xsl 000 xd 0000011

C.113.2. Description

Load 8 bits of data into register xd from an address formed by adding xs1 to a signed offset. Sign extend the result.

C.113.3. Access

M S §)

Always Always Always

C.113.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.113.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = sext(read_memory<8>(virtual_address, $encoding), 8);

C.113.6. Sail Operation

{
let offset : xlenbits = sign_extend(imm);
/* Get the address, X(xs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(xs1, offset, Read(Data), width) {
Ext _DataAddr_Error(e) => { ext_handle_data_check _error(e); RETIRE FAIL },
Ext DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Read(Data)) {
TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(paddr, _) =>
match (width) {
BYTE =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
HALF =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
WORD =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
DOUBLE if sizeof(xlen) >= 64 =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
_ => report_invalid_width(__FILE__, __LINE__, width, "load")

C.113.7. Exceptions
This instruction may result in the following synchronous exceptions:

e LoadAccessFault

182

* LoadAddressMisaligned

» LoadPageFault

183

C.114. l1bu

Load byte unsigned
This instruction is defined by:

I

C.114.1. Encoding

31 20 19 15 14 12 11 7 6

imm xsl 100 xd 0000011

C.114.2. Description

Load 8 bits of data into register xd from an address formed by adding xs1 to a signed offset. Zero extend the result.

C.114.3. Access

M S §)

Always Always Always

C.114.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.114.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = read_memory<8>(virtual_address, $encoding);

C.114.6. Sail Operation

{
let offset : xlenbits = sign_extend(imm);
/* Get the address, X(xs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(xs1, offset, Read(Data), width) {
Ext _DataAddr_Error(e) => { ext_handle_data_check _error(e); RETIRE FAIL },
Ext DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Read(Data)) {
TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(paddr, _) =>
match (width) {
BYTE =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
HALF =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
WORD =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
DOUBLE if sizeof(xlen) >= 64 =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
_ => report_invalid_width(__FILE__, __LINE__, width, "load")

C.114.7. Exceptions
This instruction may result in the following synchronous exceptions:

e LoadAccessFault

184

* LoadAddressMisaligned

» LoadPageFault

185

C.115.1d

Load doubleword

This instruction is defined by:
(I || Zilsd)

C.115.1. Encoding

0 This instruction has different encodings in RV32 and RV64.

RV32
31 20 19 15 14 12 11 7 6 0
S imlm S | lxsll le :{ZI:CE,SI,7,9,11,113,115,171,19:21,23,25,27:2&)'9(])9'11 o
RV64
31 20 19 15 14 12 11 7 6 0
- linhn S | lxsll | IOlll | lxdl | o OdOOOil o

C.115.2. Description
For RV64, load 64 bits of data into register xd from an address formed by adding xs1 to a signed offset.

<% if ext?(:Zilsd) %> For RV32, Loads a 64-bit value into registers xd and xd+1. The effective address is obtained by adding register xs1 to the sign-
extended 12-bit offset. <% end %>

C.115.3. Access

M S U
Always Always Always

C.115.4. Decode Variables

RV32

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

RV64

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.115.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
if (xlen() == 32) {
if (implemented?(ExtensionName::Zilsd)) {
Bits<64> data = read_memory<64>(virtual_address, $encoding);
X[xd] = data[31:0];
X[xd + 1] = data[63:32];
} else {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
}
} else {
X[xd] = read_memory<64>(virtual_address, $encoding);

}

186

C.115.6. Sail Operation

{
let offset : xlenbits = sign_extend(imm);
/* Get the address, X(xs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(xs1, offset, Read(Data), width) {
Ext DataAddr _Error(e) => { ext _handle data check error(e); RETIRE FAIL },
Ext_DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Read(Data)) {
TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(paddr, _) =>
match (width) {
BYTE =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
HALF =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
WORD =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
DOUBLE if sizeof(xlen) >= 64 =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
_ => report_invalid_width(__FILE__, __LINE width, "load")

==l

C.115.7. Exceptions

This instruction may result in the following synchronous exceptions:

Illegallnstruction

e LoadAccessFault

LoadAddressMisaligned

LoadPageFault

187

C.116.1h
Load halfword

This instruction is defined by:

I

C.116.1. Encoding

31 20 19 15 14 12 11 7 6

imm xsl 001 xd 0000011

C.116.2. Description

Load 16 bits of data into register xd from an address formed by adding xs1 to a signed offset. Sign extend the result.

C.116.3. Access

M S §)

Always Always Always

C.116.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.116.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = sext(read_memory<16>(virtual_address, $encoding), 16);

C.116.6. Sail Operation

{
let offset : xlenbits = sign_extend(imm);
/* Get the address, X(xs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(xs1, offset, Read(Data), width) {
Ext _DataAddr_Error(e) => { ext_handle_data_check _error(e); RETIRE FAIL },
Ext DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Read(Data)) {
TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(paddr, _) =>
match (width) {
BYTE =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
HALF =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
WORD =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
DOUBLE if sizeof(xlen) >= 64 =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
_ => report_invalid_width(__FILE__, __LINE__, width, "load")

C.116.7. Exceptions
This instruction may result in the following synchronous exceptions:

e LoadAccessFault

188

* LoadAddressMisaligned

» LoadPageFault

189

C.117. l1hu

Load halfword unsigned
This instruction is defined by:

I

C.117.1. Encoding

31 20 19 15 14 12 11 7 6

imm xsl 101 xd 0000011

C.117.2. Description

Load 16 bits of data into register xd from an address formed by adding xs1 to a signed offset. Zero extend the result.

C.117.3. Access

M S §)

Always Always Always

C.117.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.117.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = read_memory<16>(virtual_address, $encoding);

C.117.6. Sail Operation

{
let offset : xlenbits = sign_extend(imm);
/* Get the address, X(xs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(xs1, offset, Read(Data), width) {
Ext _DataAddr_Error(e) => { ext_handle_data_check _error(e); RETIRE FAIL },
Ext DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Read(Data)) {
TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(paddr, _) =>
match (width) {
BYTE =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
HALF =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
WORD =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
DOUBLE if sizeof(xlen) >= 64 =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
_ => report_invalid_width(__FILE__, __LINE__, width, "load")

C.117.7. Exceptions
This instruction may result in the following synchronous exceptions:

e LoadAccessFault

190

* LoadAddressMisaligned

» LoadPageFault

191

C.118. lui

Load upper immediate
This instruction is defined by:

I

C.118.1. Encoding
31 12 11 7 6
imm[31:12] xd 0110111
C.118.2. Description
Load the zero-extended imm into xd.
C.118.3. Access
M S U
Always Always Always

C.118.4. Decode Variables

Bits<32> imm = {$encoding[31:12], 12'd0};
Bits<5> xd = $encoding[11:7];

C.118.5. IDL Operation

X[xd] = $signed(imm);

C.118.6. Sail Operation

{
let off : xlenbits = sign_extend(imm @ 0x000);
let ret : xlenbits = match op {
RISCV_LUI => off,
RISCV_AUIPC => get_arch_pc() + off

+;

X(xd) = ret;

RETIRE_SUCCESS
}

C.118.7. Exceptions

This instruction does not generate synchronous exceptions.

192

C.119. 1w

Load word
This instruction is defined by:

I

C.119.1. Encoding

31 20 19 15 14 12 11 7 6 0

imm xsl 010 xd 0000011

C.119.2. Description

Load 32 bits of data into register xd from an address formed by adding xs1 to a signed offset. Sign extend the result.

C.119.3. Access

M S §)

Always Always Always

C.119.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.119.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = sext(read_memory<32>(virtual_address, $encoding), 32);

C.119.6. Sail Operation

{
let offset : xlenbits = sign_extend(imm);
/* Get the address, X(xs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(xs1, offset, Read(Data), width) {
Ext _DataAddr_Error(e) => { ext_handle_data_check _error(e); RETIRE FAIL },
Ext DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Read(Data)) {
TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(paddr, _) =>
match (width) {
BYTE =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
HALF =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
WORD =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
DOUBLE if sizeof(xlen) >= 64 =>
process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
_ => report_invalid_width(__FILE__, __LINE__, width, "load")

C.119.7. Exceptions
This instruction may result in the following synchronous exceptions:

e LoadAccessFault

193

* LoadAddressMisaligned

» LoadPageFault

194

C.120. mul

Signed multiply
This instruction is defined by:

M | | Zmmul)

C.120.1. Encoding

31 25 24 15 14 12 11 7 6 0

0000001 XS2 xsl 000 xd 0110011

C.120.2. Description

MUL performs an XLEN-bitxXLEN-bit multiplication of xs1 by xs2 and places the lower XLEN bits in the destination register. Any overflow is thrown
away.

If both the high and low bits of the same product are required, then the recommended code sequence is: MULH[[S]U] xdh, xs1, xs2;
o MUL xdl, xs1, xs2 (source register specifiers must be in same order and xdh cannot be the same as xs1 or xs2). Microarchitectures
can then fuse these into a single multiply operation instead of performing two separate multiplies.

C.120.3. Access

M S 8)

Always Always Always

C.120.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.120.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}

XReg src1 = X[xs1];

XReg src2 = X[xs2];

X[xd] = (src1 * src2)[MXLEN - 1:0];

C.120.6. Sail Operation

{
if extension("M") | haveZmmul() then {
let rs1_val = X(rs1);
let rs2 val = X(rs2);
let rs1_int : int = if signed1 then signed(rs1_val) else unsigned(rs1_val);
let rs2_int : int = if signed2 then signed(rs2_val) else unsigned(rs2_val);
let result wide = to _bits(2 * sizeof(xlen), rs1_int * rs2_ int);
let result = if high
then result wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
else result wide[(sizeof(xlen) - 1) .. 0];
X(rd) = result;
RETIRE_SUCCESS
} else {
handle_illegal();
RETIRE_FAIL
}
}

C.120.7. Exceptions

This instruction may result in the following synchronous exceptions:

195

¢ Illegallnstruction

196

C.121. mulh

Signed multiply high

This instruction is defined by:

M | | Zmmul)

C.121.1.

31

Encoding

0000001

15 14

001

12 11

xd

0110011

C.121.2. Description

Multiply the signed values in xs1 to xs2, and store the upper half of the result in xd. The lower half is thrown away.

If both the upper and lower halves are needed, it suggested to use the sequence:

mulh
mul

xdh, xs1, xs2
xdl, xs1, xs2

Microarchitectures may look for that sequence and fuse the operations.

C.121.3.

Access

M

Always Always

C.121.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.121.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b@)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}

Bits<1> xs1_sign_bit = X[xs1][xlen() - 1];

Bits<MXLEN ** 2> src1 = {{xlen(){xs1_sign_bit}}, X[xs1]};
Bits<1> xs2_sign_bit = X[xs2][xlen() - 11;

Bits<MXLEN ** 2> src2 = {{xlen(){xs2_sign_bit}}, X[xs2]};
X[xd] = (src1 * src2)[(xlen() * 8'd2) - 1:xlen()];

C.121.6. Sail Operation

{

if extension("M") | haveZmmul() then {
rs1_val = X(rs1);

let
let
let
let
let
let

X(r
RET
} els
han
RET

}

rs2_val
rs1_int : int
rs2_int : int
result wide =
result = if
then
else
d) = result;
IRE_SUCCESS
e {
dle_illegal();
IRE_FAIL

X(rs2);

= if signed1 then signed(rs1_val) else unsigned(rs1_val);
= if signed2 then signed(rs2_val) else unsigned(rs2_val);

to bits(2 * sizeof(xlen), rs1_int * rs2 int);

high

result wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
result wide[(sizeof(xlen) - 1) .. 0];

Always

197

C.121.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

198

C.122. mulhsu

Signed/unsigned multiply high
This instruction is defined by:

M | | Zmmul)

C.122.1. Encoding

31 25 24

0000001

15 14

010

12 11

xd

0110011

C.122.2. Description

Multiply the signed value in xs1 by the unsigned value in xs2, and store the upper half of the result in xd. The lower half is thrown away.

If both the upper and lower halves are needed, it suggested to use the sequence:

mulhsu xdh, xs1, xs2
mul xdl, xs1, xs2

Microarchitectures may look for that sequence and fuse the operations.

C.122.3. Access

M

Always

C.122.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.122.5. IDL Operation

Always

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b@)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}

Bits<1> xs1_sign_bit = X[xsT]J[MXLEN - 1];

Bits<MXLEN * 8'd2> src1 = {{MXLEN{xs1_sign_bit}}, X[xs1]};
Bits<MXLEN * 8'd2> src2 = {{MXLEN{1'b0}}, X[xs21};
X[xd] = (sre1 * src2)[(MXLEN * 8'd2) - 1:MXLEN];

C.122.6. Sail Operation

{

if extension("M") | haveZmmul() then {

let rs1 val = X(rs1);
let rs2 val = X(rs2);

let rs1_int : int = if signed1 then signed(rs1_val) else unsigned(rs1_val);
let rs2_int : int = if signed2 then signed(rs2_val) else unsigned(rs2_val);
let result_wide = to_bits(2 * sizeof(xlen), rs1_int * rs2 int);

let result = if high

then result wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
else result wide[(sizeof(xlen) - 1) .. 0];

X(rd) = result;
RETIRE_SUCCESS

} else {
handle_illegal();
RETIRE_FAIL

}

Always

199

C.122.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

200

C.123. mulhu

Unsigned multiply high
This instruction is defined by:

M | | Zmmul)

C.123.1. Encoding

31 25 24

0000001 Xs2 xsl

15 14

011

12 11

xd

0110011

C.123.2. Description

Multiply the unsigned values in xs1 to xs2, and store the upper half of the result in xd. The lower half is thrown away.

If both the upper and lower halves are needed, it suggested to use the sequence:

mulhu xdh, xs1, xs2
mul xdl, xs1, xs2

Microarchitectures may look for that sequence and fuse the operations.

C.123.3. Access

M S

Always Always

C.123.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.123.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b@)) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}

Bits<MXLEN * 8'd2> src1 = {{MXLEN{1'b0}}, X[xs1]};

Bits<MXLEN * 8'd2> src2 = {{MXLEN{1'b0}}, X[xs21};

X[xd] = (src1 * src2)[(MXLEN * 8'd2) - 1:MXLEN];

C.123.6. Sail Operation

{
if extension("M") | haveZmmul() then {
let rs1_val = X(rs1);
let rs2_val = X(rs2);

let rs1_int : int = if signed1 then signed(rs1_val) else unsigned(rs1_val);

let rs2_int : int
let result_wide = to_bits(2 * sizeof(xlen), rs1_int * rs2_int);
let result = if high
then result wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
else result wide[(sizeof(xlen) - 1) .. 0];
X(rd) = result;
RETIRE_SUCCESS
} else {
handle_illegal();
RETIRE FAIL
}
}

if signed2 then signed(rs2_val) else unsigned(rs2_val);

Always

201

C.123.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

202

C.124. or
Or

This instruction is defined by:

I
C.124.1. Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0000000 XSs2 xsl 110 xd 0110011
C.124.2. Description
Or xs1 with xs2, and store the result in xd
C.124.3. Access
M S U
Always Always Always

C.124.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.124.5. IDL Operation

X[xd] = X[xs1] | X[xs2];

C.124.6. Sail Operation

{
let xs1_val = X(xs1);
let xs2 val = X(xs2);
let result : xlenbits = match op {
RISCV_ADD => xs1_val + xs2 val,
RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
RISCV_SLTU => zero_extend(bool_to_bits(xs1 val < u xs2 val)),
RISCV_AND => xs1 _val & xs2 val,
RISCV_OR => xs1_val | xs2_val,
RISCV_XOR => xs1_val A xs2_val,
RISCV SLL => if sizeof(xlen) == 32
then xs1_val << (xs2_val[4..0])
else xs1 val << (xs2 val[5..0]),
RISCV SRL => if sizeof(xlen) == 32
then xs1_val >> (xs2 _val[4..0])
else xs1 _val >> (xs2_val[5..0]),
RISCV_SUB => xs1_val - xs2_val,
RISCY_SRA => if sizeof(xlen) == 32
then shift_right_arith32(xs1_val, xs2_val[4..0])
else shift_right_arith64(xs1_val, xs2_val[5..0])
s

X(xd) = result;
RETIRE _SUCCESS
}

C.124.7. Exceptions

This instruction does not generate synchronous exceptions.

203

C.125. ori

Or immediate
This instruction is defined by:

I

C.125.1. Encoding
31 20 19 15 14 12 11 7 6
imm xsl 110 xd 0010011
C.125.2. Description
Or an immediate to the value in xs1, and store the result in xd
C.125.3. Access
M S U
Always Always Always

C.125.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.125.5. IDL Operation

X[xd] = X[xs1] | $signed(imm);

C.125.6. Sail Operation

{
let xs1_val = X(xs1);
let immext : xlenbits = sign_extend(imm);
let result : xlenbits = match op {
RISCV_ADDI => xs1_val + immext,

RISCV_SLTI => zero_extend(bool_to _bits(xs1 val <_s immext)),
RISCV _SLTIU => zero_extend(bool_to_bits(xs1 val < _u immext)),

RISCV_ANDI => xs1 _val & immext,
RISCV_ORI => xs1_val | immext,
RISCV_XORI => xs1 _val ™ immext
s
X(xd) = result;
RETIRE_SUCCESS
}

C.125.7. Exceptions

This instruction does not generate synchronous exceptions.

204

C.126. rem

Signed remainder
This instruction is defined by:

M

C.126.1. Encoding

31 25 24

0000001 XS2 xsl 110 xd 0110011

C.126.2. Description
Calculate the remainder of signed division of xs1 by xs2, and store the result in xd.
If the value in register xs2 is zero, write the value in xs1 into xd;

If the result of the division overflows, write zero into xd;

C.126.3. Access

M S §)

Always Always Always
C.126.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.126.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b@)) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);

}

XReg src1 = X[xs1];

XReg src2 = X[xs2];

if (src2 == 0) {
X[xd] = srcl;

} else if ((src1 == {1'b1, {MXLEN - 1{1'b0}}}) && (src2 == {MXLEN{1'b1}})) {

X[xd] = 0;
} else {

X[xd] = $signed(src1) % $signed(src2);
}

C.126.6. Sail Operation

{
if extension("M") then {
let rs1_val = X(rs1);
let rs2 val = X(rs2);

let rs1_int : int = if s then signed(rs1_val) else unsigned(rs1_val);
let rs2_int : int = if s then signed(rs2_val) else unsigned(rs2_val);
let r : int = if rs2_int == @ then rs1_int else rem_round zero(rs1_int, rs2_int);
/* signed overflow case returns zero naturally as required due to -1 divisor */
X(rd) = to_bits(sizeof(xlen), r);
RETIRE_SUCCESS

} else {
handle_illegal();
RETIRE FAIL

}

}

205

C.126.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

206

C.127. remu

Unsigned remainder

This instruction is defined by:

M
C.127.1. Encoding
31 25 24 20 19 15 14 12 11 0
0000001 Xs2 xsl 111 xd 0110011
C.127.2. Description
Calculate the remainder of unsigned division of xs1 by xs2, and store the result in xd.
C.127.3. Access
M S U
Always Always Always

C.127.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.127.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
if (src2 == 0) {
X[xd] = srcl;
} else {
X[xd] = src1 % src2;

}

C.127.6. Sail Operation

{

if extension("M") then {
let rs1_ val = X(rs1);
let rs2 val = X(rs2);
let rs1_int : int = if s then signed(rs1_val) else unsigned(rs1_val);
let rs2_int : int = if s then signed(rs2_val) else unsigned(rs2_val);
let r : int = if rs2_int == @ then rs1_int else rem_round_zero(rs1_int, rs2_int);
/* signed overflow case returns zero naturally as required due to -1 divisor */
X(rd) = to_bits(sizeof(xlen), r);
RETIRE_SUCCESS

} else {
handle_illegal();
RETIRE_FAIL

}
}

C.127.7. Exceptions
This instruction may result in the following synchronous exceptions:

¢ Illegallnstruction

207

C.128. sb

Store bhyte

This instruction is defined by:

I
C.128.1. Encoding
31 25 24 20 19 15 14 12 11 7
imm[11:5] XS2 xsl 000 imm[4:0] 0100011
C.128.2. Description
Store 8 bits of data from register xs2 to an address formed by adding xs1 to a signed offset.
C.128.3. Access
M S U
Always Always Always

C.128.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:7]1};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.128.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
write_memory<8>(virtual_address, X[xs2][7:0], $encoding);

C.128.6. Sail Operation

{

208

let offset : xlenbits = sign_extend(imm);
/* Get the address, X(xs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(xs1, offset, Write(Data), width) {
Ext _DataAddr_Error(e) => { ext_handle_data_check _error(e); RETIRE FAIL },
Ext DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Write(Data)) {
TR_Failure(e,) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(paddr, _) => {
let eares : MemoryOpResult(unit) = match width {
BYTE => mem_write_ea(paddr, 1, aq, rl, false),
HALF => mem_write_ea(paddr, 2, aq, rl, false),
WORD => mem_write_ea(paddr, 4, aq, rl, false),
DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
s
match (eares) {
MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
MemValue() => {
let xs2_val = X(xs2);
let res : MemoryOpResult(bool) = match (width) {
BYTE => mem_write_value(paddr, 1, xs2_val[7..0], aq, rl, false),
HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
WORD => mem_write_value(paddr, 4, xs2_val[31..0], aq, rl, false),
DOUBLE if sizeof(xlen) >= 64
=> mem_write_value(paddr, 8, xs2_val, aq, rl, false),
B => report_invalid_width(__FILE__, __LINE__, width, "store"),
i
match (res) {
MemValue(true) => RETIRE_SUCCESS,

MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),

MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }

C.128.7. Exceptions
This instruction may result in the following synchronous exceptions:

e LoadAccessFault

StoreAmoAccessFault

StoreAmoAddressMisaligned

» StoreAmoPageFault

209

C.129. sd

Store doubleword

This instruction is defined by:
(I || Zilsd)

C.129.1. Encoding

0 This instruction has different encodings in RV32 and RV64.

RV32
31 25 24 20 19 15 14 12 11 7 6 0
imm§R1t8K1,3,5,7,9,11,13,15,17,19,21,p3,25,27%89,31} 011 imm([4:0] 0100011
RV64
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] XS2 xsl 011 imm[4:0] 0100011
C.129.2. Description

For RV64, store 64 bits of data from register xs2 to an address formed by adding xs1 to a signed offset. <% if ext?(:Zilsd) %> For RV32, store
doubleword from even/odd register pair. <% end %>

C.129.3. Access

M S §)

Always Always Always
C.129.4. Decode Variables

RV32

Bits<12> imm = {$encoding[31:25], $encoding[11:71};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

RV64

signed Bits<12> imm = sext({$encoding[31:25], $encoding[11:7]1});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.129.5. IDL Operation

Bits<b64> data;
XReg virtual_address = X[xs1] + $signed(imm);
if (xlen() == 32) {
if (implemented?(ExtensionName::Zclsd)) {
data = {X[xs2 + 1], X[xs21};
} else {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
b
} else {
data = X[xs2];
}

write_memory<64>(virtual_address, data, $encoding);

C.129.6. Sail Operation

{

let offset : xlenbits = sign_extend(imm);

210

/* Get the address, X(xs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(xs1, offset, Write(Data), width) {
Ext _DataAddr_Error(e) => { ext_handle_data_check _error(e); RETIRE FAIL },
Ext DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Write(Data)) {
TR_Failure(e,) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(paddr, _) => {
let eares : MemoryOpResult(unit) = match width {
BYTE => mem_write_ea(paddr, 1, aq, rl, false),
HALF => mem_write_ea(paddr, 2, aq, rl, false),
WORD => mem_write_ea(paddr, 4, aq, rl, false),
DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
bis
match (eares) {
MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
MemValue() => {
let xs2_val = X(xs2);
let res : MemoryOpResult(bool) = match (width) {
BYTE => mem_write_value(paddr, 1, xs2_val[7..0], aq, rl, false),
HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
WORD => mem_write_value(paddr, 4, xs2_val[31..0], aqg, r1, false),
DOUBLE if sizeof(xlen) >= 64
=> mem_write_value(paddr, 8, xs2_val, aq, rl, false),
_ => report_invalid_width(__FILE__, __LINE__, width, "store"),
i
match (res) {
MemValue(true) => RETIRE_SUCCESS,

MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),
MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }

C.129.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction
e LoadAccessFault

¢ StoreAmoAccessFault

StoreAmoAddressMisaligned

StoreAmoPageFault

211

C.130. sfence.vma
Supervisor memory-management fence
This instruction is defined by:

S

C.130.1. Encoding

31 25 24

0001001 Xs2 xsl 000000001110011

C.130.2. Description

The supervisor memory-management fence instruction SFENCE.VMA is used to synchronize updates to in-memory memory-management data
structures with current execution. Instruction execution causes implicit reads and writes to these data structures; however, these implicit references
are ordinarily not ordered with respect to explicit loads and stores. Executing an SFENCE.VMA instruction guarantees that any previous stores
already visible to the current RISC-V hart are ordered before certain implicit references by subsequent instructions in that hart to the memory-
management data structures. The specific set of operations ordered by SFENCE.VMA is determined by xs1 and xs2, as described below. SFENCE.VMA
is also used to invalidate entries in the address-translation cache associated with a hart (see [sv32algorithm]). Further details on the behavior of this
instruction are described in [virt-control] and [pmp-vmem].

The SFENCE.VMA is used to flush any local hardware caches related to address translation. It is specified as a fence rather than a

o TLB flush to provide cleaner semantics with respect to which instructions are affected by the flush operation and to support a wider
variety of dynamic caching structures and memory-management schemes. SFENCE.VMA is also used by higher privilege levels to
synchronize page table writes and the address translation hardware.

SFENCE.VMA orders only the local hart’s implicit references to the memory-management data structures.

Consequently, other harts must be notified separately when the memory-management data structures have been modified. One

o approach is to use 1) a local data fence to ensure local writes are visible globally, then 2) an interprocessor interrupt to the other
thread, then 3) a local SFENCE.VMA in the interrupt handler of the remote thread, and finally 4) signal back to originating thread
that operation is complete. This is, of course, the RISC-V analog to a TLB shootdown.

For the common case that the translation data structures have only been modified for a single address mapping (i.e., one page or superpage), xs1 can
specify a virtual address within that mapping to effect a translation fence for that mapping only. Furthermore, for the common case that the
translation data structures have only been modified for a single address-space identifier, xs2 can specify the address space. The behavior of
SFENCE.VMA depends on xs1 and xs2 as follows:

» If xs1=x0@ and xs2=x9, the fence orders all reads and writes made to any level of the page tables, for all address spaces. The fence also invalidates
all address-translation cache entries, for all address spaces.

 If xs1=x@ and xs2+x0, the fence orders all reads and writes made to any level of the page tables, but only for the address space identified by
integer register xs2. Accesses to global mappings (see [translation]) are not ordered. The fence also invalidates all address-translation cache
entries matching the address space identified by integer register xs2, except for entries containing global mappings.

 If xs1#x0 and xs2=x0, the fence orders only reads and writes made to leaf page table entries corresponding to the virtual address in xs1, for all
address spaces. The fence also invalidates all address-translation cache entries that contain leaf page table entries corresponding to the virtual
address in xs1, for all address spaces.

o If xs1#x0 and xs2#x0, the fence orders only reads and writes made to leaf page table entries corresponding to the virtual address in xs1, for the
address space identified by integer register xs2. Accesses to global mappings are not ordered. The fence also invalidates all address-translation
cache entries that contain leaf page table entries corresponding to the virtual address in xs1 and that match the address space identified by
integer register xs2, except for entries containing global mappings.

If the value held in xs1 is not a valid virtual address, then the SFENCE.VMA instruction has no effect. No exception is raised in this case.

When xs2#x0, bits SXLEN-1:ASIDMAX of the value held in xs2 are reserved for future standard use. Until their use is defined by a standard extension,
they should be zeroed by software and ignored by current implementations. Furthermore, if ASIDLEN<ASIDMAX, the implementation shall ignore
bits ASIDMAX-1:ASIDLEN of the value held in xs2.

It is always legal to over-fence, e.g., by fencing only based on a subset of the bits in xsI and/or xs2, and/or by simply treating all

o SFENCE.VMA instructions as having xs1=x0 and/or xs2=x0. For example, simpler implementations can ignore the virtual address in
xs1 and the ASID value in xs2 and always perform a global fence. The choice not to raise an exception when an invalid virtual
address is held in xs1 facilitates this type of simplification.

An implicit read of the memory-management data structures may return any translation for an address that was valid at any time since the most
recent SFENCE.VMA that subsumes that address. The ordering implied by SFENCE.VMA does not place implicit reads and writes to the memory-
management data structures into the global memory order in a way that interacts cleanly with the standard RVWMO ordering rules. In particular,
even though an SFENCE.VMA orders prior explicit accesses before subsequent implicit accesses, and those implicit accesses are ordered before their

212

associated explicit accesses, SFENCE.VMA does not necessarily place prior explicit accesses before subsequent explicit accesses in the global memory
order. These implicit loads also need not otherwise obey normal program order semantics with respect to prior loads or stores to the same address.

A consequence of this specification is that an implementation may use any translation for an address that was valid at any time
since the most recent SFENCE.VMA that subsumes that address. In particular, if a leaf PTE is modified but a subsuming SFENCE.VMA
is not executed, either the old translation or the new translation will be used, but the choice is unpredictable. The behavior is
otherwise well-defined.

In a conventional TLB design, it is possible for multiple entries to match a single address if, for example, a page is upgraded to a
superpage without first clearing the original non-leaf PTE’s valid bit and executing an SFENCE.VMA with xs1=x0. In this case, a
similar remark applies: it is unpredictable whether the old non-leaf PTE or the new leaf PTE is used, but the behavior is otherwise

o well defined.

Another consequence of this specification is that it is generally unsafe to update a PTE using a set of stores of a width less than the
width of the PTE, as it is legal for the implementation to read the PTE at any time, including when only some of the partial stores
have taken effect.

This specification permits the caching of PTEs whose V (Valid) bit is clear. Operating systems must be written to cope with this
possibility, but implementers are reminded that eagerly caching invalid PTEs will reduce performance by causing additional page
faults.

Implementations must only perform implicit reads of the translation data structures pointed to by the current contents of the satp register or a
subsequent valid (V=1) translation data structure entry, and must only raise exceptions for implicit accesses that are generated as a result of
instruction execution, not those that are performed speculatively.

Changes to the sstatus fields SUM and MXR take effect immediately, without the need to execute an SFENCE.VMA instruction. Changing satp.MODE
from Bare to other modes and vice versa also takes effect immediately, without the need to execute an SFENCE.VMA instruction. Likewise, changes to
satp.ASID take effect immediately.

The following common situations typically require executing an SFENCE.VMA instruction:

* When software recycles an ASID (i.e., reassociates it with a different page table), it should first change satp to point to the new
page table using the recycled ASID, then execute SFENCE.VMA with xs1=x0 and xs2 set to the recycled ASID. Alternatively,
software can execute the same SFENCE.VMA instruction while a different ASID is loaded into satp, provided the next time satp is
loaded with the recycled ASID, it is simultaneously loaded with the new page table.

« If the implementation does not provide ASIDs, or software chooses to always use ASID 0, then after every satp write, software
should execute SFENCE.VMA with xs1=x0. In the common case that no global translations have been modified, xs2 should be set
to a register other than x0 but which contains the value zero, so that global translations are not flushed.

-
Q « If software modifies a non-leaf PTE, it should execute SFENCE.VMA with xs1=x0. If any PTE along the traversal path had its G bit
set, xs2 must be x0; otherwise, xs2 should be set to the ASID for which the translation is being modified.

* If software modifies a leaf PTE, it should execute SFENCE.VMA with xs1 set to a virtual address within the page. If any PTE along
the traversal path had its G bit set, xs2 must be x0; otherwise, xs2 should be set to the ASID for which the translation is being
modified.

* For the special cases of increasing the permissions on a leaf PTE and changing an invalid PTE to a valid leaf, software may
choose to execute the SFENCE.VMA lazily. After modifying the PTE but before executing SFENCE.VMA, either the new or old
permissions will be used. In the latter case, a page-fault exception might occur, at which point software should execute
SFENCE.VMA in accordance with the previous bullet point.

If a hart employs an address-translation cache, that cache must appear to be private to that hart. In particular, the meaning of an ASID is local to a
hart; software may choose to use the same ASID to refer to different address spaces on different harts.

A future extension could redefine ASIDs to be global across the SEE, enabling such options as shared translation caches and
o hardware support for broadcast TLB shootdown. However, as OSes have evolved to significantly reduce the scope of TLB
shootdowns using novel ASID-management techniques, we expect the local-ASID scheme to remain attractive for its simplicity and

possibly better scalability.

For implementations that make satp.MODE read-only zero (always Bare), attempts to execute an SFENCE.VMA instruction might raise an illegal-
instruction exception.

C.130.3. Access

M S §)

Always Always Never

C.130.4. Decode Variables
Bits<5> xs2 = $encoding[24:20];

213

Bits<5> xs1 = $encoding[19:15];

C.130.5. IDL Operation

XReg vaddr = X[xs1];
Bits<16> asid = X[xs2][ASID WIDTH - 1:0];
if (mode() == PrivilegeMode::U) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
if (CSR[misa].H == 1 && mode() == PrivilegeMode::VU) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
+
if (CSR[mstatus].TVM == 1 && mode() == PrivilegeMode::S) || (mode() == PrivilegeMode::VS) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
if (CSR[misa].H == 1 &% CSR[hstatus].VTVM == 1 && mode() == PrivilegeMode::VS) {
raise(ExceptionCode::Virtuallnstruction, mode(), $encoding);
}
if (limplemented?(ExtensionName::Sv32) && !implemented?(ExtensionName::Sv39) && !implemented?(ExtensionName::Sv48) && !
implemented?(ExtensionName: :Sv57)) {
if (TRAP_ON_SFENCE_VMA_WHEN_SATP_MODE_IS_READ_ONLY) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
+
VmaOrderType vma_type;
if (CSR[misa].H == 1 && mode() == PrivilegeMode::VS) {
vma_type.vsmode = true;
vma_type.single_vmid = true;
vma_type.vmid = CSR[hgatp].VMID;
} else {
vma_type.smode = true;
}
if ((xs1 ==0) & (xs2 == 0)) {
vma_type.global = true;
order_pgtbl_writes_before_vmafence(vma_type);
invalidate_translations(vma_type);
order_pgtbl_reads_after_vmafence(vma_type);
} else if ((xs1 == 0) && (xs2 '=0)) {
vma_type.single_asid = true;
vma_type.asid = asid;
order_pgtbl_writes_before_vmafence(vma_type);
invalidate_translations(vma_type);
order_pgtbl_reads_after_vmafence(vma_type);
} else if ((xs1 !'= @) && (xs2 == 0)) {
if (canonical_vaddr?(vaddr)) {
vma_type.single_vaddr = true;
vma_type.vaddr = vaddr;
order_pgtbl_writes_before_vmafence(vma_type);
invalidate_translations(vma_type);
order_pgtbl_reads_after_vmafence(vma_type);
}
} else {
if (canonical_vaddr?(vaddr)) {
vma_type.single_asid = true;
vma_type.asid = asid;
vma_type.single_vaddr = true;
vma_type.vaddr = vaddr;
order_pgtbl_writes_before_vmafence(vma_type);
invalidate_translations(vma_type);
order_pgtbl_reads_after_vmafence(vma_type);

C.130.6. Sail Operation

{
let addr : option(xlenbits)

let asid : option(xlenbits)
match cur_privilege {
User => { handle_illegal(); RETIRE_FAIL },
Supervisor => match (architecture(get_mstatus_SXL(mstatus)), mstatus.TVM()) {
(Some(_), @b1) => { handle_illegal(); RETIRE_FAIL },

if rs1 == 0b000AO then None() else Some(X(rs1));
if rs2 == 0b0000O then None() else Some(X(rs2));

214

(Some(_), @b@) => { flush_TLB(asid, addr); RETIRE_SUCCESS },

(_,) => internal_error(__FILE__, __LINE__, "unimplemented sfence architecture")
},
Machine => { flush_TLB(asid, addr); RETIRE SUCCESS }
}
}
C.130.7. Exceptions

This instruction may result in the following synchronous exceptions:

* Illegallnstruction

e Virtuallnstruction

215

C.131. sh
Store halfword

This instruction is defined by:

I
C.131.1. Encoding
31 25 24 20 19 15 14 12 11 7
imm[11:5] XS2 xsl 001 imm[4:0] 0100011
C.131.2. Description
Store 16 bits of data from register xs2 to an address formed by adding xs1 to a signed offset.
C.131.3. Access
M S U
Always Always Always

C.131.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:7]1};

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.131.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
write_memory<16>(virtual_address, X[xs2][15:0], $encoding);

C.131.6. Sail Operation

{

216

let offset : xlenbits = sign_extend(imm);
/* Get the address, X(xs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(xs1, offset, Write(Data), width) {
Ext _DataAddr_Error(e) => { ext_handle_data_check _error(e); RETIRE FAIL },
Ext DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Write(Data)) {
TR_Failure(e,) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(paddr, _) => {
let eares : MemoryOpResult(unit) = match width {
BYTE => mem_write_ea(paddr, 1, aq, rl, false),
HALF => mem_write_ea(paddr, 2, aq, rl, false),
WORD => mem_write_ea(paddr, 4, aq, rl, false),
DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
s
match (eares) {
MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
MemValue() => {
let xs2_val = X(xs2);
let res : MemoryOpResult(bool) = match (width) {
BYTE => mem_write_value(paddr, 1, xs2_val[7..0], aq, rl, false),
HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
WORD => mem_write_value(paddr, 4, xs2_val[31..0], aq, rl, false),
DOUBLE if sizeof(xlen) >= 64
=> mem_write_value(paddr, 8, xs2_val, aq, rl, false),
B => report_invalid_width(__FILE__, __LINE__, width, "store"),
i
match (res) {
MemValue(true) => RETIRE_SUCCESS,

MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),

MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }

C.131.7. Exceptions
This instruction may result in the following synchronous exceptions:

e LoadAccessFault

StoreAmoAccessFault

StoreAmoAddressMisaligned

» StoreAmoPageFault

217

C.132.sll

Shift left logical

This instruction is defined by:

I
C.132.1. Encoding
31 25 24 20 19 15 14 12 11 7 6
0000000 XSs2 xsl 001 xd 0110011
C.132.2. Description
Shift the value in xs1 left by the value in the lower 6 bits of xs2, and store the result in xd.
C.132.3. Access
M S U
Always Always Always

C.132.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.132.5. IDL Operation

if (xlen() == 64) {

X[xd] = X[xs1] << X[xs2][5:0];
} else {

X[xd] = X[xs1] << X[xs2]1[4:0];
}

C.132.6. Sail Operation

{
let xs1_val = X(xs1);
let xs2_val = X(xs2);

let result : xlenbits = match op {
RISCV_ADD => xs1_val + xs2_val,
RISCV SLT => zero_extend(bool to_bits(xs1 val <_s xs2 val)),
RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
RISCV_AND => xs1_val & xs2_val,
RISCV_OR => xs1_val | xs2_val,
RISCV_XOR => xs1_val ™ xs2_val,
RISCV SLL => if sizeof(xlen) == 32
then xs1_val << (xs2_val[4..0])
else xs1_val << (xs2_val[5..0]),
RISCVY _SRL => if sizeof(xlen) == 32
then xs1_val >> (xs2_val[4..0])
else xs1_val >> (xs2 val[5..0]),
RISCV_SUB => xs1_val - xs2_val,
RISCV_SRA => if sizeof(xlen) == 32
then shift_right_arith32(xs1_val, xs2_val[4..0])
else shift_right_arith64(xs1_val, xs2_val[5..0])
s

X(xd) = result;
RETIRE _SUCCESS

}

C.132.7. Exceptions

This instruction does not generate synchronous exceptions.

218

C.133. slli

Shift left logical immediate

This instruction is defined by:

I
C.133.1. Encoding
0 This instruction has different encodings in RV32 and RV64.
RV32
31 25 24 20 19 15 14 12 11
0000000 shamt xsl 001 xd 0010011
RV64
31 26 25 20 19 15 14 12 11
000000 shamt xsl 001 xd 0010011
C.133.2. Description
Shift the value in xs1 left by shamt, and store the result in xd
C.133.3. Access
M S U
Always Always Always

C.133.4. Decode Variables

RV32

Bits<5> shamt = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

RV64

Bits<6> shamt = $encoding[25:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.133.5. IDL Operation

X[xd] = X[xs1] << shamt;

C.133.6. Sail Operation

{
let xs1_val = X(xs1);
/* the decoder guaxd should ensure that shamt[5] = @ for RV32 */
let result : xlenbits = match op {
RISCV SLLI => if sizeof(xlen) == 32
then xs1_val << shamt[4..0]
else xs1_val << shamt,
RISCV_SRLI => if sizeof(xlen) == 32
then xs1_val >> shamt[4..0]
else xs1_val >> shamt,
RISCV SRAI => if sizeof(xlen) == 32
then shift_right_arith32(xs1_val, shamt[4..0])
else shift_right_arith64(xs1_val, shamt)

219

X(xd) = result;
RETIRE_SUCCESS
+

C.133.7. Exceptions

This instruction does not generate synchronous exceptions.

220

C.134. slt

Set on less than
This instruction is defined by:

I

C.134.1. Encoding

31 25 24 15 14 12 11 7 6 0

0000000 Xs2 xsl 010 xd 0110011

C.134.2. Description

Places the value 1 in register xd if register xs1 is less than the value in register xs2, where both sources are treated as signed numbers, else 0 is
written to xd.

C.134.3. Access

M S U
Always Always Always

C.134.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.134.5. IDL Operation

XReg src1 = X[xs1];
XReg src2 = X[xs2];
X[xd] = ($signed(src1) < $signed(src2)) ? '1 : '0;

C.134.6. Sail Operation

{
let xs1_val = X(xs1);
let xs2_val = X(xs2);
let result : xlenbits = match op {
RISCV_ADD => xs1_val + xs2_val,
RISCV SLT => zero_extend(bool to_bits(xs1 val <_s xs2 val)),
RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
RISCV_AND => xs1_val & xs2_val,
RISCV_OR => xs1_val | xs2_val,
RISCV_XOR => xs1_val A xs2_val,
RISCV_SLL => if sizeof(xlen) == 32
then xs1_val << (xs2_val[4..0])
else xs1_val << (xs2_val[5..0]),
RISCV SRL => if sizeof(xlen) == 32
then xs1_val >> (xs2_val[4..0])
else xs1_val >> (xs2 val[5..0]),
RISCV_SUB => xs1_val - xs2_val,
RISCV_SRA => if sizeof(xlen) == 32
then shift_right_arith32(xs1_val, xs2_val[4..0])
else shift_right_arith64(xs1_val, xs2_val[5..0])

+

X(xd) = result;

RETIRE _SUCCESS
+

C.134.7. Exceptions

This instruction does not generate synchronous exceptions.

221

C.135. slti

Set on less than immediate
This instruction is defined by:

I

C.135.1. Encoding

31 20 19 15 14 12 11 7 6 0

imm xsl 010 xd 0010011

C.135.2. Description

Places the value 1 in register xd if register xs1 is less than the sign-extended immediate when both are treated as signed numbers, else 0 is written to
xd.

C.135.3. Access

M S U
Always Always Always

C.135.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.135.5. IDL Operation

X[xd] = ($signed(X[xs1]) < $signed(imm)) ? '1 : '0;

C.135.6. Sail Operation

{
let xs1_val = X(xs1);
let immext : xlenbits = sign_extend(imm);
let result : xlenbits = match op {
RISCV_ADDI => xs1_val + immext,
RISCV SLTI => zero_extend(bool to bits(xs1 val <_s immext)),
RISCV_SLTIU => zero_extend(bool_to_bits(xs1 val < _u immext)),
RISCV_ANDI => xs1_val & immext,
RISCV_ORI => xs1_val | immext,
RISCV_XORI => xs1_val ™ immext
75
X(xd) = result;
RETIRE_SUCCESS
}

C.135.7. Exceptions

This instruction does not generate synchronous exceptions.

222

C.136. sltiu

Set on less than immediate unsigned
This instruction is defined by:

I

C.136.1. Encoding

31 20 19 15 14 12 11 7 6 0

imm xsl 011 xd 0010011

C.136.2. Description

Places the value 1 in register xd if register xs1 is less than the sign-extended immediate when both are treated as unsigned numbers (i.e., the
immediate is first sign-extended to XLEN bits then treated as an unsigned number), else 0 is written to xd.

o sltiu xd, xs1, 1setsxdto 1if xs1 equals zero, otherwise sets xd to 0 (assembler pseudoinstruction SEQZ xd, rs).
C.136.3. Access
M S U
Always Always Always

C.136.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.136.5. IDL Operation

Bits<MXLEN> sign_extend_imm = $signed(imm);
X[xd] = (X[xs1] < sign_extend_imm) ? 1 : 0;

C.136.6. Sail Operation

{
let xs1_val = X(xs1);
let immext : xlenbits = sign_extend(imm);
let result : xlenbits = match op {
RISCV_ADDI => xs1_val + immext,
RISCV SLTI => zero_extend(bool_to_bits(xs1 val <_s immext)),
RISCV SLTIU => zero_extend(bool_to _bits(xs1 val < u immext)),
RISCV_ANDI => xs1_val & immext,
RISCV_.ORI => xs1_val | immext,
RISCY_XORI => xs1_val N immext
}
X(xd) = result;
RETIRE_SUCCESS
}

C.136.7. Exceptions

This instruction does not generate synchronous exceptions.

223

C.137. sltu

Set on less than unsigned
This instruction is defined by:

I

C.137.1. Encoding

31 25 24 15 14 12 11 7 6 0

0000000 Xs2 xsl 011 xd 0110011

C.137.2. Description

Places the value 1 in register xd if register xs1 is less than the value in register xs2, where both sources are treated as unsigned numbers, else 0 is
written to xd.

C.137.3. Access

M S U
Always Always Always

C.137.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.137.5. IDL Operation

X[xd] = (X[xs1] < X[xs2]) ? 1 : 0;

C.137.6. Sail Operation

{
let xs1_val = X(xs1);
let xs2 val = X(xs2);
let result : xlenbits = match op {
RISCV_ADD => xs1_val + xs2_val,
RISCV SLT => zero_extend(bool to bits(xs1 val < s xs2 val)),
RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
RISCV_AND => xs1_val & xs2_val,
RISCV_OR => xs1_val | xs2_val,
RISCV_XOR => xs1_val A xs2_val,
RISCV SLL => if sizeof(xlen) == 32
then xs1_val << (xs2_val[4..0])
else xs1_val << (xs2_val[5..0]),
RISCY _SRL => if sizeof(xlen) == 32
then xs1_val >> (xs2_val[4..0])
else xs1 val >> (xs2 val[5..0]),
RISCV_SUB => xs1_val - xs2_val,
RISCY SRA => if sizeof(xlen) == 32
then shift_right_arith32(xs1_val, xs2_val[4..0])
else shift_right_arith64(xs1_val, xs2_val[5..0])

b

X(xd) = result;

RETIRE _SUCCESS
}

C.137.7. Exceptions

This instruction does not generate synchronous exceptions.

224

C.138. sra

Shift right arithmetic

This instruction is defined by:

I
C.138.1. Encoding
31 25 24 20 19 15 14 12 11 0
0100000 XS2 xsl 101 xd 0110011
C.138.2. Description
Arithmetic shift the value in xs1 right by the value in the lower 5 bits of xs2, and store the result in xd.
C.138.3. Access
M S U
Always Always Always

C.138.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.138.5. IDL Operation

if (xlen() == 64) {
X[xd] = X[xs1] >>> X[xs2][5:0];

} else {

X[xd] = X[xs1] >>> X[xs2][4:0];

}

C.138.6. Sail Operation

{

let xs1_val =

X(xs1);

let xs2 val = X(xs2);

let result :
RISCV_ADD
RISCV_SLT
RISCV_SLTU
RISCV_AND
RISCV_OR
RISCV_XOR

xlenbits = match op {
=> xs1_val + xs2_val,

=> zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
=> zero_extend(bool_to_bits(xs1 _val < u xs2 val)),

=> xs1_val & xs2 val,
=> xs1_val | xs2_val,
=> xs1_val N xs2 val,

RISCV_SLL => if

then
else

RISCV_SRL => if

then
else

sizeof(xlen) == 32

xs1 val << (xs2_val[4.
xs1 val << (xs2_val[bh.

sizeof(xlen) == 32

xs1 val >> (xs2_val[4.
xs1 _val >> (xs2_val[b.

RISCV_SUB => xs1_val - xs2_val,

RISCV_SRA => if

sizeof(xlen) == 32

.01)
01),

.01)
.01),

then shift_right_arith32(xs1_val, xs2_val[4..0])
else shift_right_arith64(xs1_val, xs2_val[5..0])

+;

X(xd) = result;

RETIRE _SUCCESS
}

C.138.7. Exceptions

This instruction does not generate synchronous exceptions.

225

C.139. srai

Shift right arithmetic immediate

This instruction is defined by:

I
C.139.1. Encoding
0 This instruction has different encodings in RV32 and RV64.
RV32
31 25 24 20 19 15 14 12 11
0100000 shamt xsl 101 xd 0010011
RV64
31 26 25 20 19 15 14 12 11
010000 shamt xsl 101 xd 0010011

C.139.2. Description

Arithmetic shift (the original sign bit is copied into the vacated upper bits) the value in xs1 right by shamt, and store the result in xd.

C.139.3. Access

M

Always

C.139.4. Decode Variables

RV32

Bits<h>
Bits<h>
Bits<h>

RV64

Bits<6>
Bits<h>
Bits<h>

shamt = $encoding[24:20];
xs1 = $encoding[19:15];
xd = $encoding[11:7];

shamt = $encoding[25:20];
xs1 = $encoding[19:15];
xd = $encoding[11:7];

C.139.5. IDL Operation

X[xd] = X[xs1] >>> shamt;

C.139.6. Sail Operation

{

let xs1_val = X(xs1);
/* the decoder guaxd should ensure that shamt[5] = @ for RV32 */

let result : xlenbits = match op {

RISCV_SLLI => if

then
else

RISCV_SRLI => if

then
else

RISCV_SRAI => if

226

then
else

sizeof(xlen) == 32

xs1 val << shamt[4..0]

xs1 val << shamt,

sizeof(xlen) == 32

xs1 val >> shamt[4..0]

xs1_val >> shamt,

sizeof(xlen) == 32
shift_right_arith32(xs1_val, shamt[4..0])
shift_right_arith64(xs1_val, shamt)

Always

Always

X(xd) = result;
RETIRE_SUCCESS
+

C.139.7. Exceptions

This instruction does not generate synchronous exceptions.

227

C.140. sret

Supervisor Mode Return from Trap
This instruction is defined by:

S

C.140.1. Encoding

00010000001000000000000001110011

C.140.2. Description

Returns from supervisor mode after handling a trap.

When sret is allowed to execute, its behavior depends on whether or not the current privilege mode is virtualized.
When the current privilege mode is (H)S-mode or M-mode

sret sets hstatus = 0, mstatus.SPP = 0, mstatus.SIE = mstatus.SPIE, and mstatus.SPIE = 1, changes the privilege mode according to the table below, and
then jumps to the address in sepc.

Table 14. Next privilege mode following an sret
in (H)S-mode or M-mode

mstatus.SPP hstatus.SPV Mode after sret

0 0 U-mode

0 1 VU-mode
1 0 (H)S-mode
1 1 VS-mode

When the current privilege mode is VS-mode

sret sets vsstatus.SPP = 0, vsstatus.SIE = vstatus.SPIE, and vsstatus.SPIE = 1, changes the privilege mode according to the table below, and then jumps
to the address in vsepc.

Table 15. Next privilege mode
following an sret in (H)S-mode or
M-mode

vsstatus.SPP Mode after sret

0 VU-mode
1 VS-mode
C.140.3. Access
M S U
Always Sometimes Never

Access is determined as follows:

mstatus.TSR hstatus.VTSR Behavior when executed from:
M-mode U-mode (H)S-mode VU-mode VS-mode
0 0 executes Illegal Instruction executes Virtual Instruction executes
0 1 executes Illegal Instruction executes Virtual Instruction Virtual Instruction
1 0 executes Illegal Instruction Illegal Instruction Virtual Instruction executes
1 1 executes Illegal Instruction Illegal Instruction Virtual Instruction Virtual Instruction

C.140.4. Decode Variables

228

C.140.5. IDL Operation

if (implemented?(ExtensionName::H)) {
if (CSR[mstatus].TSR == 1'b@® && CSR[hstatus].VTSR == 1'b0) {
if (mode() == PrivilegeMode::U) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
} else if (mode() == PrivilegeMode::VU) {
raise(ExceptionCode::Virtuallnstruction, mode(), $encoding);
}
} else if (CSR[mstatus].TSR == 1'b@ && CSR[hstatus].VTSR == 1'b1) {
if (mode() == PrivilegeMode::U) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
} else if (mode() == PrivilegeMode::VU || mode() == PrivilegeMode::VS) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
}

} else if (CSR[mstatus].TSR == 1'b1 && CSR[hstatus].VTSR == 1'b0) {
if (mode() == PrivilegeMode::U || mode() == PrivilegeMode::S) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

} else if (mode() == PrivilegeMode::VU) {
raise(ExceptionCode::Virtuallnstruction, mode(), $encoding);
}

} else if (CSR[mstatus].TSR == 1'b1 && CSR[hstatus].VTSR == 1'b1) {
if (mode() == PrivilegeMode::U || mode() == PrivilegeMode::S) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

} else if (mode() == PrivilegeMode::VU || mode() == PrivilegeMode::VS) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
}
}
} else {
if (mode() == PrivilegeMode::U) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
}
if (lvirtual_mode?()) {
if (implemented?(ExtensionName::H)) {
if (CSR[hstatus].SPV == 1'b1) {
if (CSR[mstatus].SPP == 1'b1) {
set_mode(PrivilegeMode::VS);
} else {
set_mode(PrivilegeMode::VU);
}
} else {
if (CSR[mstatus].SPP == 1'b1) {
set_mode(PrivilegeMode::S);

} else {
set_mode(PrivilegeMode::U);
}
}
CSR[hstatus].SPV = 0;
} else {

if (CSR[mstatus].SPP == 1'b1) {
set_mode(PrivilegeMode::S);

} else {
set_mode(PrivilegeMode::U);

}

b
CSR[mstatus].SIE = CSR[mstatus].SPIE;
CSR[mstatus].SPIE = 1;
CSR[mstatus].SPP = 2'b00;
$pc = $bits(CSR[CSR[sepc]]);

} else {
if (CSR[mstatus].TSR == 1'b1) {

raise(ExceptionCode::I1legalInstruction, mode(), $encoding);

}
CSR[vsstatus].SPP = 0;
CSR[vsstatus].SIE = CSR[vsstatus].SPIE;
CSR[vsstatus].SPIE = 1;
$pc = $bits(CSR[CSR[vsepc]l]);

C.140.6. Sail Operation

229

{
let sret_illegal : bool = match cur_privilege {
User => true,
Supervisor => not(haveSupMode ()) | mstatus.TSR() == @b1,
Machine => not(haveSupMode ())
}
if sret_illegal
then { handle_illegal(); RETIRE_FAIL }
else if not(ext_check_xret_priv (Supervisor))
then { ext_fail_xret_priv(); RETIRE_FAIL }
else {
set_next_pc(exception_handler(cur_privilege, CTL_SRET(), PC));
RETIRE_SUCCESS
}
+

C.140.7. Exceptions
This instruction may result in the following synchronous exceptions:

* Illegallnstruction

e Virtuallnstruction

230

C.141. srl

Shift right logical

This instruction is defined by:

I
C.141.1. Encoding
31 25 24 20 19 15 14 12 11 0
0000000 Xs2 xsl 101 xd 0110011
C.141.2. Description
Logical shift the value in xs1 right by the value in the lower bits of xs2, and store the result in xd.
C.141.3. Access
M S U
Always Always Always

C.141.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.141.5. IDL Operation

if (xlen() == 64) {

X[xd] = X[xs1
} else {

X[xd] = X[xs1
}

1 >> X[xs2][5:0];

1 >> X[xs2][4:0];

C.141.6. Sail Operation

{

let xs1_val =

X(xs1);

let xs2 val = X(xs2);

let result :
RISCV_ADD
RISCV_SLT
RISCV_SLTU
RISCV_AND
RISCV_OR
RISCV_XOR

xlenbits = match op {
=> xs1_val + xs2_val,

=> zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
=> zero_extend(bool_to_bits(xs1 _val < u xs2 val)),

=> xs1_val & xs2 val,
=> xs1_val | xs2_val,
=> xs1_val N xs2 val,

RISCV_SLL => if

then
else

RISCV_SRL => if

then
else

sizeof(xlen) == 32

xs1 val << (xs2_val[4.
xs1 val << (xs2_val[bh.

sizeof(xlen) == 32

xs1 val >> (xs2_val[4.
xs1 _val >> (xs2_val[b.

RISCV_SUB => xs1_val - xs2_val,

RISCV_SRA => if

sizeof(xlen) == 32

.01)
01),

.01)
.01),

then shift_right_arith32(xs1_val, xs2_val[4..0])
else shift_right_arith64(xs1_val, xs2_val[5..0])

+;

X(xd) = result;

RETIRE _SUCCESS
}

C.141.7. Exceptions

This instruction does not generate synchronous exceptions.

231

C.142. srli

Shift right logical immediate

This instruction is defined by:

I
C.142.1. Encoding
0 This instruction has different encodings in RV32 and RV64.
RV32
31 25 24 20 19 15 14 12 11
0000000 shamt xsl 101 xd 0010011
RV64
31 26 25 20 19 15 14 12 11
000000 shamt xsl 101 xd 0010011
C.142.2. Description
Shift the value in xs1 right by shamt, and store the result in xd
C.142.3. Access
M S §)
Always Always Always

C.142.4. Decode Variables

RV32

Bits<5> shamt = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

RV64

Bits<6> shamt = $encoding[25:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.142.5. IDL Operation

X[xd] = X[xs1] >> shamt;

C.142.6. Sail Operation

{
let xs1_val = X(xs1);
/* the decoder guaxd should ensure that shamt[5] = @ for RV32 */
let result : xlenbits = match op {
RISCV SLLI => if sizeof(xlen) == 32
then xs1_val << shamt[4..0]
else xs1_val << shamt,
RISCV_SRLI => if sizeof(xlen) == 32
then xs1_val >> shamt[4..0]
else xs1_val >> shamt,
RISCV SRAI => if sizeof(xlen) == 32
then shift_right_arith32(xs1_val, shamt[4..0])
else shift_right_arith64(xs1_val, shamt)

232

X(xd) = result;
RETIRE_SUCCESS
+

C.142.7. Exceptions

This instruction does not generate synchronous exceptions.

233

C.143. sub

Subtract

This instruction is defined by:

I
C.143.1. Encoding
31 25 24 20 19 15 14 12 11 7 6
0100000 XS2 xsl 000 xd 0110011
C.143.2. Description
Subtract the value in xs2 from xs1, and store the result in xd
C.143.3. Access
M S U
Always Always Always

C.143.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.143.5. IDL Operation

XReg t@ = X[xs1];
XReg t1 = X[xs2];
X[xd] = t0 - t1;

C.143.6. Sail Operation

{
let xs1_val = X(xs1);
let xs2 val = X(xs2);
let result : xlenbits = match op {
RISCV_ADD => xs1_val + xs2 val,

RISCV _SLT => zero_extend(bool _to bits(xs1 val < s xs2 val)),
RISCV_SLTU => zero_extend(bool_to_bits(xs1 val <_u xs2_val)),

RISCV_AND => xs1_val & xs2_val,
RISCV_OR => xs1_val | xs2_val,
RISCV_XOR => xs1_val A xs2_val,
RISCV SLL => if sizeof(xlen) == 32
then xs1_val << (xs2_val[4..0])
else xs1 _val << (xs2_val[5..0]),
RISCV _SRL => if sizeof(xlen) == 32
then xs1_val >> (xs2_val[4..0])
else xs1 val >> (xs2 val[5..0]),
RISCV_SUB => xs1_val - xs2_val,
RISCV SRA => if sizeof(xlen) == 32

then shift_right_arith32(xs1_val, xs2_val[4..0])
else shift_right_arith64(xs1_val, xs2_val[5..0])

b

X(xd) = result;

RETIRE _SUCCESS
}

C.143.7. Exceptions

This instruction does not generate synchronous exceptions.

234

C.144. sw

Store word

This instruction is defined by:

I
C.144.1. Encoding
31 25 24 20 19 15 14 12 11 7 0
imm[11:5] XS2 xsl 010 imm[4:0] 0100011
C.144.2. Description
Store 32 bits of data from register xs2 to an address formed by adding xs1 to a signed offset.
C.144.3. Access
M S U
Always Always Always

C.144.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:7]1};

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.144.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
write_memory<32>(virtual_address, X[xs2][31:0], $encoding);

C.144.6. Sail Operation

{

let offset : xlenbits = sign_extend(imm);
/* Get the address, X(xs1) + offset.
Some extensions perform additional checks on address validity. */
match ext_data_get_addr(xs1, offset, Write(Data), width) {
Ext _DataAddr_Error(e) => { ext_handle_data_check _error(e); RETIRE FAIL },
Ext DataAddr_OK(vaddr) =>
if check_misaligned(vaddr, width)
then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
else match translateAddr(vaddr, Write(Data)) {
TR_Failure(e,) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
TR_Address(paddr, _) => {
let eares : MemoryOpResult(unit) = match width {
BYTE => mem_write_ea(paddr, 1, aq, rl, false),
HALF => mem_write_ea(paddr, 2, aq, rl, false),
WORD => mem_write_ea(paddr, 4, aq, rl, false),
DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
s
match (eares) {
MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
MemValue() => {
let xs2_val = X(xs2);
let res : MemoryOpResult(bool) = match (width) {
BYTE => mem_write_value(paddr, 1, xs2_val[7..0], aq, rl, false),
HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
WORD => mem_write_value(paddr, 4, xs2_val[31..0], aq, rl, false),
DOUBLE if sizeof(xlen) >= 64
=> mem_write_value(paddr, 8, xs2_val, aq, rl, false),
B => report_invalid_width(__FILE__, __LINE__, width, "store"),
i
match (res) {
MemValue(true) => RETIRE_SUCCESS,

MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),

235

MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }

C.144.7. Exceptions
This instruction may result in the following synchronous exceptions:

e LoadAccessFault

StoreAmoAccessFault

StoreAmoAddressMisaligned

» StoreAmoPageFault

236

C.145. xor

Exclusive Or

This instruction is defined by:

I
C.145.1. Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0000000 XSs2 xsl 100 xd 0110011
C.145.2. Description
Exclusive or xs1 with xs2, and store the result in xd
C.145.3. Access
M S U
Always Always Always

C.145.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.145.5. IDL Operation

X[xd] = X[xs1] ™ X[xs2];

C.145.6. Sail Operation

{
let xs1_val = X(xs1);
let xs2_val = X(xs2);
let result : xlenbits = match op {
RISCV_ADD => xs1_val + xs2 val,

RISCV_SLT => zero_extend(bool _to_bits(xs1 val <_s xs2 val)),
RISCV_SLTU => zero_extend(bool_to_bits(xs1 val < u xs2 val)),

RISCV_AND => xs1 _val & xs2 val,
RISCV_OR => xs1_val | xs2_val,
RISCV_XOR => xs1_val A xs2_val,
RISCV SLL => if sizeof(xlen) == 32
then xs1_val << (xs2_val[4..0])
else xs1 val << (xs2 val[5..0]),
RISCV SRL => if sizeof(xlen) == 32
then xs1_val >> (xs2 _val[4..0])
else xs1 _val >> (xs2_val[5..0]),
RISCV_SUB => xs1_val - xs2_val,
RISCY_SRA => if sizeof(xlen) == 32

then shift_right_arith32(xs1_val, xs2_val[4..0])
else shift_right_arith64(xs1_val, xs2_val[5..0])

b

X(xd) = result;

RETIRE _SUCCESS
}

C.145.7. Exceptions

This instruction does not generate synchronous exceptions.

237

C.146. xori

Exclusive Or immediate

This instruction is defined by:

I

C.146.1. Encoding
31 20 19 15 14 12 11 7 6
imm xsl 100 xd 0010011
C.146.2. Description
Exclusive or an immediate to the value in xXs1, and store the result in xd
C.146.3. Access
M S U
Always Always Always

C.146.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.146.5. IDL Operation

X[xd] = X[xs1] A $signed(imm);

C.146.6. Sail Operation

{

let xs1_val = X(xs1);

let immext :
let result :

+;

RISCV_ADDI =>
RISCV_SLTI =>
RISCV_SLTIU =>
RISCV_ANDI =>
RISCV_ORI =>
RISCV_XORI =>

X(xd) = result;
RETIRE _SUCCESS

}

xlenbits
xlenbits = match op {

sign_extend(imm);

xs1 val + immext,
zero_extend(bool_to_bits(xs1 val < s immext)),
zero_extend(bool_to_bits(xs1 val < u immext)),
xs1 val & immext,
xs1_val | immext,
xs1 val N immext

C.146.7. Exceptions

This instruction does not generate synchronous exceptions.

238

Appendix D: CSR Details

239

D.1. cycle

Cycle counter for RDCYCLE Instruction

Alias for M-mode CSR mcycle.

Privilege mode access is controlled with mcounteren.CY, scounteren.CY, and hcounteren.CY as follows:

mcounteren.CY scounteren.CY hcounteren.CY

cycle behavior

S-mode U-mode VS-mode VU-mode
0 - I1legallnstruction IllegallInstruction Illegallnstruction Illegallnstruction
1 0 read-only I1legallnstruction Virtuallnstruction Virtuallnstruction
1 1 read-only read_only VirtualInstruction Virtuallnstruction
1 0 read-only Illegallnstruction read-only VirtualInstruction
1 1 read-only read-only read-only read-only
D.1.1. Attributes
CSR Address 0xc00
Defining Zicntr
extension
Length 64-bit
Privilege Mode U
D.1.2. Format
63 48
COUNT
47 32
COUNT
31 16
COUNT
15 0
COUNT
Figure 1. cycle format
D.1.3. Field Summary
Nam Location Type Reset Value
e
cycle 63:0 RO-H UNDEFINED_LEGAL
.COU
NT
D.1.4. Fields

cycle.COUNT Field
Location:
63:0

Description:
Alias of mcycle.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

240

D.1.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].CY == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {
if ((CSR[mcounteren].CY & CSR[scounteren].CY) == 1'b@) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
} else if (CSR[mcounteren].CY == 1'b@) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
}
} else if (mode() == PrivilegeMode::VS) {
if (CSR[hcounteren].CY == 1'b0 && CSR[mcounteren].CY == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
} else if (CSR[mcounteren].CY == 1'b0) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
by
} else if (mode() == PrivilegeMode::VU) {
if (CSR[hcounteren].CY & CSR[scounteren].CY) == 1'b@) && (CSR[mcounteren].CY == 1'b1 {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
} else if (CSR[mcounteren].CY == 1'b0) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
}
}

return read_mcycle();

241

D.2. fcsr

Floating-point control and status register (frm + fflags)

The floating-point control and status register, fcsr, is a RISC-V control and status register (CSR). It is a 32-bit read/write register that selects the
dynamic rounding mode for floating-point arithmetic operations and holds the accrued exception flags, as shown in Floating-Point Control and
Status Register.

Floating-point control and status register

Unresolved directive in RVA20ProfileRelease.adoc - include::images/wavedrom/float-csr.adoc[]

The fcsr register can be read and written with the FRCSR and FSCSR instructions, which are assembler pseudoinstructions built on the underlying
CSR access instructions. FRCSR reads fcsr by copying it into integer register rd. FSCSR swaps the value in fcsr by copying the original value into
integer register rd, and then writing a new value obtained from integer register rs1 into fcsr.

The fields within the fcsr can also be accessed individually through different CSR addresses, and separate assembler pseudoinstructions are defined
for these accesses. The FRRM instruction reads the Rounding Mode field frm (fcsr bits 7—5) and copies it into the least-significant three bits of integer
register rd, with zero in all other bits. FSRM swaps the value in frm by copying the original value into integer register rd, and then writing a new
value obtained from the three least-significant bits of integer register rs1 into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued
Exception Flags field fflags (fcsr bits 4—0).

Bits 31—38 of the fcsr are reserved for other standard extensions. If these extensions are not present, implementations shall ignore writes to these bits
and supply a zero value when read. Standard software should preserve the contents of these bits.

Floating-point operations use either a static rounding mode encoded in the instruction, or a dynamic rounding mode held in frm. Rounding modes
are encoded as shown in Table 7. A value of 111 in the instruction’s rm field selects the dynamic rounding mode held in frm. The behavior of
floating-point instructions that depend on rounding mode when executed with a reserved rounding mode is reserved, including both static reserved
rounding modes (101-110) and dynamic reserved rounding modes (101-111). Some instructions, including widening conversions, have the rm field
but are nevertheless mathematically unaffected by the rounding mode; software should set their rm field to RNE (000) but implementations must
treat the rm field as usual (in particular, with regard to decoding legal vs. reserved encodings).

The C99 language standard effectively mandates the provision of a dynamic rounding mode register. In typical implementations,
writes to the dynamic rounding mode CSR state will serialize the pipeline. Static rounding modes are used to implement specialized
arithmetic operations that often have to switch frequently between different rounding modes.

o The ratified version of the F spec mandated that an illegal-instruction exception was raised when an instruction was executed with
a reserved dynamic rounding mode. This has been weakened to reserved, which matches the behavior of static rounding-mode
instructions. Raising an illegal-instruction exception is still valid behavior when encountering a reserved encoding, so
implementations compatible with the ratified spec are compatible with the weakened spec.

The accrued exception flags indicate the exception conditions that have arisen on any floating-point arithmetic instruction since the field was last
reset by software, as shown in Table 8. The base RISC-V ISA does not support generating a trap on the setting of a floating-point exception flag.

Table 16. Accrued exception flag
encoding.

Flag Mnemonic Flag Meaning

NV Invalid Operation
DZ Divide by Zero
OF Overflow

UF Underflow

NX Inexact

As allowed by the standard, we do not support traps on floating-point exceptions in the F extension, but instead require explicit
o checks of the flags in software. We considered adding branches controlled directly by the contents of the floating-point accrued
exception flags, but ultimately chose to omit these instructions to keep the ISA simple.

D.2.1. Attributes

CSR Address 0x3

Defining F
extension
Length 32-bit

Privilege Mode U

D.2.2. Format

242

31 16

15 8 7 5 4 3 2 1 0
FRM NV DZ OF UF NX

Figure 2. fcsr format

D.2.3. Field Summary

Na Location Type Reset Value
me

fesr. 7:5 RW-H UNDEFINED_LEGAL
FR

fcsr. 4 RW-H UNDEFINED_LEGAL
NV

fesr. 3 RW-H UNDEFINED_LEGAL
Dz

fesr. 2 RW-H UNDEFINED_LEGAL
OF

fesr. 1 RW-H UNDEFINED_LEGAL
UF

fesr. O RW-H UNDEFINED_LEGAL
NX

D.2.4. Fields

fesr.FRM Field

Location:
7:5

Description:

Rounding modes are encoded as follows:

.Rounding mode encoding.
[%oautowidth,float="center",align="center",cols=",<",options="header"]
===

'Rounding Mode |Mnemonic | Meaning

1000 !RNE !Round to Nearest, ties to Even

1001 IRTZ 'Round towards Zero

1010 'RDN Round Down (towards -\infty)

1011 !RUP !Round Up (towards +\infty)

1100 !RMM !Round to Nearest, ties to Max Magnitude

1101 ! |Reserved for future use.

1110 ! |Reserved for future use.

1111 IDYN !In instruction’s rm field, selects dynamic rounding mode; In Rounding Mode register, reserved.

A value of 111 in the

instruction’s rm field selects the dynamic rounding mode held in

frm. The behavior of floating-point instructions that depend on

rounding mode when executed with a reserved rounding mode is reserved,
including both static reserved rounding modes (101-110) and dynamic reserved
rounding modes (101-111). Some instructions, including widening conversions,
have the rm field but are nevertheless mathematically unaffected by the
rounding mode; software should set their rm field to

RNE (000) but implementations must treat the rm field as usual (in

particular, with regard to decoding legal vs. reserved encodings).

Type:
RW-H

243

Reset value:
UNDEFINED LEGAL

fesr.NV Field
Location:
4

Description:

Invalid Operation
Cumulative error flag for floating point operations.

Set by hardware when a floating point operation is invalid and stays set until explicitly
cleared by software.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

fesr.DZ Field
Location:
3

Description:

Divide by zero
Cumulative error flag for floating point operations.

Set by hardware when a floating point divide attempts to divide by zero and stays set until explicitly
cleared by software.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

fesr.OF Field

Location:
2

Description:

Overflow
Cumulative error flag for floating point operations.

Set by hardware when a floating point operation overflows and stays set until explicitly
cleared by software.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

fcsr.UF Field

Location:
1

244

Description:

Underflow
Cumulative error flag for floating point operations.

Set by hardware when a floating point operation underflows and stays set until explicitly
cleared by software.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

fesr.NX Field
Location:
0

Description:

Inexact
Cumulative error flag for floating point operations.

Set by hardware when a floating point operation is inexact and stays set until explicitly
cleared by software.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

245

D.3. fflags

Floating-Point Accrued Exceptions

The accrued exception flags indicate the exception conditions that have arisen on any floating-point arithmetic instruction since the field was last
reset by software.

The base RISC-V ISA does not support generating a trap on the setting of a floating-point exception flag.

As allowed by the standard, we do not support traps on floating-point exceptions in the F extension, but instead require explicit checks of the flags in
software. We considered adding branches controlled directly by the contents of the floating-point accrued exception flags, but ultimately chose to
omit these instructions to keep the ISA simple.

D.3.1. Attributes

CSR Address 0x1

Defining F
extension
Length 32-bit

Privilege Mode U

D.3.2. Format

31 16

15 5 4 3 2 1 0
NV Dz OF UF NX

Figure 3. fflags format

D.3.3. Field Summary

Na Location Type Reset Value
me

ffla 4 RW-H UNDEFINED_LEGAL
gs.N
\Y

ffla 3 RW-H UNDEFINED_LEGAL
gs.D
Z

ffla 2 RW-H UNDEFINED_LEGAL
gs.0
F

ffla 1 RW-H UNDEFINED_LEGAL
gs.U
F

ffla 0 RW-H UNDEFINED_LEGAL
gs.N
X

D.3.4. Fields

fflags.NV Field

Location:
4

Description:

Set by hardware when a floating point operation is invalid and stays set until explicitly
cleared by software.

Type:
RW-H

246

Reset value:
UNDEFINED LEGAL

fflags.DZ Field

Location:
3

Description:

Set by hardware when a floating point divide attempts to divide by zero and stays set until explicitly
cleared by software.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

fflags.OF Field

Location:
2

Description:

Set by hardware when a floating point operation overflows and stays set until explicitly
cleared by software.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

fflags.UF Field

Location:
1

Description:

Set by hardware when a floating point operation underflows and stays set until explicitly
cleared by software.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

fflags.NX Field

Location:
0

Description:

Set by hardware when a floating point operation is inexact and stays set until explicitly
cleared by software.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

247

D.3.5. Software write
This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

NV = CSR[fcsr].NV = csr_value.NV;
return csr_value.NV;

DZ = CSR[fcsr].DZ = csr_value.DZ;
return csr_value.DZ;

OF = CSR[fecsr].0F = csr_value.OF;
return csr_value.OF;

UF = CSR[fesr].UF = csr_value.UF;
return csr_value.UF;

NX = CSR[fcsr].NX = csr_value.NX;
return csr_value.NX;

D.3.6. Software read

This CSR may return a value that is different from what is stored in hardware.

return (CSR[fcsr].NV ‘<< 4) | (CSR[fcsr].DZ ‘<< 3) | (CSR[fecsr].OF ‘<< 2) | (CSR[fecsr].UF ‘<< 1) | CSR[fcsr].NX;

248

D.4. frm

Floating-Point Dynamic Rounding Mode
Rounding modes are encoded as follows:

Table 17. Rounding mode encoding.

'Rounding Mnemon Meaning !000 !RNE !Round to Nearest, ties to Even !001 !RTZ 'Round towards Zero !010 !RDN !Round Down
Mode ic (towards -\infty) 1011 !RUP !Round Up (towards +\infty) 100 'RMM !Round to Nearest, ties to Max Magnitude !101
! 'Reserved for future use. 110 ! 'Reserved for future use. 1111 !DYN !In instruction’s rm field, selects dynamic rounding
mode; In Rounding Mode register, reserved.

The behavior of floating-point instructions that depend on rounding mode when executed with a reserved rounding mode is reserved, including both
static reserved rounding modes (101-110) and dynamic reserved rounding modes (101-111).

Some instructions, including widening conversions, have the rm field but are nevertheless mathematically unaffected by the rounding mode;
software should set their rm field to RNE (000) but implementations must treat the rm field as usual (in particular, with regard to decoding legal vs.
reserved encodings).

D.4.1. Attributes

CSR Address 0x2

Defining F
extension
Length 32-bit

Privilege Mode U

D.4.2. Format

31 16
15 3 2 0
ROUNDINGMODE

Figure 4. frm format

D.4.3. Field Summary

Name Location Type Reset Value
frm.RO 2:0 RW-H UNDEFINED_LEGAL
UNDIN

GMODE

D.4.4. Fields

frm.ROUNDINGMODE Field
Location:
2:0

Description:

Rounding mode data.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

D.4.5. Software write

This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

249

ROUNDINGMODE = CSR[fcsr].FRM = csr_value.ROUNDINGMODE;
return csr_value.ROUNDINGMODE;

D.4.6. Software read

This CSR may return a value that is different from what is stored in hardware.

return CSR[fcsr].FRM;

250

D.5. hpmcounter10
User-mode Hardware Performance Counter 7
Alias for M-mode CSR mhpmcounter10.

Privilege mode access is controlled with mcounteren.HPM10 <%- if ext?(:S) -%> , scounteren.HPM10 <%- if ext?(:H) -%> , and hcounteren.HPM10 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM10 scounteren.HPM10 hcounteren.HPM10 hpmcounter10 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM10 scounteren. HPM10 hpmcounter10 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM10 hpmcounter10 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.5.1. Attributes

CSR Address 0xcOa

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.5.2. Format

63 A8
et
47 32
e
31 16
et
15 0
e

Figure 5. hpmcounter10 format

D.5.3. Field Summary

251

Name Location Type
hpmcou 63:0 RO-H
nter10.

COUNT

D.5.4. Fields

hpmcounter10.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter10.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.5.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM10 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM10 & CSR[scounteren].HPM10) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM10 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM10 == 1'b@ && CSR[mcounteren].HPM10 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM10 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM10 & CSR[scounteren].HPM10) == 1'b0@) && (CSR[mcounteren].HPM10 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM10 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(10);

252

D.6. hpmcounteril1l
User-mode Hardware Performance Counter 8
Alias for M-mode CSR mhpmcounter11.

Privilege mode access is controlled with mcounteren.HPM11 <%- if ext?(:S) -%> , scounteren.HPM11 <%- if ext?(:H) -%> , and hcounteren.HPM11 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM11 scounteren.HPM11 hcounteren.HPM11 hpmcounter11 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM11 scounteren. HPM11 hpmcounter11 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM11 hpmcounter11 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.6.1. Attributes

CSR Address 0xcO0b

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.6.2. Format

63 A8
et
47 32
e
31 16
et
15 0
e

Figure 6. hpmcounter11 format

D.6.3. Field Summary

253

Name Location Type
hpmcou 63:0 RO-H
nterll.

COUNT

D.6.4. Fields

hpmcounter11.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter11.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.6.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM11 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM11 & CSR[scounteren].HPM11) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM11 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM11 == 1'b@ && CSR[mcounteren].HPM11 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM11 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM11 & CSR[scounteren].HPM11) == 1'b@) && (CSR[mcounteren].HPM11 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM11 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(11);

254

D.7. hpmcounteri12
User-mode Hardware Performance Counter 9
Alias for M-mode CSR mhpmcounter12.

Privilege mode access is controlled with mcounteren.HPM12 <%- if ext?(:S) -%> , scounteren.HPM12 <%- if ext?(:H) -%> , and hcounteren.HPM12 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM12 scounteren.HPM12 hcounteren.HPM12 hpmcounter12 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM12 scounteren. HPM12 hpmcounter12 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM12 hpmcounter12 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.7.1. Attributes

CSR Address 0xcOc

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.7.2. Format

63 A8
et
47 32
e
31 16
et
15 0
e

Figure 7. hpmcounter12 format

D.7.3. Field Summary

255

Name Location Type
hpmcou 63:0 RO-H
nterl2.

COUNT

D.7.4. Fields

hpmcounter12.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter12.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.7.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM12 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM12 & CSR[scounteren].HPM12) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM12 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM12 == 1'b@ && CSR[mcounteren].HPM12 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM12 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM12 & CSR[scounteren].HPM12) == 1'b0@) && (CSR[mcounteren].HPM12 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM12 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(12);

256

D.8. hpmcounteri13
User-mode Hardware Performance Counter 10
Alias for M-mode CSR mhpmcounter13.

Privilege mode access is controlled with mcounteren.HPM13 <%- if ext?(:S) -%> , scounteren.HPM13 <%- if ext?(:H) -%> , and hcounteren.HPM13 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM13 scounteren.HPM13 hcounteren.HPM13 hpmcounter13 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM13 scounteren. HPM13 hpmcounter13 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM13 hpmcounter13 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.8.1. Attributes

CSR Address 0xc0d

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.8.2. Format

63 A8
et
47 32
e
31 16
et
15 0
e

Figure 8. hpmcounter13 format

D.8.3. Field Summary

257

Name Location Type
hpmcou 63:0 RO-H
nterl3.

COUNT

D.8.4. Fields

hpmcounter13.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter13.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.8.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM13 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM13 & CSR[scounteren].HPM13) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM13 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM13 == 1'b@ && CSR[mcounteren].HPM13 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM13 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM13 & CSR[scounteren].HPM13) == 1'b0@) && (CSR[mcounteren].HPM13 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM13 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(13);

258

D.9. hpmcounteri14
User-mode Hardware Performance Counter 11
Alias for M-mode CSR mhpmcounter14.

Privilege mode access is controlled with mcounteren.HPM14 <%- if ext?(:S) -%> , scounteren.HPM14 <%- if ext?(:H) -%> , and hcounteren.HPM14 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM14 scounteren.HPM14 hcounteren.HPM14 hpmcounter14 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM14 scounteren. HPM14 hpmcounter14 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM14 hpmcounter14 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.9.1. Attributes

CSR Address 0xcOe

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.9.2. Format

63 A8
et
47 32
e
31 16
et
15 0
e

Figure 9. hpmcounter14 format

D.9.3. Field Summary

259

Name Location Type
hpmcou 63:0 RO-H
nterl4.

COUNT

D.9.4. Fields

hpmcounter14.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter14.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.9.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM14 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM14 & CSR[scounteren].HPM14) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM14 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM14 == 1'b@ && CSR[mcounteren].HPM14 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM14 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM14 & CSR[scounteren].HPM14) == 1'b0@) && (CSR[mcounteren].HPM14 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM14 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(14);

260

D.10. hpmcounteri15
User-mode Hardware Performance Counter 12
Alias for M-mode CSR mhpmcounter15.

Privilege mode access is controlled with mcounteren.HPM15 <%- if ext?(:S) -%> , scounteren.HPM15 <%- if ext?(:H) -%> , and hcounteren.HPM15 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM15 scounteren.HPM15 hcounteren.HPM15 hpmcounter15 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM15 scounteren. HPM15 hpmcounter15 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM15 hpmcounter15 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.10.1. Attributes

CSR Address 0xcOof

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.10.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 10. hpmcounter15 format

D.10.3. Field Summary

261

Name Location Type
hpmcou 63:0 RO-H
nterls.

COUNT

D.10.4. Fields

hpmcounter15.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter15.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.10.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM15 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM15 & CSR[scounteren].HPM15) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM15 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM15 == 1'b@ && CSR[mcounteren].HPM15 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM15 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM15 & CSR[scounteren].HPM15) == 1'b0@) && (CSR[mcounteren].HPM15 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM15 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(15);

262

D.11. hpmcounter16
User-mode Hardware Performance Counter 13
Alias for M-mode CSR mhpmcounter16.

Privilege mode access is controlled with mcounteren.HPM16 <%- if ext?(:S) -%> , scounteren.HPM16 <%- if ext?(:H) -%> , and hcounteren.HPM16 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM16 scounteren.HPM16 hcounteren.HPM16 hpmcounter16 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM16 scounteren.HPM16 hpmcounter16 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM16 hpmcounter16 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.11.1. Attributes

CSR Address 0xc10

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.11.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 11. hpmcounter16 format

D.11.3. Field Summary

263

Name Location Type
hpmcou 63:0 RO-H
nter16.

COUNT

D.11.4. Fields

hpmcounter16.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter16.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.11.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM16 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM16 & CSR[scounteren].HPM16) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM16 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM16 == 1'b@ && CSR[mcounteren].HPM16 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM16 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM16 & CSR[scounteren].HPM16) == 1'b@) && (CSR[mcounteren].HPM16 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM16 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(16);

264

D.12. hpmcounter17
User-mode Hardware Performance Counter 14
Alias for M-mode CSR mhpmcounterl?7.

Privilege mode access is controlled with mcounteren.HPM17 <%- if ext?(:S) -%> , scounteren.HPM17 <%- if ext?(:H) -%> , and hcounteren.HPM17 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM17 scounteren.HPM17 hcounteren.HPM17 hpmcounter17 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM17 scounteren. HPM17 hpmcounter17 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM17 hpmcounter17 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.12.1. Attributes

CSR Address 0xcl11

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.12.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 12. hpmcounter17 format

D.12.3. Field Summary

265

Name Location Type
hpmcou 63:0 RO-H
nterl7.

COUNT

D.12.4. Fields

hpmcounter17.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter17.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.12.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM17 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM17 & CSR[scounteren].HPM17) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM17 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM17 == 1'b@ && CSR[mcounteren].HPM17 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM17 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM17 & CSR[scounteren].HPM17) == 1'b0@) && (CSR[mcounteren].HPM17 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM17 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(17);

266

D.13. hpmcounter18
User-mode Hardware Performance Counter 15
Alias for M-mode CSR mhpmcounter18.

Privilege mode access is controlled with mcounteren.HPM18 <%- if ext?(:S) -%> , scounteren.HPM18 <%- if ext?(:H) -%> , and hcounteren.HPM18 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM18 scounteren.HPM18 hcounteren.HPM18 hpmcounter18 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM18 scounteren. HPM18 hpmcounter18 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM18 hpmcounter18 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.13.1. Attributes

CSR Address 0xcl12

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.13.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 13. hpmcounter18 format

D.13.3. Field Summary

267

Name Location Type
hpmcou 63:0 RO-H
nterl8.

COUNT

D.13.4. Fields

hpmcounter18.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter18.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.13.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM18 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM18 & CSR[scounteren].HPM18) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM18 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM18 == 1'b@ && CSR[mcounteren].HPM18 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM18 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM18 & CSR[scounteren].HPM18) == 1'b0@) && (CSR[mcounteren].HPM18 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM18 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(18);

268

D.14. hpmcounter19
User-mode Hardware Performance Counter 16
Alias for M-mode CSR mhpmcounter19.

Privilege mode access is controlled with mcounteren.HPM19 <%- if ext?(:S) -%> , scounteren.HPM19 <%- if ext?(:H) -%> , and hcounteren.HPM19 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM19 scounteren.HPM19 hcounteren.HPM19 hpmcounter19 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM19 scounteren. HPM19 hpmcounter19 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM19 hpmcounter19 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.14.1. Attributes

CSR Address 0xc13

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.14.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 14. hpmcounter19 format

D.14.3. Field Summary

269

Name Location Type
hpmcou 63:0 RO-H
nter19.

COUNT

D.14.4. Fields

hpmcounter19.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter19.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.14.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM19 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM19 & CSR[scounteren].HPM19) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM19 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM19 == 1'b@ && CSR[mcounteren].HPM19 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM19 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM19 & CSR[scounteren].HPM19) == 1'b0@) && (CSR[mcounteren].HPM19 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM19 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(19);

270

D.15. hpmcounter20
User-mode Hardware Performance Counter 17
Alias for M-mode CSR mhpmcounter20.

Privilege mode access is controlled with mcounteren.HPM20 <%- if ext?(:S) -%> , scounteren.HPM20 <%- if ext?(:H) -%> , and hcounteren.HPM20 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren. HPM20 scounteren.HPM20 hcounteren.HPM20 hpmcounter20 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM20 scounteren. HPM20 hpmcounter20 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM20 hpmcounter20 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.15.1. Attributes

CSR Address 0xcl4

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.15.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 15. hpmcounter20 format

D.15.3. Field Summary

271

Name Location Type
hpmcou 63:0 RO-H
nter20.

COUNT

D.15.4. Fields

hpmcounter20.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter20.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.15.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM20 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM20 & CSR[scounteren].HPM20) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM20 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM20 == 1'b@ && CSR[mcounteren].HPM20 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM20 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM20 & CSR[scounteren].HPM20) == 1'b0@) && (CSR[mcounteren].HPM20 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM20 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(20);

272

D.16. hpmcounter21
User-mode Hardware Performance Counter 18
Alias for M-mode CSR mhpmcounter21.

Privilege mode access is controlled with mcounteren.HPM21 <%- if ext?(:S) -%> , scounteren.HPM21 <%- if ext?(:H) -%> , and hcounteren.HPM21 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM21 scounteren.HPM21 hcounteren.HPM21 hpmcounter21 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM21 scounteren. HPM21 hpmcounter21 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM21 hpmcounter21 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.16.1. Attributes

CSR Address 0xcl15

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.16.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 16. hpmcounter21 format

D.16.3. Field Summary

273

Name Location Type
hpmcou 63:0 RO-H
nter21.

COUNT

D.16.4. Fields

hpmcounter21.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter21.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.16.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM21 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM21 & CSR[scounteren].HPM21) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM21 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM21 == 1'b@ && CSR[mcounteren].HPM21 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM21 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM21 & CSR[scounteren].HPM21) == 1'b0@) && (CSR[mcounteren].HPM21 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM21 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(21);

274

D.17. hpmcounter22
User-mode Hardware Performance Counter 19
Alias for M-mode CSR mhpmcounter22.

Privilege mode access is controlled with mcounteren.HPM22 <%- if ext?(:S) -%> , scounteren.HPM22 <%- if ext?(:H) -%> , and hcounteren.HPM22 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren. HPM22 scounteren.HPM22 hcounteren.HPM22 hpmcounter22 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM22 scounteren. HPM22 hpmcounter22 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM22 hpmcounter22 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.17.1. Attributes

CSR Address 0xcl16

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.17.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 17. hpmcounter22 format

D.17.3. Field Summary

275

Name Location Type
hpmcou 63:0 RO-H
nter22.

COUNT

D.17.4. Fields

hpmcounter22.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter22.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.17.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM22 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM22 & CSR[scounteren].HPM22) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM22 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM22 == 1'b@ && CSR[mcounteren].HPM22 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM22 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM22 & CSR[scounteren].HPM22) == 1'b0@) && (CSR[mcounteren].HPM22 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM22 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(22);

276

D.18. hpmcounter23
User-mode Hardware Performance Counter 20
Alias for M-mode CSR mhpmcounter23.

Privilege mode access is controlled with mcounteren.HPM23 <%- if ext?(:S) -%> , scounteren.HPM23 <%- if ext?(:H) -%> , and hcounteren.HPM23 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM23 scounteren.HPM23 hcounteren.HPM23 hpmcounter23 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM23 scounteren. HPM23 hpmcounter23 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM23 hpmcounter23 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.18.1. Attributes

CSR Address 0xc17

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.18.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 18. hpmcounter23 format

D.18.3. Field Summary

277

Name Location Type
hpmcou 63:0 RO-H
nter23.

COUNT

D.18.4. Fields

hpmcounter23.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter23.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.18.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM23 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM23 & CSR[scounteren].HPM23) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM23 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM23 == 1'b@ && CSR[mcounteren].HPM23 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM23 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM23 & CSR[scounteren].HPM23) == 1'b0@) && (CSR[mcounteren].HPM23 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM23 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(23);

278

D.19. hpmcounter24
User-mode Hardware Performance Counter 21
Alias for M-mode CSR mhpmcounter24.

Privilege mode access is controlled with mcounteren.HPM24 <%- if ext?(:S) -%> , scounteren.HPM24 <%- if ext?(:H) -%> , and hcounteren.HPM24 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren. HPM24 scounteren.HPM24 hcounteren.HPM24 hpmcounter24 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM24 scounteren. HPM24 hpmcounter24 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM24 hpmcounter24 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.19.1. Attributes

CSR Address 0xc18

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.19.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 19. hpmcounter24 format

D.19.3. Field Summary

279

Name Location Type
hpmcou 63:0 RO-H
nter24.

COUNT

D.19.4. Fields

hpmcounter24.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter24.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.19.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM24 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM24 & CSR[scounteren].HPM24) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM24 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM24 == 1'b@ && CSR[mcounteren].HPM24 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM24 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM24 & CSR[scounteren].HPM24) == 1'b@) && (CSR[mcounteren].HPM24 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM24 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(24);

280

D.20. hpmcounter25
User-mode Hardware Performance Counter 22
Alias for M-mode CSR mhpmcounter25.

Privilege mode access is controlled with mcounteren.HPM25 <%- if ext?(:S) -%> , scounteren.HPM25 <%- if ext?(:H) -%> , and hcounteren.HPM25 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren. HPM25 scounteren.HPM25 hcounteren.HPM25 hpmcounter25 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM25 scounteren. HPM25 hpmcounter25 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM25 hpmcounter25 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.20.1. Attributes

CSR Address 0xc19

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.20.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 20. hpmcounter25 format

D.20.3. Field Summary

281

Name Location Type
hpmcou 63:0 RO-H
nter25.

COUNT

D.20.4. Fields

hpmcounter25.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter25.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.20.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM25 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM25 & CSR[scounteren].HPM25) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM25 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM25 == 1'b@ && CSR[mcounteren].HPM25 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM25 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM25 & CSR[scounteren].HPM25) == 1'b0@) && (CSR[mcounteren].HPM25 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM25 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(25);

282

D.21. hpmcounter26
User-mode Hardware Performance Counter 23
Alias for M-mode CSR mhpmcounter26.

Privilege mode access is controlled with mcounteren.HPM26 <%- if ext?(:S) -%> , scounteren.HPM26 <%- if ext?(:H) -%> , and hcounteren.HPM26 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren. HPM26 scounteren.HPM26 hcounteren.HPM26 hpmcounter26 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM26 scounteren.HPM26 hpmcounter26 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM26 hpmcounter26 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.21.1. Attributes

CSR Address Oxcla

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.21.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 21. hpmcounter26 format

D.21.3. Field Summary

283

Name Location Type
hpmcou 63:0 RO-H
nter26.

COUNT

D.21.4. Fields

hpmcounter26.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter26.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.21.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM26 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM26 & CSR[scounteren].HPM26) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM26 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM26 == 1'b@ && CSR[mcounteren].HPM26 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM26 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM26 & CSR[scounteren].HPM26) == 1'b@) && (CSR[mcounteren].HPM26 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM26 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(26);

284

D.22. hpmcounter27
User-mode Hardware Performance Counter 24
Alias for M-mode CSR mhpmcounter27.

Privilege mode access is controlled with mcounteren.HPM27 <%- if ext?(:S) -%> , scounteren.HPM27 <%- if ext?(:H) -%> , and hcounteren.HPM27 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren. HPM27 scounteren.HPM27 hcounteren.HPM27 hpmcounter27 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM27 scounteren. HPM27 hpmcounter27 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM27 hpmcounter27 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.22.1. Attributes

CSR Address 0xclb

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.22.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 22. hpmcounter27 format

D.22.3. Field Summary

285

Name Location Type
hpmcou 63:0 RO-H
nter27.

COUNT

D.22.4. Fields

hpmcounter27.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter27.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.22.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM27 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM27 & CSR[scounteren].HPM27) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM27 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM27 == 1'b@ && CSR[mcounteren].HPM27 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM27 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM27 & CSR[scounteren].HPM27) == 1'b@) && (CSR[mcounteren].HPM27 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM27 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(27);

286

D.23. hpmcounter28
User-mode Hardware Performance Counter 25
Alias for M-mode CSR mhpmcounter28.

Privilege mode access is controlled with mcounteren.HPM28 <%- if ext?(:S) -%> , scounteren.HPM28 <%- if ext?(:H) -%> , and hcounteren.HPM28 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren. HPM28 scounteren.HPM28 hcounteren.HPM28 hpmcounter28 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM28 scounteren. HPM28 hpmcounter28 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM28 hpmcounter28 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.23.1. Attributes

CSR Address Oxclc

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.23.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 23. hpmcounter28 format

D.23.3. Field Summary

287

Name Location Type
hpmcou 63:0 RO-H
nter28.

COUNT

D.23.4. Fields

hpmcounter28.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter28.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.23.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM28 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM28 & CSR[scounteren].HPM28) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM28 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM28 == 1'b@ && CSR[mcounteren].HPM28 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM28 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM28 & CSR[scounteren].HPM28) == 1'b0@) && (CSR[mcounteren].HPM28 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM28 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(28);

288

D.24. hpmcounter29
User-mode Hardware Performance Counter 26
Alias for M-mode CSR mhpmcounter29.

Privilege mode access is controlled with mcounteren.HPM29 <%- if ext?(:S) -%> , scounteren.HPM29 <%- if ext?(:H) -%> , and hcounteren.HPM29 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren. HPM29 scounteren.HPM29 hcounteren.HPM29 hpmcounter29 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM29 scounteren. HPM29 hpmcounter29 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM29 hpmcounter29 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.24.1. Attributes

CSR Address 0Oxcld

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.24.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 24. hpmcounter29 format

D.24.3. Field Summary

289

Name Location Type
hpmcou 63:0 RO-H
nter29.

COUNT

D.24.4. Fields

hpmcounter29.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter29.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.24.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM29 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM29 & CSR[scounteren].HPM29) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM29 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM29 == 1'b@ && CSR[mcounteren].HPM29 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM29 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM29 & CSR[scounteren].HPM29) == 1'b0@) && (CSR[mcounteren].HPM29 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM29 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(29);

290

D.25. hpmcounter3
User-mode Hardware Performance Counter 0
Alias for M-mode CSR mhpmcounter3.

Privilege mode access is controlled with mcounteren.HPM3 <%- if ext?(:S) -%> , scounteren.HPM3 <%- if ext?(:H) -%> , and hcounteren.HPM3 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM3 scounteren.HPM3 hcounteren.HPM3 hpmcounter3 behavior

S-mode U-mode VS-mode VU-mode
0 - - IllegalInstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction Virtuallnstruction Virtuallnstruction
1 1 0 read-only read-only VirtualInstruction VirtualInstruction
1 0 1 read-only I1legallnstruction read-only Virtuallnstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM3 scounteren.HPM3 hpmcounter3 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM3 hpmcounter3 behavior

U-mode
0 I1legallnstruction
1 read-only
<%- end -%>
D.25.1. Attributes

CSR Address 0xc03

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.25.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 25. hpmcounter3 format

D.25.3. Field Summary

291

Name Location Type
hpmco 63:0 RO-H
unters3.
COUNT

D.25.4. Fields

hpmcounter3.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter3.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.25.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM3 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM3 & CSR[scounteren].HPM3) == 1'b@) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM3 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM3 == 1'b@® && CSR[mcounteren].HPM3 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM3 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM3 & CSR[scounteren].HPM3) == 1'b0@) && (CSR[mcounteren].HPM3 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM3 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(3);

292

D.26. hpmcounter30
User-mode Hardware Performance Counter 27
Alias for M-mode CSR mhpmcounter30.

Privilege mode access is controlled with mcounteren.HPM30 <%- if ext?(:S) -%> , scounteren.HPM30 <%- if ext?(:H) -%> , and hcounteren.HPM30 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM30 scounteren.HPM30 hcounteren.HPM30 hpmcounter30 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM30 scounteren. HPM30 hpmcounter30 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM30 hpmcounter30 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.26.1. Attributes

CSR Address Oxcle

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.26.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 26. hpmcounter30 format

D.26.3. Field Summary

293

Name Location Type
hpmcou 63:0 RO-H
nter30.

COUNT

D.26.4. Fields

hpmcounter30.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter30.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.26.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM30 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM30 & CSR[scounteren].HPM30) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM30 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM30 == 1'b@ && CSR[mcounteren].HPM30 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM30 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM30 & CSR[scounteren].HPM30) == 1'b@) && (CSR[mcounteren].HPM30 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM30 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(30);

294

D.27. hpmcounter31
User-mode Hardware Performance Counter 28
Alias for M-mode CSR mhpmcounter31.

Privilege mode access is controlled with mcounteren.HPM31 <%- if ext?(:S) -%> , scounteren.HPM31 <%- if ext?(:H) -%> , and hcounteren.HPM31 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM31 scounteren.HPM31 hcounteren.HPM31 hpmcounter31 behavior

S-mode U-mode VS-mode VU-mode
0 - - I1legallnstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction VirtualInstruction Virtuallnstruction
1 1 0 read-only read-only Virtuallnstruction VirtualInstruction
1 0 1 read-only Illegallnstruction read-only VirtualInstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM31 scounteren. HPM31 hpmcounter31 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only I1legalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM31 hpmcounter31 behavior

U-mode
0 I1legalInstruction
1 read-only
<%- end -%>
D.27.1. Attributes

CSR Address Oxc1f

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.27.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 27. hpmcounter31 format

D.27.3. Field Summary

295

Name Location Type
hpmcou 63:0 RO-H
nter31.

COUNT

D.27.4. Fields

hpmcounter31.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter31.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.27.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM31 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM31 & CSR[scounteren].HPM31) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM31 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM31 == 1'b@ && CSR[mcounteren].HPM31 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM31 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM31 & CSR[scounteren].HPM31) == 1'b0@) && (CSR[mcounteren].HPM31 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM31 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(31);

296

D.28. hpmcounter4
User-mode Hardware Performance Counter 1
Alias for M-mode CSR mhpmcounter4.

Privilege mode access is controlled with mcounteren.HPM4 <%- if ext?(:S) -%> , scounteren.HPM4 <%- if ext?(:H) -%> , and hcounteren.HPM4 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM4 scounteren.HPM4 hcounteren.HPM4 hpmcounter4 behavior

S-mode U-mode VS-mode VU-mode
0 - - IllegalInstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction Virtuallnstruction Virtuallnstruction
1 1 0 read-only read-only VirtualInstruction VirtualInstruction
1 0 1 read-only I1legallnstruction read-only Virtuallnstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM4 scounteren.HPM4 hpmcounter4 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM4 hpmcounter4 behavior

U-mode
0 I1legallnstruction
1 read-only
<%- end -%>
D.28.1. Attributes

CSR Address 0xc04

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.28.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 28. hpmcounter4 format

D.28.3. Field Summary

297

Name Location Type
hpmco 63:0 RO-H
unter4.
COUNT

D.28.4. Fields

hpmcounter4.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter4.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.28.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM4 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM4 & CSR[scounteren].HPM4) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM4 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM4 == 1'b@® && CSR[mcounteren].HPM4 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM4 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM4 & CSR[scounteren].HPM4) == 1'b0@) && (CSR[mcounteren].HPM4 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM4 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(4);

298

D.29. hpmcounter5
User-mode Hardware Performance Counter 2
Alias for M-mode CSR mhpmcounter>5.

Privilege mode access is controlled with mcounteren.HPMS5 <%- if ext?(:S) -%> , scounteren.HPMS5 <%- if ext?(:H) -%> , and hcounteren.HPM5 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren. HPMS5 scounteren.HPMS5 hcounteren.HPMS5 hpmcounter5 behavior

S-mode U-mode VS-mode VU-mode
0 - - IllegalInstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction Virtuallnstruction Virtuallnstruction
1 1 0 read-only read-only VirtualInstruction VirtualInstruction
1 0 1 read-only I1legallnstruction read-only Virtuallnstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM5 scounteren.HPMS5 hpmcounter5 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPMS hpmcounter5 behavior

U-mode
0 I1legallnstruction
1 read-only
<%- end -%>
D.29.1. Attributes

CSR Address 0xc05

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.29.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 29. hpmcounter5 format

D.29.3. Field Summary

299

Name Location Type
hpmco 63:0 RO-H
unters.
COUNT

D.29.4. Fields

hpmcounter5.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter5.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.29.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM5 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM5 & CSR[scounteren].HPM5) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM5 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM5 == 1'b@® && CSR[mcounteren].HPM5 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM5 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM5 & CSR[scounteren].HPM5) == 1'b0@) && (CSR[mcounteren].HPM5 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM5 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(5);

300

D.30. hpmcounter6
User-mode Hardware Performance Counter 3
Alias for M-mode CSR mhpmcounter6.

Privilege mode access is controlled with mcounteren.HPM6 <%- if ext?(:S) -%> , scounteren.HPM6 <%- if ext?(:H) -%> , and hcounteren.HPM6 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM6 scounteren.HPM6 hcounteren.HPM6 hpmcounter6 behavior

S-mode U-mode VS-mode VU-mode
0 - - IllegalInstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction Virtuallnstruction Virtuallnstruction
1 1 0 read-only read-only VirtualInstruction VirtualInstruction
1 0 1 read-only I1legallnstruction read-only Virtuallnstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM6 scounteren.HPM6 hpmcounter6 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM6 hpmcounter6 behavior

U-mode
0 I1legallnstruction
1 read-only
<%- end -%>
D.30.1. Attributes

CSR Address 0xc06

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.30.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 30. hpmcounter6 format

D.30.3. Field Summary

301

Name Location Type
hpmco 63:0 RO-H
unter6.
COUNT

D.30.4. Fields

hpmcounter6.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter6.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.30.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM6 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM6 & CSR[scounteren].HPM6) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM6 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM6 == 1'b@® && CSR[mcounteren].HPM6 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM6 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM6 & CSR[scounteren].HPM6) == 1'b0@) && (CSR[mcounteren].HPM6 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM6 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(6);

302

D.31. hpmcounter?7
User-mode Hardware Performance Counter 4
Alias for M-mode CSR mhpmcounter?.

Privilege mode access is controlled with mcounteren.HPM7 <%- if ext?(:S) -%> , scounteren.HPM7 <%- if ext?(:H) -%> , and hcounteren.HPM7 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM7 scounteren.HPM7 hcounteren.HPM?7 hpmcounter7 behavior

S-mode U-mode VS-mode VU-mode
0 - - IllegalInstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction Virtuallnstruction Virtuallnstruction
1 1 0 read-only read-only VirtualInstruction VirtualInstruction
1 0 1 read-only I1legallnstruction read-only Virtuallnstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM7 scounteren. HPM7 hpmcounter7 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM7 hpmcounter7 behavior

U-mode
0 I1legallnstruction
1 read-only
<%- end -%>
D.31.1. Attributes

CSR Address 0xc07

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.31.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 31. hpmcounter? format

D.31.3. Field Summary

303

Name Location Type
hpmco 63:0 RO-H
unter?.
COUNT

D.31.4. Fields

hpmcounter7.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter7.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.31.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM7 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM7 & CSR[scounteren].HPM7) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM7 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM7 == 1'b@® && CSR[mcounteren].HPM7 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM7 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM7 & CSR[scounteren].HPM7) == 1'b0@) && (CSR[mcounteren].HPM7 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM7 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(7);

304

D.32. hpmcounter8
User-mode Hardware Performance Counter 5
Alias for M-mode CSR mhpmcounter8.

Privilege mode access is controlled with mcounteren.HPMS8 <%- if ext?(:S) -%> , scounteren.HPMS8 <%- if ext?(:H) -%> , and hcounteren.HPM8 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren. HPMS8 scounteren.HPM8 hcounteren.HPMS8 hpmcounter8 behavior

S-mode U-mode VS-mode VU-mode
0 - - IllegalInstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction Virtuallnstruction Virtuallnstruction
1 1 0 read-only read-only VirtualInstruction VirtualInstruction
1 0 1 read-only I1legallnstruction read-only Virtuallnstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren. HPM8 scounteren.HPM8 hpmcounter8 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM8 hpmcounter8 behavior

U-mode
0 I1legallnstruction
1 read-only
<%- end -%>
D.32.1. Attributes

CSR Address 0xc08

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.32.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 32. hpmcounter8 format

D.32.3. Field Summary

305

Name Location Type
hpmco 63:0 RO-H
unters.
COUNT

D.32.4. Fields

hpmcounter8.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter8.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.32.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM8 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM8 & CSR[scounteren].HPM8) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM8 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM8 == 1'b@® && CSR[mcounteren].HPM8 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM8 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM8 & CSR[scounteren].HPM8) == 1'b0@) && (CSR[mcounteren].HPM8 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM8 == 1'b0) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(8);

306

D.33. hpmcounter9
User-mode Hardware Performance Counter 6
Alias for M-mode CSR mhpmcounter9.

Privilege mode access is controlled with mcounteren.HPM9 <%- if ext?(:S) -%> , scounteren.HPM9 <%- if ext?(:H) -%> , and hcounteren.HPM9 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren. HPM9 scounteren.HPM9 hcounteren.HPM9 hpmcounter9 behavior

S-mode U-mode VS-mode VU-mode
0 - - IllegalInstruction Illegallnstruction Illegallnstruction IllegalInstruction
1 0 0 read-only I1legallnstruction Virtuallnstruction Virtuallnstruction
1 1 0 read-only read-only VirtualInstruction VirtualInstruction
1 0 1 read-only I1legallnstruction read-only Virtuallnstruction
1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM9 scounteren.HPM9 hpmcounter9 behavior
S-mode U-mode

0 - I1legallnstruction Illegallnstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM9 hpmcounter9 behavior

U-mode
0 I1legallnstruction
1 read-only
<%- end -%>
D.33.1. Attributes

CSR Address 0xc09

Defining Zihpm
extension
Length 64-bit

Privilege Mode U

D.33.2. Format

63 48
o eoWT

47 32
R

31 16
o eoWT

15 0
R

Figure 33. hpmcounter9 format

D.33.3. Field Summary

307

Name Location Type
hpmco 63:0 RO-H
unter9.
COUNT

D.33.4. Fields

hpmcounter9.COUNT Field
Location:
63:0

Description:
Alias of mhpmcounter9.COUNT.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

D.33.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].HPM9 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {

if ((CSR[mcounteren].HPM9 & CSR[scounteren].HPM9) == 1'b@) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (CSR[mcounteren].HPM9 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VS) {

if (CSR[hcounteren].HPM9 == 1'b@® && CSR[mcounteren].HPM9 == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM9 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
} else if (mode() == PrivilegeMode::VU) {

Reset Value

UNDEFINED_LEGAL

if (CSR[hcounteren].HPM9 & CSR[scounteren].HPM9) == 1'b0@) && (CSR[mcounteren].HPM9 == 1'b1 {

raise(ExceptionCode::VirtualInstruction, mode(), $encoding);

} else if (CSR[mcounteren].HPM9 == 1'b@) {

raise(ExceptionCode::I1legallnstruction, mode(), $encoding);

}
}

return read_hpm_counter(9);

308

D.34. instret

Instructions retired counter for RDINSTRET Instruction

Alias for M-mode CSR minstret.

Privilege mode access is controlled with mcounteren.IR, scounteren.IR, and hcounteren.IR as follows:

mcounteren.IR scounteren.IR hcounteren.IR

0 -
1 0
1 1
1 0
1 1
D.34.1. Attributes

CSR Address 0xc02

Defining Zicntr
extension
Length 64-bit

Privilege Mode U

D.34.2. Format

63

instret behavior

S-mode U-mode VS-mode VU-mode
I1legallnstruction Illegallnstruction Illegallnstruction Illegallnstruction

read-only I1legallnstruction Virtuallnstruction VirtuallInstruction
read-only read-only Virtuallnstruction Virtuallnstruction
read-only Illegallnstruction read-only Virtuallnstruction
read-only read-only read-only read-only

48

a7

32

31

16

15

Figure 34. instret format

D.34.3. Field Summary

Nam Location
e

instre 63:0
t.COU
NT

D.34.4. Fields

instret.COUNT Field
Location:
63:0

Description:
Alias of minstret. COUNT.

Type:
RO-H

Reset value:
0

. . COL:JNT
o eowr
| e
o eowr
Type Reset Value

RO-H 0

309

D.34.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].IR == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misa].S == 1'b1) {
if ((CSR[mcounteren].IR & CSR[scounteren].IR) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
} else if (CSR[mcounteren].IR == 1'b0) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
}
} else if (mode() == PrivilegeMode::VS) {
if (CSR[hcounteren].IR == 1'b@ && CSR[mcounteren].IR == 1'b1) {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
} else if (CSR[mcounteren].IR == 1'b0) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
by
} else if (mode() == PrivilegeMode::VU) {
if (CSR[hcounteren].IR & CSR[scounteren].IR) == 1'b@) && (CSR[mcounteren].IR == 1'b1 {
raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
} else if (CSR[mcounteren].IR == 1'b0) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
}

}
return CSR[minstret].COUNT;

310

D.35. mcounteren

Machine Counter Enable

The counter-enable mcounteren register is a 32-bit register that controls the availability of the hardware performance-monitoring counters to <%- if
ext?(:S) -%> S-mode <%- elsif ext?(:U) -%> U-mode <%- else -%> the next-lower privileged mode <%- end -%> .

The settings in this register only control accessibility. The act of reading or writing this register does not affect the underlying counters, which
continue to increment even when not accessible.

When the CY, TM, IR, or HPMn bit in the mcounteren register is clear, attempts to read the cycle, time, instret, or hpmcountern register while executing
in <%- if ext?(:S) -%> S-mode <%- elsif ext?(:U) -%> U-mode <%- else -%> S-mode or U-mode <%- end -%> will cause an I1legallnstruction exception.
When one of these bits is set, access to the corresponding register is permitted in <%- if ext?(:S) -%> S-mode <%- elsif ext?(:U) -%> U-mode <%- else
-%> the next implemented privilege mode (S-mode if implemented, otherwise U-mode). <%- end -%>

The counter-enable bits support two common use cases with minimal hardware. For harts that do not need high-performance

o timers and counters, machine-mode software can trap accesses and implement all features in software. For harts that need high-
performance timers and counters but are not concerned with obfuscating the underlying hardware counters, the counters can be
directly exposed to lower privilege modes.

The cycle, instret, and hpmcountern CSRs are read-only shadows of mcycle, minstret, and mhpmcounter n, respectively. The time CSR is a read-only
shadow of the memory-mapped mtime register. <%- if possible_xlens.include?(32) -%> Analogously, on RV32I the cycleh, instreth and hpmcounternh
CSRs are read-only shadows of mcycleh, minstreth and mhpmcounternh, respectively. On RV32I the timeh CSR is a read-only shadow of the upper 32 bits
of the memory-mapped mtime register, while time shadows only the lower 32 bits of mtime. <%- end -%>

0 Implementations can convert reads of the time and timeh CSRs into loads to the memory-mapped mtime register, or emulate this
functionality on behalf of less-privileged modes in M-mode software.

<%- if lext?(:U) -%> In harts with U-mode, the mcounteren CSR must be implemented, but all fields are WARL and may be read-only zero, indicating
reads to the corresponding counter will cause an I1legallnstruction exception when executing in a less-privileged mode. In harts without U-mode,
the mcounteren register should not exist. <%- end -%>

<%- if ext?(:S) -%>

The cycle, instret, and hpmcountern CSRs can also be made available to U-mode through the scounteren CSR <%- if ext?(:H) -%> and to VS-mode and/or
VU-mode through hcounteren <%- end -%> . <%- end -%>

D.35.1. Attributes

CSR Address 0x306

Defining U
extension
Length 32-bit

Privilege Mode M

D.35.2. Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
HPM31|HPM30[HPM29HPM28{HPM27|HPM26(HPM25HPM24|HPM23HPM22HPM21|HPM20|HPM19|HPM18HPM17|HPM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HPM15(HPM14|HPM13|HPM12|HPM11|HPM10| HPM9 | HPM8 | HPM7 | HPM6 | HPM5 | HPM4 | HPM3 | IR ™ CY

Figure 35. mcounteren format

D.35.3. Field Summary
Name Location Type Reset Value
mcoun 0 RW UNDEFINED_LEGAL
teren.C

Y RO
mcoun 1 RO 0
teren.T

M
mcoun 2 RW UNDEFINED_LEGAL
teren.I

R RO

311

Name

mcoun
teren.H
PM3

mcoun
teren.H
PM4

mcoun
teren.H
PM5

mcoun
teren.H
PM6

mcoun
teren.H
PM7

mcoun
teren.H
PM8

mcoun
teren.H
PM9

mcoun
teren.H
PM10

mcoun
teren.H
PM11

mcoun
teren.H
PM12

mcoun
teren.H
PM13

mcoun
teren.H
PM14

mcoun
teren.H
PM15

mcoun
teren.H
PM16

mcoun
teren.H
PM17

mcoun
teren.H
PM18

mcoun
teren.H
PM19

mcoun
teren.H
PM20

mcoun
teren.H
PM21

mcoun
teren.H
PM22

312

Location

3

10

11

12

13

14

15

16

17

18

19

20

21

22

Type
RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

Reset Value

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

Name Location

mcoun 23
teren.H
PM23

mcoun 24
teren.H
PM24

mcoun 25
teren.H
PM25

mcoun 26
teren.H
PM26

mcoun 27
teren.H
PM27

mcoun 28
teren.H
PM28

mcoun 29
teren.H
PM29

mcoun 30
teren.H
PM30

mcoun 31
teren.H
PM31

D.35.4. Fields

mcounteren.CY Field

Location:
0

Description:

When set, the cycle CSR (an alias of mcycle) is accessible to

<%- if ext?(:S) -%>
S-mode.

<%- else -%>
U-mode.

<%- end -%>

<%- if ext?(:S) -%>

When scounteren.CY is also set, cycle is further accessible to U-mode.

<%- end -%>

<%- if ext?(:H) -%>

When hcounteren.CY is also set, cycle is further accessible to VS-mode.

When hcounteren.CY && scounteren.CY are both set, cycle is further accessible to VU-mode.

<%- end -%>
Type:
RW
RO

Reset value:
UNDEFINED LEGAL

Type
RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

Reset Value

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

313

mcounteren.TM Field

Location:
1

Description:

Placeholder for delegating time to less-privileged modes; however, since time
is memory-mapped rather than a CSR, this field is always read-only zero.

Type:
RO

Reset value:
0

mcounteren.IR Field

Location:
2

Description:
When set, the instret CSR (an alias of minstret) is accessible to
<%- if ext?(:S) -%>
S-mode.
<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>
When scounteren.IR is also set, instret is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.IR is also set, instret is further accessible to VS-mode.

When hcounteren.IR && scounteren.IR are both set, instret is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM3 Field

Location:
3

Description:
When set, the hpmcounter3 CSR (an alias of mhpmcounter3) is accessible to
<%- if ext?(:S) -%>
S-mode.
<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM3 is also set, hpmcounter3 is further accessible to U-mode.

<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM3 is also set, hpmcounter3 is further accessible to VS-mode.

314

When hcounteren.HPM3 && scounteren.HPM3 are both set, hpmcounter3 is further accessible to VU-mode.
<%- end -%>

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM4 Field

Location:
4

Description:
When set, the hpmcounter4 CSR (an alias of mhpmcounter4) is accessible to
<%- if ext?(:S) -%>
S-mode.
<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM4 is also set, hpmcounter4 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM4 is also set, hpmcounter4 is further accessible to VS-mode.

When hcounteren.HPM4 && scounteren.HPM4 are both set, hpmcounter4 is further accessible to VU-mode.
<%- end -%>

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPMS5 Field

Location:
5

Description:
When set, the hpmcounter5 CSR (an alias of mhpmcounter5) is accessible to
<%- if ext?(:S) -%>
S-mode.
<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPMS5 is also set, hpmcounter5 is further accessible to U-mode.

<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPMS5 is also set, hpmcounters5 is further accessible to VS-mode.

When hcounteren.HPM5 && scounteren.HPMS5 are both set, hpmcounter5 is further accessible to VU-mode.
<%- end -%>

Type:

315

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM6 Field

Location:
6

Description:

When set, the hpmcounter6 CSR (an alias of mhpmcounter6) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPME6 is also set, hpmcounter6 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPMS6 is also set, hpmcounter®6 is further accessible to VS-mode.

When hcounteren.HPM6 && scounteren.HPM6 are both set, hpmcounter6 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM?7 Field

Location:
7

Description:

When set, the hpmcounter7 CSR (an alias of mhpmcounter?7) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM?7 is also set, hpmcounter?7 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM7 is also set, hpmcounter?7 is further accessible to VS-mode.

When hcounteren.HPM7 && scounteren.HPM7 are both set, hpmcounter?7 is further accessible to VU-mode.
<%- end -%>

Type:
RW

RO

316

Reset value:
UNDEFINED LEGAL

mcounteren.HPMS Field

Location:
8

Description:

When set, the hpmcounter8 CSR (an alias of mhpmcounter8) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPMS is also set, hpmcounter8 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPMS is also set, hpmcounter8 is further accessible to VS-mode.

When hcounteren.HPM8 && scounteren.HPM8 are both set, hpmcounter8 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM9 Field

Location:
9

Description:

When set, the hpmcounter9 CSR (an alias of mhpmcounter9) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM9 is also set, hpmcounter9 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM9 is also set, hpmcounter9 is further accessible to VS-mode.

When hcounteren.HPM9 && scounteren.HPM9 are both set, hpmcounter9 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

317

mcounteren.HPM10 Field

Location:
10

Description:

When set, the hpmcounter10 CSR (an alias of mhpmcounter10) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM10 is also set, hpmcounter10 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM10 is also set, hpmcounter10 is further accessible to VS-mode.

When hcounteren.HPM10 && scounteren.HPM10 are both set, hpmcounter10 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM11 Field

Location:
11

Description:

When set, the hpmcounter11 CSR (an alias of mhpmcounter11) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM11 is also set, hpmcounter11 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM11 is also set, hpmcounter11 is further accessible to VS-mode.

When hcounteren.HPM11 && scounteren.HPM11 are both set, hpmcounter11 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM12 Field

Location:
12

318

Description:

When set, the hpmcounter12 CSR (an alias of mhpmcounter12) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM12 is also set, hpmcounter12 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM12 is also set, hpmcounter12 is further accessible to VS-mode.

When hcounteren.HPM12 && scounteren.HPM12 are both set, hpmcounter12 is further accessible to VU-mode.
<%- end -%>

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM13 Field

Location:
13

Description:

When set, the hpmcounter13 CSR (an alias of mhpmcounter13) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM13 is also set, hpmcounter13 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM13 is also set, hpmcounter13 is further accessible to VS-mode.

When hcounteren.HPM13 && scounteren.HPM13 are both set, hpmcounter13 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM14 Field

Location:
14

Description:

When set, the hpmcounter14 CSR (an alias of mhpmcounter14) is accessible to
<%- if ext?(:S) -%>
S-mode.

319

<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM14 is also set, hpmcounter14 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM14 is also set, hpmcounter14 is further accessible to VS-mode.

When hcounteren.HPM14 && scounteren.HPM14 are both set, hpmcounter14 is further accessible to VU-mode.
<%- end -%>

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM15 Field

Location:
15

Description:

When set, the hpmcounter15 CSR (an alias of mhpmcounter15) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM15 is also set, hpmcounter15 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM15 is also set, hpmcounter15 is further accessible to VS-mode.

When hcounteren.HPM15 && scounteren.HPM15 are both set, hpmcounter15 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM16 Field

Location:
16

Description:
When set, the hpmcounter16 CSR (an alias of mhpmcounter16) is accessible to
<%- if ext?(:S) -%>
S-mode.
<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>

320

When scounteren.HPM16 is also set, hpmcounter16 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM16 is also set, hpmcounter16 is further accessible to VS-mode.

When hcounteren.HPM16 && scounteren.HPM16 are both set, hpmcounter16 is further accessible to VU-mode.
<%- end -%>

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM17 Field

Location:
17

Description:
When set, the hpmcounter17 CSR (an alias of mhpmcounter17) is accessible to
<%- if ext?(:S) -%>
S-mode.
<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM17 is also set, hpmcounter17 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM17 is also set, hpmcounter17 is further accessible to VS-mode.

When hcounteren.HPM17 && scounteren.HPM17 are both set, hpmcounter17 is further accessible to VU-mode.
<%- end -%>

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM18 Field

Location:
18

Description:
When set, the hpmcounter18 CSR (an alias of mhpmcounter18) is accessible to
<%- if ext?(:S) -%>
S-mode.
<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM18 is also set, hpmcounter18 is further accessible to U-mode.

<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM18 is also set, hpmcounter18 is further accessible to VS-mode.

321

When hcounteren.HPM18 && scounteren.HPM18 are both set, hpmcounter18 is further accessible to VU-mode.
<%- end -%>

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren. HPM19 Field

Location:
19

Description:
When set, the hpmcounter19 CSR (an alias of mhpmcounter19) is accessible to
<%- if ext?(:S) -%>
S-mode.
<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM19 is also set, hpmcounter19 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM19 is also set, hpmcounter19 is further accessible to VS-mode.

When hcounteren.HPM19 && scounteren.HPM19 are both set, hpmcounter19 is further accessible to VU-mode.
<%- end -%>

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren. HPM20 Field

Location:
20

Description:
When set, the hpmcounter20 CSR (an alias of mhpmcounter20) is accessible to
<%- if ext?(:S) -%>
S-mode.
<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM20 is also set, hpmcounter20 is further accessible to U-mode.

<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM20 is also set, hpmcounter20 is further accessible to VS-mode.

When hcounteren.HPM20 && scounteren.HPM20 are both set, hpmcounter20 is further accessible to VU-mode.
<%- end -%>

Type:

322

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM21 Field

Location:
21

Description:

When set, the hpmcounter21 CSR (an alias of mhpmcounter21) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM21 is also set, hpmcounter21 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM21 is also set, hpmcounter21 is further accessible to VS-mode.

When hcounteren.HPM21 && scounteren.HPM21 are both set, hpmcounter21 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren. HPM22 Field

Location:
22

Description:

When set, the hpmcounter22 CSR (an alias of mhpmcounter22) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM22 is also set, hpmcounter22 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM22 is also set, hpmcounter22 is further accessible to VS-mode.

When hcounteren.HPM22 && scounteren.HPM22 are both set, hpmcounter22 is further accessible to VU-mode.
<%- end -%>

Type:
RW

RO

323

Reset value:
UNDEFINED LEGAL

mcounteren.HPM23 Field

Location:
23

Description:

When set, the hpmcounter23 CSR (an alias of mhpmcounter23) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM23 is also set, hpmcounter23 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM23 is also set, hpmcounter23 is further accessible to VS-mode.

When hcounteren.HPM23 && scounteren.HPM23 are both set, hpmcounter23 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM24 Field

Location:
24

Description:

When set, the hpmcounter24 CSR (an alias of mhpmcounter24) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM24 is also set, hpmcounter24 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM24 is also set, hpmcounter24 is further accessible to VS-mode.

When hcounteren.HPM24 && scounteren.HPM24 are both set, hpmcounter24 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

324

mcounteren.HPM25 Field

Location:
25

Description:

When set, the hpmcounter25 CSR (an alias of mhpmcounter25) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM25 is also set, hpmcounter25 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM25 is also set, hpmcounter25 is further accessible to VS-mode.

When hcounteren.HPM25 && scounteren.HPM25 are both set, hpmcounter25 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM26 Field

Location:
26

Description:

When set, the hpmcounter26 CSR (an alias of mhpmcounter26) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM26 is also set, hpmcounter26 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM26 is also set, hpmcounter26 is further accessible to VS-mode.

When hcounteren.HPM26 && scounteren.HPM26 are both set, hpmcounter26 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM27 Field

Location:
27

325

Description:

When set, the hpmcounter27 CSR (an alias of mhpmcounter27) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM27 is also set, hpmcounter27 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM27 is also set, hpmcounter27 is further accessible to VS-mode.

When hcounteren.HPM27 && scounteren.HPM27 are both set, hpmcounter27 is further accessible to VU-mode.
<%- end -%>

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren. HPM28 Field

Location:
28

Description:

When set, the hpmcounter28 CSR (an alias of mhpmcounter28) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM28 is also set, hpmcounter28 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM28 is also set, hpmcounter28 is further accessible to VS-mode.

When hcounteren.HPM28 && scounteren.HPM28 are both set, hpmcounter28 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren. HPM29 Field

Location:
29

Description:

When set, the hpmcounter29 CSR (an alias of mhpmcounter29) is accessible to
<%- if ext?(:S) -%>
S-mode.

326

<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM29 is also set, hpmcounter29 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM29 is also set, hpmcounter29 is further accessible to VS-mode.

When hcounteren.HPM29 && scounteren.HPM29 are both set, hpmcounter29 is further accessible to VU-mode.
<%- end -%>

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM30 Field

Location:
30

Description:

When set, the hpmcounter30 CSR (an alias of mhpmcounter30) is accessible to
<%- if ext?(:S) -%>

S-mode.

<%- else -%>

U-mode.

<%- end -%>

<%- if ext?(:S) -%>
When scounteren.HPM30 is also set, hpmcounter30 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM30 is also set, hpmcounter30 is further accessible to VS-mode.

When hcounteren.HPM30 && scounteren.HPM30 are both set, hpmcounter30 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

mcounteren.HPM31 Field

Location:
31

Description:
When set, the hpmcounter31 CSR (an alias of mhpmcounter31) is accessible to
<%- if ext?(:S) -%>
S-mode.
<%- else -%>
U-mode.
<%- end -%>

<%- if ext?(:S) -%>

327

When scounteren.HPM31 is also set, hpmcounter31 is further accessible to U-mode.
<%- end -%>

<%- if ext?(:H) -%>
When hcounteren.HPM31 is also set, hpmcounter31 is further accessible to VS-mode.

When hcounteren.HPM31 && scounteren.HPM31 are both set, hpmcounter31 is further accessible to VU-mode.
<%- end -%>

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

328

D.36. medeleg

Machine Exception Delegation

Controls exception delegation from M-mode to (H)S-mode <%- if ext?(:H) -%> or, in conjunction with hedeleg, to VS-mode <%- end -%> .

An exception cause is delegated to (H)S-mode when all of the following hold:

* The corresponding field in medeleg is set.

* The current privilege level is not M-mode. <%- if ext?(:H) -%>

* The same field in hedeleg is clear. <%- end -%>

<%- if ext?(:H) -%> An exception cause is delegated to VS-mode when all of the following hold:

* The corresponding field in medeleg is set.

* The corresponding field in hedeleg is set.

* The current privilege level is not M-mode or HS-mode. <%- end -%>

Otherwise, an exception cause is handled by M-mode.

See interrupt documentation for more details.

D.36.1. Attributes

CSR Address 0x302
Defining S
extension

Length 64-bit

Privilege Mode M

D.36.2. Format

63 48
47 32
31 24 23 22 21 20 19 16
SGPF| VI LGPF | IGPF
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SPF LPF IPF EM EVS ES EU SAF | SAM | LAF | LAM B I IAF IAM
Figure 36. medeleg format
D.36.3. Field Summary
Nam Location Type Reset Value
e
mede 0 RW UNDEFINED_LEGAL
leg.IA
M
mede 1 RW UNDEFINED_LEGAL
leg.IA
F
mede 2 RwW UNDEFINED_LEGAL
leg.I1
mede 3 RW UNDEFINED_LEGAL
leg.B
mede 4 RwW UNDEFINED_LEGAL
leg.L
AM

329

prose:interrupts.pdf

Nam Location
e

mede 5
leg.L
AF

mede 6
leg.S
AM

mede 7
leg.S
AF

mede 8
leg.E
U

mede 9
leg.ES

mede 10
leg.E
VS

mede 11
leg.E
M

mede 12
leg.IP
F

mede 13
leg.L
PF

mede 15
leg.SP
F

mede 20
leg.IG
PF

mede 21
leg.L
GPF

mede 22
leg.VI

mede 23
leg.S
GPF

D.36.4. Fields

medeleg.IAM Field

Location:
0

Description:

330

Instruction Address Misaligned

Delegates Instruction Address Misaligned exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Type

RW

RW

RW

RW

RW

RW

RO

RW

RW

RW

RW

RW

RW

RW

Reset Value

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

Instruction Address Misaligned exceptions may be further delegated to VS-mode if hedeleg.IAM is also set.

<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.

The handling mode is determined as follows:

<%- if ext?(:H) -%>

[separator="!",%autowidth, %footer]

.2+! medeleg.IAM .2+! hedeleg.IAM 4+A.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

100! M!M!M!'M
101! MIM!M!'M
11710!'M!HS!HS!HS
1111 !'M!THS!VS!VS

<%- else -%>
[separator="!",%autowidth, %footer]

.2+! medeleg.JAM 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10/M!'M
11IM!S

<%- end -%>

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.IAF Field

Location:
1

Description:

Instruction Access Fault

Delegates Instruction Access Fault exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Instruction Access Fault exceptions may be further delegated to VS-mode if hedeleg.IAM is also set.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

<%- if ext?(:H) -%>

[separator="1",%autowidth, %footer]

!:::

.2+! medeleg.IAF .2+! hedeleg.IAF 4+A.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

100/ M!M!M!'M
101! MIMIM!'M
1110!'M!HS!HS!HS
1111 !'M!THS!VS!VS

<%- else -%>
[separator="!1",%autowidth, %footer]

.2+! medeleg.IAF 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10!'M!'M
11IM!S

<%- end -%>

Type:
RW

331

Reset value:
UNDEFINED LEGAL

medeleg.II Field

Location:
2

Description:

Illegal Instruction

Delegates Illegal Instruction exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Illegal Instruction exceptions may be further delegated to VS-mode if hedeleg.II is also set.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

<%- if ext?(:H) -%>
[separator="1",%autowidth, %footer]

.2+ medeleg.Il .2+! hedeleg.Il 4+A.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

100/ M!'M!M!'M
101! MIMIM!'M
'1110!'M!HS!HS!HS
1111 !'M!THS!VS!VS

<%- else -%>
[separator="!",%autowidth, %footer]

.2+! medeleg.II 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10!'M!'M
11IM!S

<%- end -%>

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.B Field

Location:
3

Description:

Breakpoint

Delegates Breakpoint exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Breakpoint exceptions may be further delegated to VS-mode if hedeleg.B is also set.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.

The handling mode is determined as follows:

<%- if ext?(:H) -%>
[separator="1",%autowidth, %footer]

332

!:::
.2+ medeleg.B .2+! hedeleg.B 4+.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

10O MIM!M!M

1011 MI/IM!M!M
!1110!'M!HS!HS!HS
I11T1!'M!HS!VS!VS

[E==

<%- else -%>
[separator="1",%autowidth, %footer]

.2+! medeleg.B 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10IM!'M
11IM!S

<%- end -%>

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.LAM Field

Location:
4

Description:
Load Address Misaligned

Delegates Load Address Misaligned exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Load Address Misaligned exceptions may be further delegated to VS-mode if hedeleg.LAM is also set.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.

[when,"MISALIGNED_LDST == true"]
Note that because this implementation supports misaligned loads, this exception will never occur.
However, the writable bit should be presented anyway.

The handling mode is determined as follows:

<%- if ext?(:H) -%>
[separator="!",%autowidth, %footer]

.2+! medeleg.LAM .2+! hedeleg.LAM 4+A.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

100! M!M!M!'M
101! MIM!M!'M
1110!'M!HS!HS!HS
1111 !'M!THS!VS!VS

<%- else -%>
[separator="!",%autowidth, %footer]
!:_:

.2+ medeleg.LAM 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10/M!'M
11IM!S

<%- end -%>

333

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.LAF Field

Location:
5

Description:

Load Access Fault

Delegates Load Access Fault exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Load Access Fault exceptions may be further delegated to VS-mode if hedeleg.LAF is also set.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

<%- if ext?(:H) -%>
[separator="!1",%autowidth, %footer]

2+l medeleg.LAF .2+! hedeleg.LAF 4+A.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

100/ M!'M!M!'M
101! MIMIM!'M
'1110!'M!HS!HS!HS
1111 !'M!THS!VS!VS

<%- else -%>
[separator="1",%autowidth, %footer]

.2+! medeleg.LAF 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10!'M!'M
11IM!S

<%- end -%>

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.SAM Field

Location:
6

Description:
Store/AMO Address Misaligned

Delegates Store/AMO Address Misaligned exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Store/AMO Address Misaligned exceptions may be further delegated to VS-mode if hedeleg.SAM is also set.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.

[when,"MISALIGNED_LDST == true && MISALIGNED_AMO == true"]

334

Note that because the implementation supports misaligned stores and misaligned AMOs (or no AMOs), this exception will never occur.
Even so, the writable bit should be presented anyway.

The handling mode is determined as follows:

<%- if ext?(:H) -%>
[separator="!1",%autowidth, %footer]

.2+! medeleg.SAM .2+! hedeleg.SAM 4+A.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

10O M!'M!M!M

101! MIM!M!'M
1110!M!HS!HS!HS

111! M!HS!VS!VS

===

<%- else -%>
[separator="1",%autowidth, %footer]

.2+l medeleg.SAM 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10/M!'M
11IM!S

<%- end -%>

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.SAF Field

Location:
7

Description:
Store/AMO Access Fault

Delegates Store/AMO Access Fault exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Store/AMO Access Fault exceptions may be further delegated to VS-mode if hedeleg.SAM is also set.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

<%- if ext?(:H) -%>

[separator="!",%autowidth, %footer]

':::

.2+ medeleg.SAF .2+! hedeleg.SAF 4+A.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

10O MIM!M!M

1011 MIM!M!M
!111'0!M!HS!HS!HS
I11T1!'M!HS!VS!VS

===

<%- else -%>
[separator="1",%autowidth, %footer]

.2+! medeleg.SAF 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10IM!'M

335

11IM!S

<%- end -%>

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.EU Field

Location:
8

Description:

Environment Call from U-Mode

Delegates Environment Call from U-mode exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Environment Call from U-mode exceptions may be further delegated to VS-mode if hedeleg.EU is also set.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

<%- if ext?(:H) -%>
[separator="!1",%autowidth, %footer]

.2+! medeleg.EU .2+! hedeleg.EU 4+A.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

100! M!M!M!'M
101! MIM!M!'M
1110!'M!HS!HS!HS
1111 !'M!THS!VS!VS

<%- else -%>
[separator="!",%autowidth, %footer]

':::
.2+! medeleg.EU 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10/M!'M
11IM!S

<%- end -%>

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.ES Field

Location:
9

Description:

Environment Call from S-Mode

Delegates Environment Call from S-mode exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Environment Call from S-mode exceptions cannot be delegated to VS-mode.
<%- end -%>

336

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

[separator="1",%autowidth, %footer]

.2+ medeleg.ES 2+A.>! Current Mode
>h! M-mode .>h! (H)S-mode

10/M!'M
111 M!H)S

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.EVS Field

Location:
10

Description:

Environment Call from VS-Mode

Delegates Environment Call from VS-mode exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Environment Call from S-mode exceptions cannot be delegated to VS-mode.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

[separator="1",%autowidth, %footer]

.2+ medeleg.EVS 2+A.>! Current Mode
>h! M-mode .>h! (H)S-mode

10/M!'M
111 M ! H)S

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.EM Field

Location:
11

Description:

Environment Call from M-Mode
An Environment Call from M-mode cannot be delegated, so this is a read-only field.

All Environment Call from M-mode exceptions are taken by M-mode.

Type:
RO

337

Reset value:
0

medeleg.IPF Field

Location:
12

Description:

Instruction Page Fault

Delegates Instruction Page Fault exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Instruction Page Fault exceptions may be further delegated to VS-mode if hedeleg.IPF is also set.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

<%- if ext?(:H) -%>
[separator="1",%autowidth, %footer]

.2+ medeleg.IPF .2+! hedeleg.IPF 4+A.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

100/ M!'M!M!'M
101! MIMIM!'M
'1110!'M!HS!HS!HS
1111 !'M!THS!VS!VS

<%- else -%>
[separator="!",%autowidth, %footer]

.2+! medeleg.IPF 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10!'M!'M
11IM!S

<%- end -%>

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.LPF Field

Location:
13

Description:
Load Page Fault

Delegates Load Page Fault exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Load Page Fault exceptions may be further delegated to VS-mode if hedeleg.LPF is also set.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.

The handling mode is determined as follows:

<%- if ext?(:H) -%>
[separator="1",%autowidth, %footer]

338

!:::
.2+! medeleg.LPF .2+! hedeleg.LPF 4+A.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

10O MIM!M!M

1011 MI/IM!M!M
!1110!'M!HS!HS!HS
I11T1!'M!HS!VS!VS

[E==

<%- else -%>
[separator="1",%autowidth, %footer]

.2+! medeleg.LPF 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10IM!'M
11IM!S

<%- end -%>

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.SPF Field

Location:
15

Description:
Store/AMO Page Fault

Delegates Store/AMO Page Fault exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Store/AMO Page Fault exceptions may be further delegated to VS-mode if hedeleg.SPF is also set.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

<%- if ext?(:H) -%>
[separator="1",%autowidth, %footer]

.2+! medeleg.SPF .2+! hedeleg.SPF 4+A.>! Current Mode
>h! M-mode .>h! HS-mode .>h! VS-mode .>h! VU-mode

100! M!M!M!'M
101! MIM!M!'M
1110!'M!HS!HS!HS
1111 !'M!THS!VS!VS

<%- else -%>
[separator="!",%autowidth, %footer]

.2+! medeleg.LPF 2+A.>! Current Mode
>h! M-mode .>h! S-mode

10/M!'M
11IM!S

<%- end -%>

Type:
RW

339

Reset value:
UNDEFINED LEGAL

medeleg.IGPF Field

Location:
20

Description:

Instruction Guest Page Fault

Delegates Instruction Guest Page Fault exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Instruction Guest Page Fault exceptions cannot be delegated to VS-mode.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

[separator="!",%autowidth, %footer]

.2+! medeleg.IGPF 2+A.>! Current Mode
>h! M-mode .>h! (H)S-mode

10!'M!'M
11IM!HS

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.LGPF Field

Location:
21

Description:
Load Guest Page Fault

Delegates Load Guest Page Fault exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Load Guest Page Fault exceptions cannot be delegated to VS-mode.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

[separator="!",%autowidth, %footer]

.2+! medeleg.LGPF 2+A.>! Current Mode
>h! M-mode .>h! (H)S-mode

10!'M!'M
11IM!HS

Type:
RW

Reset value:
UNDEFINED LEGAL

340

medeleg.VI Field

Location:
22

Description:

Virtual Instruction

Delegates Virtual Instruction exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Virtual Instruction exceptions cannot be delegated to VS-mode.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

[separator="!1",%autowidth, %footer]

.2+! medeleg.VI 2+A.>! Current Mode
>h! M-mode .>h! (H)S-mode

10!'M!'M
11IM!HS

Type:
RW

Reset value:
UNDEFINED LEGAL

medeleg.SGPF Field

Location:
23

Description:
Store/AMO Guest Page Fault

Delegates Store/AMO Guest Page Fault exceptions to (H)S-mode.

<%- if ext?(:H) -%>

Store/AMO Guest Page Fault exceptions cannot be delegated to VS-mode.
<%- end -%>

Exceptions are never taken into a less-privileged mode, regardless of medeleg.
The handling mode is determined as follows:

[separator="!1",%autowidth, %footer]

.2+! medeleg.SGPF 2+A.>! Current Mode
>h! M-mode .>h! (H)S-mode

10!'M!'M
11IM!HS

Type:
RW

Reset value:
UNDEFINED LEGAL

341

D.37. satp

Supervisor Address Translation and Protection

Controls the translation mode in (H)S-mode and U-mode, and holds the current ASID and page table base pointer.

D.37.1. Attributes

CSR Address 0x180

Defining S
extension
Length * 32 when CSR[mstatus].SXL == 0 * 64 when CSR[mstatus].SXL ==

Privilege Mode S

D.37.2. Format

This CSR format changes dynamically with XLEN.

31 30 22 21 16
MODE T T T T ASID T T T T T T PﬁN T T
15 0
T T T T T T T PﬁN T T T T T T T

Figure 37. satp Format when CSR[mstatus].SXL ==

63 60 59 48
T MOIDE T T T T T T ASIID T T T T T

47 44 43 32
T ASIID T T T T T T PIPN T T T T T

31 16
T T T T T T T PEN T T T T T T T

15 0
T T T T T T T PﬁN T T T T T T T

Figure 38. satp Format when CSR[mstatus].SXL == 1

D.37.3. Field Summary

Na Location Type Reset Value
me

satp. 31 RW-R 0

MO
DE 63:60

satp. 30:22 RW-R UNDEFINED_LEGAL

ASID
59:44

satp. 21:0 RW-R UNDEFINED_LEGAL

PPN
43:0

D.37.4. Fields

satp.MODE Field

Location:
e 31 when CSR[mstatus].SXL ==

* 63:60 when CSR[mstatus].SXL ==

Description:

Translation Mode

342

Controls the current translation mode according to the table below.

[separator="!",%autowidth]

! Value ! Name ! Description

10! Bare a! No translation — virtual address == physical address
<%- if ext?(:Sv39) -%>

181 Sv39 ! 39-bit virtual address translation

<%- end -%>

<%- if ext?(:Sv48) -%>

191 Sv48 ! 48-bit virtual address translation

<%- end -%>

<%- if ext?(:Sv57) -%>

110! Sv57 ! 57-bit virtual address translation

<%- end -%>

Any other value shall be ignored on a write.

Type:
RW-R

Reset value:
0

satp.ASID Field

Location:
e 30:22 when CSR[mstatus].SXL == 0

e 59:44 when CSR[mstatus].SXL ==

Description:
Address Space ID

Type:
RW-R

Reset value:
UNDEFINED LEGAL

satp.PPN Field

Location:
e 21:0 when CSR[mstatus].SXL ==

¢ 43:0 when CSR[mstatus].SXL ==

Description:

Physical Page Number
The physical address of the active root page table is PPN << 12.

Can only hold values that correspond to a valid page table base, which
will be implementation-dependent.

Type:
RW-R

Reset value:
UNDEFINED LEGAL

D.37.5. Software write

This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

343

MODE = if (SATP_MODE_BARE && (csr_value.MODE == @)) {
In Bare, ASID and PPN must be zero, else the entire write is ignored
if (csr_value.ASID == 0 && csr_value.PPN == 0) {
if (CSR[satp].MODE != @) {
changes *to* Bare mode take effect immediately without needing sfence.vma
thus, an implicit sfence.vma occurs now
VmaOrderType order_type;
order_type.global = true;
order_pgtbl_writes_before_vmafence(order_type);

invalidate_translations(order_type);

order_pgtbl_reads_after_vmafence(order_type);
}
return csr_value.MODE;
} else {
return UNDEFINED_LEGAL_DETERMINISTIC;
}
}
else if (implemented?(ExtensionName::Sv32) &% csr_value.MODE == 1) {
if (CSR[satp].MODE == @) {
changes *from* Bare mode take effect immediately without needing sfence.vma
thus, an implicit sfence.vma occurs now
VmaOrderType order_type;
order_type.global = true;
order_pgtbl_writes_before_vmafence(order_type);

invalidate_translations(order_type);

order_pgtbl_reads_after_vmafence(order_type);

by

return csr_value.MODE;

telse if (implemented?(ExtensionName::Sv39) && csr_value.MODE == 8) {

if (CSR[satp].MODE == @) {
changes *from* Bare mode take effect immediately without needing sfence.vma
thus, an implicit sfence.vma occurs now
VmaOrderType order_type;
order_type.global = true;
order_pgtbl_writes_before_vmafence(order_type);

invalidate_translations(order_type);

order_pgtbl_reads_after_vmafence(order_type);
}
return csr_value.MODE;
}
else if (implemented?(ExtensionName::Sv48) &% csr_value.MODE == 9) {
if (CSR[satp].MODE == @) {
changes *from* Bare mode take effect immediately without needing sfence.vma
thus, an implicit sfence.vma occurs now
VmaOrderType order_type;
order_type.global = true;
order_pgtbl_writes_before_vmafence(order_type);

invalidate_translations(order_type);

order_pgtbl_reads_after_vmafence(order_type);

}

return csr_value.MODE;
}
else if (implemented?(ExtensionName::Sv57) && csr_value.MODE == 10) {
if (CSR[satp].MODE == @) {
changes *from* Bare mode take effect immediately without needing sfence.vma
thus, an implicit sfence.vma occurs now
VmaOrderType order_type;
order_type.global = true;
order_pgtbl_writes_before_vmafence(order_type);

invalidate_translations(order_type);

order_pgtbl_reads_after_vmafence(order_type);

344

return csr_value.MODE;
}
else {
return UNDEFINED_LEGAL_DETERMINISTIC;

}

ASID = if (csr_value.MODE == 0) {
when MODE == Bare, PPN and ASID must be zero
if (csr_value.ASID == @ && csr_value.PPN == @) {
return csr_value.ASID;
} else {
return UNDEFINED_LEGAL_DETERMINISTIC;
}
} else {
XReg shamt = (xlen() == 32 || (CSR[mstatus].SXL == $bits(XRegWidth::XLEN32))) ? 9 : 16;
XReg all_ones = ((MXLEN'1 << shamt) - 1);
XReg largest_allowed_asid = (MXLEN'1 << shamt) - 1;

if (csr_value.ASID == all_ones) {
the specification states that if all 1's are written to the ASID field, then
you must return the largest asid
return largest_allowed_asid;

} else if (csr_value.ASID > largest_allowed_asid) {
... but is silent on what happens on any other illegal value
return UNDEFINED_LEGAL_DETERMINISTIC;

} else {
unrestricted
return csr_value.ASID;

}

}

PPN = if (csr_value.MODE == 0) {
when MODE == Bare, PPN and ASID must be zero
if (csr_value.ASID == @ && csr_value.PPN == 0) {
return csr_value.PPN;
} else {
return UNDEFINED LEGAL_DETERMINISTIC;
}
} else {
unrestricted
return csr_value.PPN;

}

345

D.38. scause

Supervisor Cause

Reports the cause of the latest exception.

D.38.1. Attributes

CSR Address 0x142

Defining S
extension
Length * 32 when CSR[mstatus].SXL == 0 * 64 when CSR[mstatus].SXL ==

Privilege Mode S

D.38.2. Format

This CSR format changes dynamically with XLEN.

31 30 16
INT | | | | "COoDE | | | | |
15 0
| | | | | CODE | | | | |
Figure 39. scause Format when CSR[mstatus].SXL ==
63 62 48
INT | | | | "CoDE | | | | |
47 32
| | | | | CODE | | | | |
31 16
| | | | | CODE | | | | |
15 0
| | | | | CODE | | | | |

Figure 40. scause Format when CSR[mstatus].SXL

D.38.3. Field Summary

Nam Location
e

scaus 31

e.INT
63

scaus 30:0

e.CO

D.38.4. Fields

scause.INT Field

Location:

¢ 31 when CSR[mstatus].SXL == 0

¢ 63 when CSR[mstatus].SXL ==

Description:

Written by hardware when a trap is taken into S-mode.

When set, the last exception was caused by an asynchronous Interrupt.

scause.INT is writable.

346

Reset Value

UNDEFINED_LEGAL

UNDEFINED_LEGAL

[when,"TRAP_ON_ILLEGAL_WLRL == true"]
If scause is written with an undefined cause (combination of scause.INT and scause.CODE), an I1legal Instruction exception occurs.

[when,"TRAP_ON _ILLEGAL_ WLRL == false"]
If scause is written with an undefined cause (combination of scause.INT and scause.CODE), neither scause.INT nor scause.CODE are
modified.

Type:
RW-RH

Reset value:
UNDEFINED LEGAL

scause.CODE Field

Location:
¢ 30:0 when CSR[mstatus].SXL == 0

e 62:0 when CSR[mstatus].SXL ==

Description:

Written by hardware when a trap is taken into S-mode.
Holds the interrupt or exception code for the last taken trap.
scause.CODE is writable.

[when,"TRAP_ON_ILLEGAL_WLRL == true"]
If scause is written with an undefined cause (combination of scause.INT and scause.CODE), an I1legal Instruction exception occurs.

[when,"TRAP_ON_ILLEGAL_WLRL == false"]

If scause is written with an undefined cause (combination of scause.INT and scause.CODE), neither scause.INT nor scause.CODE are
modified.

Valid interrupt codes are:

[separator="!"

===

<%- implemented_interrupt_codes.sort_by { |code| code.num }.each do | code| -%>
! <%= code.num %> ! <%= code.name %>

<%- end -%>

Valid exception codes are:
[separator="!"

<%- implemented_exception_codes.sort_by { | code| code.num }.each do |code| -%>
! <%= code.num %> ! <%= code.name %>
<%- end -%>

Type:
RW-RH

Reset value:
UNDEFINED LEGAL

D.38.5. Software write
This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

INT = # the write only holds if the INT/CODE combination is valid
otherwise, the old value is retained
if (csr_value.INT == 1) {
if (valid_interrupt_code?(csr_value.CODE)) {
return 1;

}

347

return ILLEGAL_WLRL;

} else {
if (valid_exception_code?(csr_value.CODE)) {
return 1;
}

return ILLEGAL _WLRL;
}

CODE = # the write only holds if the INT/CODE combination is valid
otherwise, the old value is retained
if (csr_value.INT == 1) {
if (valid_interrupt_code?(csr_value.CODE)) {
return csr_value.CODE;
}
return ILLEGAL_WLRL;
} else {
if (valid_exception_code?(csr_value.CODE)) {
return csr_value.CODE;
}
return ILLEGAL_WLRL;

}

348

D.39. scounteren

Supervisor Counter Enable

Delegates control of the hardware performance-monitoring counters to U-mode

D.39.1. Attributes

CSR Address

Defining
extension

Length

Privilege Mode

D.39.2. Format

0x106
S

32-hit
S

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
HPM31|HPM30|HPM29(HPM28(HPM27|HPM26|HPM25|HPM24|HPM23|HPM22|HPM21|HPM20HPM19(HPM18HPM17|HPM16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HPM15HPM14({HPM13|HPM12|HPM11|HPM10| HPM9 | HPM8 | HPM7 | HPM6 | HPM5 | HPM4 | HPM3 IR ™ CY
Figure 41. scounteren format
D.39.3. Field Summary
Name Location Type Reset Value
scount 0 RW UNDEFINED LEGAL
eren.C
Y RO
scount 1 RW UNDEFINED_LEGAL
eren.T
M RO
scount 2 RW UNDEFINED_LEGAL
eren.IR
RO
scount 3 RW UNDEFINED LEGAL
eren.H
PM3 RO
scount 4 RW UNDEFINED_LEGAL
eren.H
PM4 RO
scount 5 RW UNDEFINED_LEGAL
eren.H
PM5 RO
scount 6 RW UNDEFINED LEGAL
eren.H
PM6 RO
scount 7 RW UNDEFINED LEGAL
eren.H
PM7 RO
scount 8 RW UNDEFINED_LEGAL
eren.H
PMS8 RO
scount 9 RW UNDEFINED_LEGAL
eren.H
PM9 RO
scount 10 RW UNDEFINED LEGAL
eren.H
PM10 RO
scount 11 RW UNDEFINED LEGAL
eren.H
RO

PM11

349

Name

scount
eren.H
PM12

scount
eren.H
PM13

scount
eren.H
PM14

scount
eren.H
PM15

scount
eren.H
PM16

scount
eren.H
PM17

scount
eren.H
PM18

scount
eren.H
PM19

scount
eren.H
PM20

scount
eren.H
PM21

scount
eren.H
PM22

scount
eren.H
PM23

scount
eren.H
PM24

scount
eren.H
PM25

scount
eren.H
PM26

scount
eren.H
PM27

scount
eren.H
PM28

scount
eren.H
PM29

scount
eren.H
PM30

scount
eren.H
PM31

350

Location

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Type
RW

RO

RW

RO

RW

RO

RwW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RW

RO

RwW

RO

RW

RO

RW

RO

RW

RO

RwW

RO

RW

RO

RW

RO

RW

RO

RW

RO

Reset Value

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

D.39.4. Fields

scounteren.CY Field
Location:
0

Description:

When both scounteren.CY and mcounteren.CY are set, the cycle CSR (an alias of mcycle) is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.CY)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.TM Field
Location:
1

Description:

When both scounteren.TM and mcounteren.TM are set, the time CSR (an alias of mtime memory-mapped CSR) is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. TM)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.IR Field
Location:
2

Description:

When both scounteren.IR and mcounteren.IR are set, the instret CSR (an alias of memory-mapped minstret) is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.IR)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM3 Field
Location:
3

Description:

When both scounteren.HPM3 and mcounteren.HPM3 are set, the hpmcounter3 CSR (an alias of mhpmcounter3)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM3)<% end %>.

Type:

351

RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM4 Field
Location:
4

Description:

When both scounteren.HPM4 and mcounteren.HPM4 are set, the hpmcounter4 CSR (an alias of mhpmcounter4)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM4)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM5 Field
Location:
5

Description:

When both scounteren.HPM5 and mcounteren.HPM5 are set, the hpmcounter5 CSR (an alias of mhpmcounter5)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM5)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM6 Field
Location:
6

Description:

When both scounteren.HPM6 and mcounteren.HPM6 are set, the hpmcounter6 CSR (an alias of mhpmcounter6)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM6)<% end %>.

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM?7 Field

352

Location:
7

Description:

When both scounteren.HPM7 and mcounteren.HPM?7 are set, the hpmcounter7 CSR (an alias of mhpmcounter?7)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM7)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPMS Field

Location:
8

Description:

When both scounteren.HPM8 and mcounteren. HPMS8 are set, the hpmcounter8 CSR (an alias of mhpmcounter8)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM8)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM9 Field
Location:
9

Description:

When both scounteren.HPM9 and mcounteren.HPM9 are set, the hpmcounter9 CSR (an alias of mhpmcounter9)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM9)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM10 Field
Location:
10

Description:

When both scounteren.HPM10 and mcounteren.HPM10 are set, the hpmcounter10 CSR (an alias of mhpmcounter10)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM10)<% end %>.

Type:

RW

353

RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM11 Field
Location:
11

Description:

When both scounteren.HPM11 and mcounteren.HPM11 are set, the hpmcounter11 CSR (an alias of mhpmcounter11)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM11)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM12 Field
Location:
12

Description:

When both scounteren.HPM12 and mcounteren.HPM12 are set, the hpmcounter12 CSR (an alias of mhpmcounter12)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM12)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM13 Field
Location:
13

Description:

When both scounteren.HPM13 and mcounteren.HPM13 are set, the hpmcounter13 CSR (an alias of mhpmcounter13)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM13)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM14 Field

Location:
14

354

Description:

When both scounteren.HPM14 and mcounteren.HPM14 are set, the hpmcounter14 CSR (an alias of mhpmcounter14)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM14)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM15 Field

Location:
15

Description:

When both scounteren.HPM15 and mcounteren.HPM15 are set, the hpmcounter15 CSR (an alias of mhpmcounter15)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM15)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM16 Field
Location:
16

Description:

When both scounteren.HPM16 and mcounteren.HPM16 are set, the hpmcounter16 CSR (an alias of mhpmcounter16)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM16)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM17 Field
Location:
17

Description:

When both scounteren.HPM17 and mcounteren.HPM17 are set, the hpmcounter17 CSR (an alias of mhpmcounter17)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM17)<% end %>.

Type:

RW

RO

355

Reset value:
UNDEFINED LEGAL

scounteren.HPM18 Field
Location:
18

Description:

When both scounteren.HPM18 and mcounteren.HPM18 are set, the hpmcounter18 CSR (an alias of mhpmcounter18)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM18)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM19 Field
Location:
19

Description:

When both scounteren.HPM19 and mcounteren.HPM19 are set, the hpmcounter19 CSR (an alias of mhpmcounter19)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM19)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM20 Field
Location:
20

Description:

When both scounteren.HPM20 and mcounteren.HPM20 are set, the hpmcounter20 CSR (an alias of mhpmcounter20)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM20)<% end %>.

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM21 Field

Location:
21

356

Description:

When both scounteren.HPM21 and mcounteren.HPM21 are set, the hpmcounter21 CSR (an alias of mhpmcounter21)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM21)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM22 Field
Location:
22

Description:

When both scounteren. HPM22 and mcounteren.HPM22 are set, the hpmcounter22 CSR (an alias of mhpmcounter22)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM22)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM23 Field
Location:
23

Description:

When both scounteren.HPM23 and mcounteren.HPM23 are set, the hpmcounter23 CSR (an alias of mhpmcounter23)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM23)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM24 Field
Location:
24

Description:

When both scounteren.HPM24 and mcounteren.HPM24 are set, the hpmcounter24 CSR (an alias of mhpmcounter24)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM24)<% end %>.

Type:

RW

RO

357

Reset value:
UNDEFINED LEGAL

scounteren.HPM25 Field
Location:
25

Description:

When both scounteren.HPM25 and mcounteren.HPM25 are set, the hpmcounter25 CSR (an alias of mhpmcounter25)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM25)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM26 Field
Location:
26

Description:

When both scounteren.HPM26 and mcounteren.HPM26 are set, the hpmcounter26 CSR (an alias of mhpmcounter26)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM26)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM27 Field
Location:
27

Description:

When both scounteren.HPM27 and mcounteren.HPM27 are set, the hpmcounter27 CSR (an alias of mhpmcounter27)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM27)<% end %>.

Type:

RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM28 Field

Location:
28

358

Description:

When both scounteren.HPM28 and mcounteren.HPM28 are set, the hpmcounter28 CSR (an alias of mhpmcounter28)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM28)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM29 Field

Location:
29

Description:

When both scounteren.HPM29 and mcounteren.HPM29 are set, the hpmcounter29 CSR (an alias of mhpmcounter29)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren.HPM29)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM30 Field
Location:
30

Description:

When both scounteren.HPM30 and mcounteren.HPM30 are set, the hpmcounter30 CSR (an alias of mhpmcounter30)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM30)<% end %>.

Type:
RW
RO

Reset value:
UNDEFINED LEGAL

scounteren.HPM31 Field
Location:
31

Description:

When both scounteren.HPM31 and mcounteren.HPM31 are set, the hpmcounter31 CSR (an alias of mhpmcounter31)
is accessible to U-mode
<% if ext?(:H) %>(delegation to VS/VU mode is further handled by hcounteren. HPM31)<% end %>.

Type:

RW

RO

359

Reset value:
UNDEFINED LEGAL

360

D.40. sepc

Supervisor Exception Program Counter

Written with the PC of an instruction on an exception or interrupt taken in (H)S-mode.

Also controls where the hart jumps on an exception return from (H)S-mode.

D.40.1. Attributes

CSR Address 0x141

Defining S
extension
Length 64-bit

Privilege Mode S

D.40.2. Format

63

48

47

32

31

16

15

Figure 42. sepc format

D.40.3. Field Summary

Na Location
me

sep 63:0
c.P
C

D.40.4. Fields

sepc.PC Field

Location:
63:0

Description:

When a trap is taken into S-mode, sepc.PC is written with the virtual address of the

Type

RW-RH

instruction that was interrupted or that encountered the exception.

Otherwise, sepc.PC is never written by the implementation, though it may be explicitly written

by software.

On an exception return from S-mode (from the SRET instruction),
control transfers to the virtual address read out of sepc.PC.

Because PCs are always <% if ext?(:C) %>halfword<% else %>word<% end %>-aligned,
<% if ext?(:C) %>bit 0<% else %>bits 1:0<% end %> of sepc.PC are always

read-only 0.

[when,"ext?(:C) && MUTABLE_MISA_C == true"]
When misa.C is clear, bit 1 is masked to zero. Writes to bit 1 are still captured, and

may be visible on the next read with misa.C is set.

Holds bits 63:<%= ext?(:C) ? 2 : 1 %> of the virtual address associated with an exception.

Reset Value

UNDEFINED_LEGAL

361

Type:
RW-RH

Reset value:
UNDEFINED LEGAL

D.40.5. Software write
This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

PC = return csr_value.PC & ~64'b1;

D.40.6. Software read

This CSR may return a value that is different from what is stored in hardware.

if (implemented?(ExtensionName::C) && CSR[misa].C == 1'b1) {
return CSR[sepc].PC & ~64'b1;

} else {
return CSR[sepc].PC;

}

362

D.41. sip

Supervisor Interrupt Pending
A restricted view of the interrupt pending bits in mip.

Hypervisor-related interrupts (VS-mode interrupts and Supervisor Guest interrupts) are not reflected in sip even though those interrupts can be
taken in HS-mode. Instead, they are reported through hip.

D.41.1. Attributes

CSR Address 0x144

Defining S
extension
Length 64-bit

Privilege Mode S

D.41.2. Format

63 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 48

0« O OO0 o=

° OO @@ o

15 | 14 | 13 | 12 | | 10 | 9 | 8 | | 6 | 5 | 4 | | 2 | 1 | 0
: LCOFIR SEIP STIP SSIP

Figure 43. sip format

D.41.3. Field Summary

Na Location Type Reset Value

me

sip.S 1 RW UNDEFINED_LEGAL
SIP

sip.S 5 RO-H UNDEFINED_LEGAL
TIP

sip.S 9 RO-H UNDEFINED_LEGAL
EIP

sip.L. 13 RW-H UNDEFINED_LEGAL
COFI

P

D.41.4. Fields

sip.SSIP Field

Location:
1

Description:

Supervisor Software Interrupt Pending

Reports the current pending state of an (H)S-mode software interrupt.

When Supervisor Software Interrupts are not delegated to (H)S-mode (mideleg.SSI is clear), sip.SSIP is read-only 0.
Otherwise, sip.SSIP is an alias of mip.SSIP.

<%- if ext?(:Smaia) -%>
When using AIA/IMSIC, IPIs are expected to be delivered as external interrupts

363

and SSIP is not backed by any hardware update (aside from any aliasing effects).

However, SSIP is still writable by S-mode software and, when written, can be used to
generate an S-mode Software Interrupt.
<%- end -%>

Since it is an alias, writes to sip.SSIP are also be reflected in mip.SSIP<% if ext?(:Smaia) %> and mvip.SSIP<% end %>.

<% if ext?(:Smaia) %>_Aliases <% else %> Alias_<% end %>:

* mip.SSIP when mideleg.SSI is set
<%- if ext?(:Smaia) -%>

e mvip.SSIP when mideleg.SSI is set
<%- end -%>

To summarize:
[separator="1",%autowidth]

! mideleg.SSI ! sip.SSIP behavior

10! read-only 0
!'1 ! writable alias of mip.SSIP <% if ext?(:Smaia) %>and mvip.SSIP<% end %>

Type:
RW

Reset value:
UNDEFINED LEGAL

sip.STIP Field

Location:
5

Description:

Supervisor Timer Interrupt Pending

Reports the current pending state of an (H)S-mode timer interrupt.

When Supervisor Timer Interrupts are not delegated to (H)S-mode (i.e., mideleg.STI is clear), sip.STIP is read-only O.
Otherwise, sip.STIP is a read-only view of mip.STIP.

<% if ext?(:Smaia) %>_Aliases <% else %> Alias_<% end %>:

* mip.STIP when mideleg.STI is set
<%- if ext?(:Smaia) -%>

* mvip.STIP when mideleg.SSI is set and menvcfg.STCE is clear.
<%- end -%>

To summarize:
[separator="1",%autowidth]

! mideleg.STI ! sip.STIP behavior

10! read-only 0
11! read-only alias of mip.STIP <% if ext?(:Smaia) %>(and mvip.STIP when menvcfg.STCE is clear)<% end %>

Type:
RO-H

Reset value:
UNDEFINED_ LEGAL

364

sip.SEIP Field

Location:
9

Description:

Supervisor External Interrupt Pending

Reports the current pending state of an (H)S-mode external interrupt.

When Supervisor External Interrupts are not delegated to (H)S-mode (i.e., mideleg.SEI is clear), sip.SEIP is read-only 0.
Otherwise, sip.SEIP is a read-only view of mip.SEIP.

To summarize:
[separator="!",%autowidth]

! mideleg.SEI ! sip.SEIP behavior

10! read-only 0
!'1 ' read-only alias of mip.SEIP

Type:
RO-H

Reset value:
UNDEFINED LEGAL

sip.LCOFIP Field

Location:
13

Description:

Local Counter Overflow Interrupt pending

Reports the current pending state of a Local Counter Overflow interrupt.

When Local Counter Overflow interrupts are not delegated to (H)S-mode (i.e., mideleg.LCOFI is clear), sip.LCOFIP is read-only 0.
Otherwise, sip.LCOFIP is an alias of mip.L.COFIP.

Software writes 0 to sip.LCOFIP to clear the pending interrupt.

To summarize:
[separator="!",%autowidth]

! mideleg.LCOFI ! sip.LCOFIP behavior

10! read-only 0
11
a! writable alias of mip.LCOFIP (and vsip.LCOFIP when hideleg.LCOFI is set)

Type:
RW-H

Reset value:
UNDEFINED LEGAL

365

D.42. sscratch

Supervisor Scratch Register

Scratch register for software use. Bits are not interpreted by hardware.

D.42.1. Attributes

CSR Address 0x140

Defining S
extension
Length 64-bit

Privilege Mode S

D.42.2. Format

63

48

SCRATCH

a7

32

SCRATCH

31

16

SCRATCH

15

SCRATCH

Figure 44. sscratch format

D.42.3. Field Summary

Name Location Type
sscratc 63:0 RW
h.SCR

ATCH

D.42.4. Fields

sscratch.SCRATCH Field
Location:
63:0

Description:

Scratch value

Type:
RW

Reset value:
UNDEFINED LEGAL

366

Reset Value

UNDEFINED_LEGAL

D.43. sstatus

Supervisor Status
The sstatus register tracks and controls the hart’s current operating state.

All fields in sstatus are aliases of the same field in mstatus.

D.43.1. Attributes

CSR Address 0x100

Defining S
extension
Length * 32 when CSR[mstatus].SXL == 0 * 64 when CSR[mstatus].SXL ==1

Privilege Mode S

D.43.2. Format

This CSR format changes dynamically with XLEN.

31 30

20 19

18

17

16

SD

MXR

SUM

XS

15 14 13 12 11 10 9 8 7

XS FS VS SPP

UBE

SPIE

SIE

Figure 45. sstatus Format when CSR[mstatus].SXL ==

63 62

48

SD

a7

34

33

32

UXL

31

20 19

18

17

16

MXR

SUM

XS

15 14 13 12 11 10 9 8 7

XS FS VS SPP

UBE

SPIE

SIE

Figure 46. sstatus Format when CSR[mstatus].SXL == 1

D.43.3. Field Summary

Nam Location Type
e

sstat 31 RO-H

us.S
D 63

sstat 33:32 RO
us.U
XL

sstat 19 RW
us.M
XR

sstat 18 RW
us.S
UM

sstat 16:15 RO
us.X

sstat 14:13 RW-H
us.FS

Reset Value

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

367

Nam Location
e

sstat 10:9
us.vV

sstat 8
us.SP

sstat 6
us.U
BE

sstat 5
us.SP
IE

sstat 1
us.SI

D.43.4. Fields

sstatus.SD Field

Location:

e 31 when CSR[mstatus].SXL ==
e 63 when CSR[mstatus].SXL ==

Description:
State Dirty

Alias of mstatus.SD.

Type:
RO-H

Reset value:
UNDEFINED LEGAL

sstatus.UXL Field

o UXL is only defined in RV64 (CSR[mstatus].SXL == 1)

Location:
33:32

Description:
U-mode XLEN

Alias of mstatus.UXL.

Type:
RO

Reset value:
2

sstatus.MXR Field

Location:
19

Description:
Make eXecutable Readable

Alias of mstatus.MXR.

368

RW-H

RO

RW-H

RW-H

Reset Value

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

UNDEFINED_LEGAL

Type:
RW

Reset value:
UNDEFINED LEGAL

sstatus.SUM Field

Location:
18

Description:

permit Supervisor Memory Access

Alias of mstatus.SUM.

Type:
RW

Reset value:
UNDEFINED LEGAL

sstatus.XS Field

Location:
16:15

Description:

Custom (X) extension context Status.

Alias of mstatus.XS.

Type:
RO

Reset value:
UNDEFINED LEGAL

sstatus.FS Field

Location:
14:13

Description:

Floating point context status.

Alias of mstatus.FS.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

sstatus.VS Field

Location:
10:9

Description:

Vector context status.

Alias of mstatus.VS.

369

Type:
RW-H

Reset value:
UNDEFINED LEGAL

sstatus.SPP Field
Location:
8

Description:

S-mode Previous Privilege

Alias of mstatus.SPP.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

sstatus.UBE Field
Location:
6

Description:

U-mode Big Endian

Alias of mstatus.UBE.

Type:
RO

Reset value:
UNDEFINED LEGAL

sstatus.SPIE Field

Location:
5

Description:

S-mode Previous Interrupt Enable

Alias of mstatus.SPIE.

Type:
RW-H

Reset value:
UNDEFINED LEGAL

sstatus.SIE Field

Location:
1

Description:

S-mode Interrupt Enable

Alias of mstatus.SIE.

370

371

D.44. stval

Supervisor Trap Value

Holds trap-specific information

D.44.1. Attributes

CSR Address 0x143

Defining S
extension
Length 64-bit

Privilege Mode S

D.44.2. Format

63 48

VALUE

47 32

VALUE

31 16

VALUE

15 0

VALUE

Figure 47. stval format

D.44.3. Field Summary

Nam Location Type Reset Value
e

stval. 63:0 RW-H 0
VAL
UE

D.44.4. Fields

stval.VALUE Field

Location:
63:0

Description:

Written with trap-specific information when a trap is taken into S-mode.
The values are:

[separator="!"

! Exception type ! Value

! [0] Instruction address misaligned ! The misaligned virtual PC (same as the value written to mepc).

! [1] Instruction access fault ! The <% if ext?(:C) %> portion of the <% end %> virtual PC causing the access fault <%- unless ext?(:C) -%>(same
as the value written to mepc)<%- end -%>.

! [2] legal Instruction ! The encoding of the illegal instruction.

! [3] Breakpoint

! [when,"REPORT_VA_IN_STVAL_ON_BREAKPOINT == true"]

When caused by an EBREAK instruction, the virtual PC of the breakpoint instruction.

[when,"REPORT_VA_IN STVAL_ON _BREAKPOINT == false"]
When caused by an EBREAK instruction, zero.

When caused by a data address (i.e., watchpoint) breakpoint, the faulting virtual address.

372

When caused by an instruction address breakpoint, the faulting virtual PC.
! [4] Load address misaligned ! The misaligned virtual load address.

! [S] Load access fault

! The part of virtual load address causing in the access fault.

When the load is misaligned, the reported value is the smallest address on the page causing a fault
(e.g., if an 8-byte load is equally split across a page and the fault occurs on the second page,
address + 4 is reported).

(Even though the access fault arises on a physical address, the virtual address is reported)
! [6] Store/AMO address misaligned ! The misaligned virtual store/AMO address.

! [7] Store/AMO access fault

! The virtual store/AMO address causing the access fault.

When the store/AMO is misaligned, the reported value is the smallest address on the page causing a fault
(e.g., if an 8-byte store is equally split across a page and the fault occurs on the second page,
address + 4 is reported).

(Even though the access fault arises on a physical address, the virtual address is reported)
! [8] Environment call from U-mode <% if ext?(:H) %>or VU-mode<% end %> ! Zero
1 [9] Environment call from (H)S-mode ! Zero

<%- if ext?(:H) -%>

! [10] Environment call from VS-mode ! Zero

<%- end -%>

! [12] Instruction page fault

! The <% if ext?(:C) %> portion of the <% end %> virtual PC causing the page fault
<% unless ext?(:C) %>(same as the value written to mepc)<% end %>.

! [13] Load page fault

! The part of the virtual load address causing in the page fault.

When the load is misaligned, the reported value is the smallest address on the page causing a fault

(e.g., if an 8-byte load is equally split across a page and the fault occurs on the second page, address + 4 is reported).
! [15] Store/AMO page fault

! The virtual store/AMO address causing in the page fault.

When the store/AMO is misaligned, the reported value is the smallest address on the page causing a fault

(e.g., if an 8-byte store is equally split across a page and the fault occurs on the second page, address + 4 is reported).

<%- if ext?(:H) -%>

! [20] Instruction guest-page fault

! The <% if ext?(:C) %> portion of the <% end %> virtual PC causing the fault <% unless ext?(:C) %>(same as the value written to mepc)<%
end %>.

The guest physical address is reported in mtval2.
! [21] Load guest-page fault
! The part of the virtual address causing the fault.

When the load is misaligned, the reported value is the smallest address on the page causing a fault
(e.g., if an 8-byte load is equally split across a page and the fault occurs on the second page, address + 4 is reported).

The guest physical address is reported in mtval2.
! [22] Virtual instruction

! The encoding of the faulting virtual instruction.
! [23] Store/AMO guest-page fault

! The part of the virtual address causing the fault.

When the store/AMO is misaligned, the reported value is the smallest address on the page causing a fault
(e.g., if an 8-byte store is equally split across a page and the fault occurs on the second page, address + 4 is reported).

The guest physical address is reported in htval.
<%- end -%>

Type:
RW-H

Reset value:
0

373

D.45. stvec

Supervisor Trap Vector

Controls where traps jump.

D.45.1. Attributes

CSR Address 0x105

Defining S
extension
Length 64-bit

Privilege Mode S

D.45.2. Format

63 48
L} L} L} L} L} BAISE L} L} L} L}

47 32
T T T T T BAISE T T T T

31 16
T T T T T BAISE T T T T

15 2 0
| | | | BAISE | | | | MOIDE

Figure 48. stvec format

D.45.3. Field Summary

Nam Location
e

stvec 63:2
.BAS
E

stvec 1:0
MO
DE

D.45.4. Fields

stvec.BASE Field

Location:
63:2

Description:

Type

RW-R

RW-R

Reset Value

UNDEFINED_LEGAL

<%- va_size = ext?(:Sv57) ? 57 : (ext?(:Sv48) ? 49 :39) -%>
Bit 63:0 of the virtual address of the exception vector for any trap taken into S-mode.

If the base address is written with a non-cannonical address (i.e., bits 63:<%= va_size %> do not match bit <%= va_size-1 %>),
the write should be ignored.

Type:
RW-R

Reset value:

UNDEFINED_LEGAL

stvec.MODE Field

374

Location:
1:0

Description:

Vectoring mode for asynchronous interrupts.
0 - Direct, 1 - Vectored
When Direct, all synchronous exceptions and asynchronous interrupts jump to (stvec.BASE << 2).

When Vectored, asynchronous interrupts jump to (stvec.BASE << 2 + scause*4) while synchronous exceptions continue to jump to
(stvec.BASE << 2).

Type:
RW-R

Reset value:
0

D.45.5. Software write

This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

BASE = # Base spec says that BASE must be 4-byte aligned, which will always be the case
implementations may put further constraints on BASE when MODE != Direct

If that is the case, stvec should have an override for the implementation

return csr_value.BASE;

MODE = if (STVEC_MODE_DIRECT && csr_value.MODE == @) {
return 9;

} else if (STVEC_MODE_VECTORED && csr_value.MODE == 1) {
return 1;

} else {
return UNDEFINED_LEGAL_DETERMINISTIC;

}

375

D.46. time

Timer for RDTIME Instruction

This CSR does not exist, and access will cause an IllegalInstruction exception.

Shadow of the memory-mapped M-mode CSR mtime.

Privilege mode access is controlled with mcounteren.TM, scounteren.TM, and hcounteren.TM as follows:

mcounteren. TM scounteren.TM scounteren.TM

time behavior

S-mode U-mode VS-mode VU-mode
0 - - I11legal Instruction Illegal Instruction Illegal Instruction Illegal Instruction
1 0 0 read-only I1legal Instruction Illegal Instruction Illegal Instruction
1 1 0 read-only read-only I1legal Instruction Illegal Instruction
1 0 1 read-only Illegal Instruction read-only I1legal Instruction
1 1 1 read-only read-only read-only read-only
D.46.1. Attributes
CSR Address 0xc01
Defining Zicntr
extension
Length 64-bit
Privilege Mode U
D.46.2. Format
63 48
COUNT
47 32
COUNT
31 16
COUNT
15 0
COUNT
Figure 49. time format
D.46.3. Field Summary
Nam Location Type Reset Value
e
time. 63:0 RO-H UNDEFINED_LEGAL
Cou
NT
D.46.4. Fields

time.COUNT Field

Location:
63:0

Description:

Reports the current wall-clock time from the timer device.

Alias of the mtime memory-mapped CSR.

Type:
RO-H

376

Reset value:
UNDEFINED LEGAL

D.46.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (!TIME_CSR_IMPLEMENTED) {
unimplemented_csr($encoding);
}
if (mode() == PrivilegeMode::S) {
if (CSR[mcounteren].TM == 1'b0) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
}
} else if (mode() == PrivilegeMode::U) {
if (CSR[misal.S == 1'b1) {
if ((CSR[mcounteren].TM & CSR[scounteren].TM) == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
}
} else if (CSR[mcounteren].TM == 1'b0) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
}
} else if (mode() == PrivilegeMode::VS) {
if (CSR[hcounteren].TM == 1'b@ && CSR[mcounteren].TM == 1'b1) {
raise(ExceptionCode::Virtuallnstruction, mode(), $encoding);
} else if (CSR[mcounteren].TM == 1'b0) {
raise(ExceptionCode::I1legallnstruction, mode(), $encoding);
b
} else if (mode() == PrivilegeMode::VU) {
if (CSR[hcounteren].TM & CSR[scounteren].TM) == 1'b@) && (CSR[mcounteren].IR == 1'b1 {
raise(ExceptionCode::Virtuallnstruction, mode(), $encoding);
} else if (CSR[mcounteren].TM == 1'b0) {
raise(ExceptionCode::I1legalInstruction, mode(), $encoding);
}
}

return read _mtime();

377

Appendix E: IDL Function Details

E.1. implemented? (generated)

Return true if the implementation supports extension.

Return Type
Boolean

Arguments))
ExtensionName extension

E.2. implemented_version? (generated)

Return true if the implementation supports extension meeting 'version_requirement'.

Return Type
Boolean

Arguments _ _ _ _ _
ExtensionName extension, String version_requirement

E.3. implemented_csr? (generated)

Return true if csr_addr is an implemented CSR

Return Type
Boolean

Arguments
Bits<12> csr_addr

E.4. direct_csr_lookup (generated)
Return CSR info for a CSR with direct address csr_addr.

If no CSR exists, <return_value>.valid == false

Return Type
Csr

Arguments

Bits<12> csr_addr

E.5. indirect_csr_lookup (generated)

Return CSR info for a CSR with indirect address csr_addr at window slot window_slot.

If no CSR exists, <return_value>.valid == false

Return Type
Csr

Arguments
Bits<MXLEN> csr_addr, Bits<4> window_slot

E.6. csr_hw_read (generated)

Returns the raw value of csr

Return Type
Bits

Arguments
Csr csr

378

E.7. csr_sw_read (generated)

Returns the result of CSR[csr].sw_read(); i.e., the software view of the register

Return Type .
Bits

Arguments
Csr csr

E.8. csr_sw_write (generated)

Writes value to csr, applying an WARL transformations first.

Uses the sw_write(...) functions of CSR field definitions.

Return Type
void

Arguments
Csr csr, Bits<MXLEN> value

E.9. unpredictable (builtin)

Indicate that the hart has reached a state that is unpredictable because the RISC-V spec allows multiple behaviors. Generally, this will be a fatal
condition to any emulation, since it is unclear what to do next.

The single argument why is a string describing why the hart entered an unpredictable state.

Return Type .
void

Arguments

String why

E.10. unreachable (builtin)
Indicate that the IDL line should be unreachable.

If this function is called, it represents a bug in the IDL code.

Return Type
void

Arguments None

E.11. read_hpm_counter (builtin)

Returns the value of hpmcounterN.
N must be between 3..31.

hpmcounterN must be implemented.

Return Type
Bits

Arguments
Bits<5> n

E.12. hartid (builtin)

Returns the value for mhartid as seen by this hart.

Must obey the rules of the priv spec:

The mhartid CSR is an MXLEN-bit read-only register containing the integer ID of the hardware thread running the
code. This register must be readable in any implementation. Hart IDs might not necessarily be numbered

379

contiguously in a multiprocessor system, but at least one hart must have a hart ID of zero. Hart IDs must be unique
within the execution environment.

Return Type

XReg
Arguments None
E.13. read_mcycle (builtin)
Return the current value of the cycle counter.
Return Type

Bits
Arguments None
E.14. read_mtime (builtin)
Return the current value of the real time device.
Return Type

Bits
Arguments None

E.15. sw_write_mcycle (builtin)

Given a value that software is trying to write into mcycle, perform the write and return the value that will actually be written.

Return Type
Bits

Arguments
Bits<64> value

E.16. cache block zero (builtin)

Zero the cache block at the given physical address.
The cache block may be zeroed using 1 or more writes.

A cache-block-sized region is zeroed regardless of whether or not the memory is in a cacheable PMA region.

Return Type
void

Arguments
XReg cache_block_physical_address

E.17. eei_ecall from m (builtin)
When TRAP_ON_ECALL_FROM_M is false, this function will be called to emulate the EEI handling of ECALL-from-M.

If TRAP_ON_ECALL_FROM_M is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type
void

Arguments None
E.18. eei_ecall_from_s (builtin)

When TRAP_ON_ECALL_FROM_S is false, this function will be called to emulate the EEI handling of ECALL-from-S.

If TRAP_ON_ECALL_FROM_S is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

380

Return Type .
void

Arguments None

E.19. eei_ecall from_u (builtin)
When TRAP_ON_ECALL_FROM_U is false, this function will be called to emulate the EEI handling of ECALL-from-U.

If TRAP_ON_ECALL_FROM_U is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type
void

Arguments None

E.20. eel_ecall from_vs (builtin)
When TRAP_ON_ECALL_FROM_VS is false, this function will be called to emulate the EEI handling of ECALL-from-VS.

If TRAP_ON_ECALL_FROM_VS is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type
void

Arguments None

E.21. eei_ebreak (builtin)
When TRAP_ON_EBREAK is false, this function will be called to emulate the EEI handling of EBREAK

If TRAP_ON_EBREAK is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type .
void

Arguments None

E.22. memory_model_acquire (builtin)

Perform an acquire; that is, ensure that no subsequent operation in program order appears to an external observer to occur after the operation
calling this function.

Return Type
void

Arguments None

E.23. memory_model_release (builtin)

Perform a release; that is, ensure that no prior store in program order can be observed external to this hart after this function returns.

Return Type .
void

Arguments None

E.24. assert (builtin)

Assert that a condition is true. Failure represents an error in the IDL model.

Return Type
void

Arguments
Boolean test, String message

381

E.25. notify_mode_change (builtin)

Called whenever the privilege mode changes. Downstream tools can use this to hook events.

Return Type .
void

Arguments

PrivilegeMode new_mode, PrivilegeMode old_mode

E.26. abort_current_instruction (builtin)

Abort the current instruction, and start refetching from $pc.

Return Type
void

Arguments None

E.27. ebreak (builtin)

Raise an Environment Break exception, returning control to the debug environment.

Return Type
void

Arguments None

E.28. prefetch_instruction (builtin)

Hint to prefetch a block containing virtual_address for an upcoming fetch.

Return Type .
void

Arguments
XReg virtual_address

E.29. prefetch_read (builtin)

Hint to prefetch a block containing virtual_address for an upcoming load.

Return Type .
void

Arguments
XReg virtual_address

E.30. prefetch_write (builtin)

Hint to prefetch a block containing virtual_address for an upcoming store.

Return Type
void

Arguments
XReg virtual_address

E.31. fence (builtin)

Execute a memory ordering fence.(according to the FENCE instruction).

Return Type
void

382

Arguments

Boolean pi, Boolean pr, Boolean po, Boolean pw, Boolean si, Boolean sr, Boolean so,

Boolean sw

E.32. fence tso (builtin)

Execute a TSO memory ordering fence.(according to the FENCE instruction).

Return Type
void

Arguments None

E.33. ifence (builtin)

Execute a memory ordering instruction fence (according to FENCE.I).

Return Type .
void

Arguments None

E.34. pause (builtin)

Pause hart retirement for a implementation-defined period of time, which may be zero.

See Zihintpause for more.

Return Type

void
Arguments None
E.35. pow (generated)
Return value to the power exponent.
Return Type

XReg
Arguments

XReg value, XReg exponent

E.36. maybe_cache_translation (generated)

Given a translation result, potentially cache the result for later use. This function models a TLB fill operation. A valid implementation does nothing.

Return Type
void

Arguments

XReg vaddr, MemoryOperation op, TranslationResult result

E.37. cached_translation (generated)

Possibly returns a cached translation result matching vaddr.

CachedTranslationResult contains a Boolean 'valid' field. If valid, 'result’ is a usable translation. Otherwise, the cache lookup failed.

Return Type
CachedTranslationResult

Arguments
XReg vaddr, MemoryOperation op

383

E.38. order_pgtbl_writes_before_vmafence (builtin)

Orders all writes prior to this call in global memory order that affect a page table in the set identified by order_type before any subsequent
sfence.vma/hfence.vma/sinval.vma/hinval.gvma/hinval.vvma in program order.

Performs the ordering function of SFENCE.VMA/HFENCE.[GV]VMA/SFENCE.W.INVAL.

A valid implementation does nothing if address caching is not used.

Return Type .
void

Arguments
VmaOrderType order_type

E.39. order_pgtbl_reads_after_ vmafence (builtin)

Orders all reads after to this call in global memory order to a page table in the set identified by order_type after any prior
sfence.vma/hfence.vma/sinval.vma/hinval.gvma/hinval.vvma in program order.

Performs the ordering function of SFENCE.VMA/HFENCE.[GV]VMA/SFENCE.INVALL.IR.

A valid implementation does nothing if address caching is not used.

Return Type
void

Arguments
VmaOrderType order_type

E.40. invalidate_translations (generated)
Locally invalidate the cached S-mode/VS-mode/G-stage address translations contained in the set identified by inval_type.

A valid implementation does nothing if address caching is not used.

Return Type .
void

Arguments
VmaOrderType inval_type

E.41. read_physical_memory

Read from physical memory.

Return Type
Bits<len>
Arguments
XReg paddr
if (len == 8) {

return read_physical_memory_8(paddr);
} else if (len == 16) {

return read_physical_memory_16(paddr);
} else if (len == 32) {

return read_physical_memory_32(paddr);
} else if (len == 64) {

return read_physical_memory_64(paddr);
} else {

assert(false, "Invalid len");

}

E.42. read_physical_memory_8 (builtin)

Read a byte from physical memory.

384

Return Type
Bits®

Arguments

XReg paddr

E.43. read_physical_memory_16 (builtin)

Read two bytes from physical memory.

Return Type
Bits®

Arguments
XReg paddr

E.44. read_physical_memory_32 (builtin)

Read four bytes from physical memory.

Return Type
Bits

Arguments
XReg paddr

E.45. read_physical_memory_64 (builtin)

Read eight bytes from physical memory.

Return Type .
Bits

Arguments
XReg paddr

E.46. write_physical_memory

Write to physical memory.
Return Type
void
Arguments
XReg paddr, Bits<len> value
if (len == 8) {

write_physical_memory_8(paddr, value);
} else if (len == 16) {

write_physical_memory_16(paddr, value);
} else if (len == 32) {

write_physical_memory_32(paddr, value);
} else if (len == 64) {

write_physical_memory_64(paddr, value);
} else {

assert(false, "Invalid len");

}

E.47. write_physical_memory_8 (builtin)

Write a byte to physical memory.

Return Type .
void

385

Arguments
XReg paddr, Bits<8> value

E.48. write_physical_memory_16 (builtin)

Write two bytes to physical memory.

Return Type .
void

Arguments
XReg paddr, Bits<16> value

E.49. write_physical_memory_32 (builtin)

Write four bytes to physical memory.

Return Type .
void

Arguments
XReg paddr, Bits<32> value

E.50. write_physical_memory_64 (builtin)
Write eight bytes to physical memory.

Return Type
void

Arguments
XReg paddr, Bits<64> value

E.51. wfi (builtin)

Wait-for-interrupt: hint that the processor should enter a low power state until the next interrupt.
A valid implementation is a no-op.

The model will advance the PC; this function does not need to.

Return Type .
void

Arguments None

E.52. pma_applies? (builtin)
Checks if attr is applied to the entire physical address region between [paddr, paddr + len) based on static PMA attributes.

Return Type
Boolean

Arguments
PmaAttribute attr, Bits<PHYS_ADDR_WIDTH> paddr, U32 len

E.53. atomic_check _then write 32 (builtin)

Atomically:

* Reads 32-bits from paddr
* Compares the read value to compare_value

» Writes write_value to paddr if the comparison was bitwise-equal
returns true if the write occurs, and false otherwise

Preconditions:

386

* paddr will be aligned to 32-bits

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, Bits<32>

write value

E.54. atomic_check then write 64 (builtin)

Atomically:

* Reads 64-bits from paddr
* Compares the read value to compare_value

» Writes write_value to paddr if the comparison was bitwise-equal
returns true if the write occurs, and false otherwise
Preconditions:

* paddr will be aligned to 64-bits

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, Bits<64>

write_value

E.55. atomically_set_pte_a (builtin)
Atomically:

* Reads the pte_len value at pte_addr
o If the read value does not exactly equal pte_value, returns false
* Sets the 'A' bit and writes the result to pte_addr

e return true
Preconditions:

» pte_addr will be aligned to 64-bits

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> pte_addr, Bits<MXLEN>

pte_len

E.56. atomically_set_pte_a_d (builtin)
Atomically:

* Reads the pte_len value at pte_addr
o If the read value does not exactly equal pte_value, returns false
 Sets the 'A" and 'D' bits and writes the result to pte_addr

e return true
Preconditions:

» pte_addr will be aligned to 64-bits

Return Type
Boolean

compare_value, Bits<32>

compare_value, Bits<64>

pte_value, U32

387

Arguments
Bits<PHYS_ADDR_WIDTH> pte_addr, Bits<MXLEN> pte_value, U32

pte_len

E.57. atomic_read_modify_write_32 (builtin)

Atomically read-modify-write 32-bits starting at phys_address using value and op.
Return the original (unmodified) read value.

All access checks/alignment checks/etc. should be done before calling this function; it’s assumed the RMW is OK to proceed.

Return Type
Bits

Arguments
Bits<PHYS_ADDR_WIDTH> phys_addr, Bits<32> value, AmoOperation
op

E.58. atomic_read_modify_write_64 (builtin)

Atomically read-modify-write 64-bits starting at phys_address using value and op.
Return the original (unmodified) read value.

All access checks/alignment checks/etc. should be done before calling this function; it’s assumed the RMW is OK to proceed.

Return Type
Bits
Arguments
Bits<PHYS_ADDR_WIDTH> phys_addr, Bits<64> value, AmoOperation
op
E.59. set_external_interrupt
Set an external interrupt targeting target_mode
Return Type
void
Arguments

PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
CSR[mip].MEIP = 1'b1;

} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
pending_smode_external_interrupt = true;

} else if ((CSR[misa].H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
CSR[mip].VSEIP = 1'b1;

} else {
assert(false, "Invalid target_mode");

}

refresh_pending_interrupts();

E.60. clear_external_interrupt

Clear an external interrupt targeting target_mode

Return Type
void

Arguments .
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
CSR[mip].MEIP = 1'b@;

388

} else if ((CSR[misal.S == 1'b1) && (target_mode == PrivilegeMode::S)) {
pending_smode_external_interrupt = false;

} else if ((CSR[misa]l.H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
CSR[mip].VSEIP = 1'b0;

} else {
assert(false, "Invalid target_mode");

}

refresh_pending_interrupts();

E.61. set_software_interrupt

Set a software interrupt targeting target_mode

Return Type .
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
CSR[mip].MSIP = 1'b1;

} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
CSR[mip].SSIP = 1'b1;

} else {
assert(false, "Invalid target_mode");

}

refresh_pending_interrupts();

E.62. clear_software_interrupt

Clear a software interrupt targeting target_mode

Return Type .
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
CSR[mip].MSIP = 1'b0;

} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
CSR[mip].SSIP = 1'b0;

} else {
assert(false, "Invalid target_mode");

}

refresh_pending_interrupts();

E.63. set_timer_interrupt

Set a timer interrupt from the platform targeting target_mode

Return Type .
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
CSR[mip].MTIP = 1'b1;

} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
CSR[mip].STIP = 1'b1;

} else if ((CSR[misa].H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
pending_vsmode_timer_interrupt = true;

} else {
assert(false, "Invalid target_mode");

}

389

refresh_pending_interrupts();

E.64. clear_timer_interrupt

Set a timer interrupt from the platform targeting target_mode

Return Type .
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
CSR[mip].MTIP = 1'b0;

} else if ((CSR[misa]l.S == 1'b1) && (target_mode == PrivilegeMode::S)) {
CSR[mip].STIP = 1'b0;

} else if ((CSR[misa].H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
pending_vsmode_timer_interrupt = false;

} else {
assert(false, "Invalid target_mode");

}

refresh_pending_interrupts();

E.65. refresh_pending_interrupts

refreshes the calculation of a pending interrupt

needs to be called after any state update that could change a pending interrupt. This includes: - CSR[mip] - CSR[mie] - CSR[mstatus].MIE -
CSR[mstatus].SIE - CSR[vsstatus].SIE - CSR[mideleg] - CSR[sideleg] - CSR[hideleg] - CSR[hvip] - CSR[hgeip] - CSR[hgeie] - mode changes

Return Type
void

Arguments None

Bits<MXLEN> pending_ints = CSR[CSR[mip]].sw_read() & $bits(CSR[CSR[mie]]);
if (pending_ints == @) {

pending_and_enabled_interrupts = 0;

return ;

}

Boolean HAS_MIDELEG = implemented_version?(ExtensionName::S, "<= 1.9.1") || (implemented_version?(ExtensionName::S, "> 1.9.1") &&
implemented_version?(ExtensionName::Sm, "> 1.9.1"));
Bits<MXLEN> mmode_enabled_ints = mode() == PrivilegeMode::M) && (CSR[mstatus].MIE == 1'b@ ? @ : ($bits(CSR[CSR[mie]]) &
(HAS_MIDELEG ? ~$bits(CSR[CSR[mideleg]]) : ~MXLEN'Q));
Bits<MXLEN> mmode_pending_and_enabled = pending_ints & mmode_enabled_ints;
if (mmode_pending_and_enabled != @) {
pending_and_enabled_interrupts = mmode_pending_and_enabled;
return ;
}
if (CSR[misa].S == 1'b1) {
Bits<MXLEN> smode_enabled_ints = mode() == PrivilegeMode::M) || (CSR[mstatus].SIE == 1'b@ ? @ : $bits(CSR[CSR[mie]]) &
($bits(CSR[CSR[mideleg]]));
Bits<MXLEN> smode_pending_and_enabled = pending_ints & smode_enabled_ints;
if (smode_pending_and_enabled != @) {
pending_and_enabled_interrupts = smode_pending_and_enabled;
return ;
}
}

pending_and_enabled_interrupts = 0;

E.66. highest_priority_interrupt

Given a bitmask of interrupts in the format of MIE/MIP, return the highest priority interrupt code that is set

Interrupt priority is: MEI, MSI, MTI, SEI, SSI, STI, SGEI, VSEI, VSSI, VSTI, LCOFI

Return Type
InterruptCode

390

Arguments
Bits<MXLEN> int_mask

if (int_mask[$bits(InterruptCode::MachineExternal)] == 1'b1) {
return InterruptCode::MachineExternal;
} else if (int_mask[$bits(InterruptCode::MachineSoftware)] == 1'b1) {
return InterruptCode::MachineSoftware;
} else if (int_mask[$bits(InterruptCode::MachineTimer)] == 1'b1) {
return InterruptCode::MachineTimer;
} else if (CSR[misal.S == 1'b1) {
if (int_mask[$bits(InterruptCode::SupervisorExternal)] == 1'b1) {
return InterruptCode::SupervisorExternal;
} else if (int_mask[$bits(InterruptCode::SupervisorSoftware)] == 1'b1) {
return InterruptCode::SupervisorSoftware;
} else if (int_mask[$bits(InterruptCode::SupervisorTimer)] == 1'b1) {
return InterruptCode::SupervisorTimer;
by
} else if (implemented?(ExtensionName::Sscofpmf)) {
if (int_mask[$bits(InterruptCode::LocalCounterOverflow)] == 1'b1) {
return InterruptCode::LocalCounterOverflow;
}
}

assert(false, "There is no valid interrupt");

E.67. choose_interrupt

Return the highest priority interrupt that is both pending and enabled and the mode it will be taken in

Return Type
InterruptCode, PrivilegeMode

Arguments None

InterruptCode chosen;
Boolean HAS_MIDELEG = implemented_version?(ExtensionName::S, "<= 1.9.1") || (implemented_version?(ExtensionName::S, "> 1.9.1") &&
implemented_version?(ExtensionName::Sm, "> 1.9.1"));
Bits<MXLEN> mmode_pending_and_enabled = pending_and_enabled_interrupts & ~(HAS_MIDELEG ? $bits(CSR[CSR[mideleg]]) : MXLEN'Q);
if (mmode_pending_and_enabled != @) {
assert((mode() != PrivilegeMode::M) || (CSR[mstatus].MIE == 1'b1), "M-mode interrupts are not enabled");
chosen = highest_priority_interrupt(mmode_pending_and_enabled);
} else if (CSR[misal.S == 1'b1) {
Bits<MXLEN> smode_pending_and_enabled = (pending_and_enabled_interrupts & $bits(CSR[CSR[mideleg]]));
if (smode_pending_and_enabled != @) {
assert((mode() == PrivilegeMode::U) || (mode() == PrivilegeMode::VU) || (mode() == PrivilegeMode::VS) || (mode() ==
PrivilegeMode::S) && (CSR[mstatus].SIE == 1'b1), "S-mode interrupt can't be triggered");
chosen = highest_priority_interrupt(smode_pending_and_enabled);
}
}
assert($bits(chosen) != @, "Didn't pick interrupt?");
PrivilegeMode to_mode;
Bits<MXLEN> chosen_mask = (MXLEN'1 << $bits(chosen));
if (((HAS_MIDELEG ? $bits(CSR[CSR[mideleg]]) : MXLEN'@) & chosen_mask) == 0) {
to_mode = PrivilegeMode::M;
} else {
if (CSR[misa].S == 1'b1) {
to_mode = PrivilegeMode::S;
} else {
to_mode = PrivilegeMode::U;
}
}

return chosen, to_mode;

E.68. take_interrupt

Take (adjust CSRs and set PC to handler) the highest priority interrupt that is both pending and enabled

Return Type .
void

391

Arguments None

PrivilegeMode to_mode;
InterruptCode code;
(code, to_mode = choose_interrupt());
if (to_mode == PrivilegeMode::M) {
CSR[mepc].PC = $pc;
CSR[mstatus].MPP = $bits(mode())[1:0];
if (CSR[misa].H == 1'b1) {
if (MXLEN == 64) {
CSR[mstatus].MPV = $bits(mode())[2];

} else {

CSR[mstatush].MPV = $bits(mode())[2];
}
CSR[mtval2].VALUE = 0;
CSR[mtinst].VALUE = 0;

}
CSR[mcause].CODE = $bits(code);
CSR[mcause].INT = 1'b1;
CSR[mtval].VALUE = @;
if (CSR[mtvec].MODE == @) {
$pc = {CSR[mtvec].BASE, 2'b00};
} else if (CSR[mtvec].MODE == 1'b1) {
$pc = {CSR[mtvec].BASE, 2'b00} + ($bits(code) * 4);
}
} else if ((CSR[misa].S == 1'b1) && (to_mode == PrivilegeMode::S)) {
CSR[sepc].PC = $pc;
CSR[mstatus].SPP = $bits(mode())[0];
if (CSR[misa].H == 1'b1) {
CSR[hstatus].SPV = $bits(mode())[2];
}
CSR[scause].CODE = $bits(code);
CSR[scause].INT = 1'b1;
CSR[stval].VALUE = @;
if (CSR[stvec].MODE == 0) {
$pc = {CSR[stvec].BASE, 2'b0@};
} else if (CSR[stvec].MODE == 1'b1) {
$pc = {CSR[stvec].BASE, 2'b00} + ($bits(code) * 4);
}
} else if ((CSR[misa]l.H == 1'b1) && (to_mode == PrivilegeMode::VS)) {
CSR[vsepc].PC = $pc;
CSR[vsstatus].SPP = $bits(mode())[0];
CSR[vscause].CODE = $bits(code);
CSR[vscause].INT = 1'b1;
CSR[vstval].VALUE = 0;
if (CSR[vstvec].MODE == @) {
$pc = {CSR[vstvec].BASE, 2'b00};
} else if (CSR[vstvec].MODE == 1'b1) {
$pc = {CSR[vstvec].BASE, 2'b00} + ($bits(code) * 4);
}
}

set_mode_no_refresh(to_mode);

E.69. fetch_memory_aligned_16

Fetch 16 bits from virtual memory using a known aligned address.

Return Type
Bits®

Arguments
XReg virtual_address

TranslationResult result;
if (CSR[misa].S == 1) {

result = translate(virtual_address, MemoryOperation::Fetch, mode(), virtual_address);
} else {

result.paddr = virtual_address;

}

access_check(result.paddr, 16, virtual_address, MemoryOperation::Fetch, ExceptionCode::InstructionAccessFault, mode());

392

return read_physical_memory<16>(result.paddr);

E.70. fetch_memory_aligned_32

Fetch 32 bits from virtual memory using a known aligned address.

Return Type
Bits

Arguments
XReg virtual_address

TranslationResult result;
if (CSR[misa].S == 1) {

result = translate(virtual_address, MemoryOperation::Fetch, mode(), virtual_address);
} else {

result.paddr = virtual_address;

}
access_check(result.paddr, 32, virtual_address, MemoryOperation::Fetch, ExceptionCode::InstructionAccessFault, mode());
return read_physical_memory<32>(result.paddr);

E.71. power_of 2?
Returns true if value is a power of two, false otherwise

Return Type
Boolean

Arguments
Bits<N> value

return (value != 0) && value & (value - 1 == 0);

E.72. has virt mem?

Returns true if some virtual memory translation (Sv*) is supported in the config.

Return Type
Boolean
Arguments None
return implemented?(ExtensionName::Sv32) || implemented?(ExtensionName::Sv39) || implemented?(ExtensionName::Sv48) ||

implemented?(ExtensionName: :Sv57);

E.73. max_va_size
Returns the largest possible Virtual Address width in any supported translation mode.

The max VA is determined by physical address size when in M mode or S-mode with Bare translation. Otherwise, max VA is the size of a virtual
address in the largest supported Sv* mode.

Return the largest that applies.

Return Type
Bits®

Arguments None

Bits<8> translated va size = 0;

if (implemented?(ExtensionName::Sv57)) {
translated va_size = 57;

} else if (implemented?(ExtensionName::Sv48)) {
translated va_size = 48;

} else if (implemented?(ExtensionName::Sv39)) {
translated va_size = 39;

393

} else if (implemented?(ExtensionName::Sv32)) {
translated va_size = 32;

}
if (PHYS_ADDR_WIDTH > translated va_size) {
if (PHYS_ADDR_WIDTH > MXLEN) {
return MXLEN;
} else {
return PHYS_ADDR_WIDTH;

}
} else {
return translated va size;

}

E.74. highest_set_bit

Returns the position of the highest (nearest MSB) bit that is '1', or -1 if value is zero.

Return Type
Bits®

Arguments
XReg value

for (Bits<8> i = xlen() - 1; 1 >=0; i--) {
if (value[i] == 1) {
return i;

}
}

return -'sd1;

E.75. lowest_set _bit

Returns the position of the lowest (nearest LSB) bit that is '1', or XLEN if value is zero.

Return Type
Bits®

Arguments
XReg value

for (Bits<8> i = 0; i < xlen(); i++) {
if (value[i] == 1) {
return i;

}
}

return xlen();

E.76. bit_length

Returns the minimum number of bits needed to represent value.
Only works on unsigned values.

The value 0 returns 1.

Return Type
XReg

Arguments
XReg value

for (XReg i = 63; i > 0; i--) {
if (value[i] == 1) {
return i;
}
}

return 1;

394

E.77. count_leading_zeros

Returns the number of leading 0 bits before the most-significant 1 bit of value, or N if value is zero.

Return Type
Bits<bit_length(N)>

Arguments
Bits<N> value

for (U32 i =0; i < N; i++) {
if (value[N -1 -1i] ==1) {
return i;

}
}

return N;

E.78. sext

Sign extend value starting at first_extended_bit.
Bits [XLEN-1: " first_extended_bit '] of the return value should get the value of bit (first_extended bit - 1).

Return Type
XReg

Arguments
XReg value, XReg first_extended_bit

if (first_extended bit == MXLEN) {
return value;
} else {
Bits<1> sign = value[first_extended_bit - 1];
for (U32 i = MXLEN - 1; i >= first_extended bit; i--) {
value[i] = sign;
}

return value;

}

E.79. is_naturally_aligned

Checks if value is naturally aligned to N bits.

Return Type
Boolean

Arguments
XReg value

return true if (N == 8);
XReg Mask = (N / 8) - 1;
return (value & ~Mask) == value;

E.80. in_naturally_aligned_region?
Checks if a length-bit access starting at address lies entirely within an N-bit naturally-aligned region.

Return Type
Boolean

Arguments
XReg address, U32 Tlength

XReg Mask = (N / 8) - 1;
return (address & ~Mask) == ((address + length - 1) & ~Mask);

395

E.81. contains?

Given a region defined by region_start, region_size, determine if a target defined by target_start, target_size is completely contained with the region.

Return Type
Boolean

Arguments
XReg region_start, U32 region_size, XReg target_start, U32 target_size

return target_start >= region_start && (target_start + target_size) <= (region_start + region_size);

E.82. set_fp_flag

Add flag to the sticky flags bits in CSR[fcsr]

Return Type .
void

Arguments
FpFlag flag

if (flag == FpFlag::NX) {
CSR[fesr].NX = 1;

} else if (flag == FpFlag::UF) {
CSR[fesr].UF = 1;

} else if (flag == FpFlag::0F) {
CSR[fesr].0F = 1;

} else if (flag == FpFlag::DZ) {
CSR[fesr].DZ = 1;

+ else if (flag == FpFlag::NV) {
CSR[fesr].NV = 1;

}

E.83. rm_to mode

Convert rm to a RoundingMode.
encoding is the full encoding of the instruction rm comes from.

Will raise an Illegallnstruction exception if rm is a reserved encoding.

Return Type
RoundingMode

Arguments
Bits<3> rm, Bits<32> encoding

if (rm == $bits(RoundingMode::RNE)) {
return RoundingMode: :RNE;

} else if (rm == $bits(RoundingMode::RTZ)) {
return RoundingMode::RTZ;

} else if (rm == $bits(RoundingMode::RDN)) {
return RoundingMode: :RDN;

} else if (rm == $bits(RoundingMode::RUP)) {
return RoundingMode: :RUP;

} else if (rm == $bits(RoundingMode: :RMM)) {
return RoundingMode: :RMM;

} else if (rm == $bits(RoundingMode::DYN)) {
return $enum(RoundingMode, CSR[fcsr].FRM);

} else {
raise(ExceptionCode::Illegallnstruction, mode(), encoding);

}

E.84. mark _f state_dirty

Potentially updates mstatus.FS to the Dirty (3) state, depending on configuration settings.

396

Return Type .
void

Arguments None

if (HW_MSTATUS_FS_DIRTY_UPDATE == "precise") {

CSR[mstatus].FS = 3;
} else if (HW_MSTATUS_FS_DIRTY_UPDATE == "imprecise") {
unpredictable("The hart may or may not update mstatus.FS now");

}

E.85. nan_box

Produces a properly NaN-boxed floating-point value from a floating-point value of smaller size by adding all 1’s to the upper bits.

Return Type
Bits<TO_SIZE>

Arguments
Bits<FROM_SIZE> from_value

assert(FROM_SIZE < TO_SIZE, "Bad template arguments; FROM_SIZE must be less than TO_SIZE");
return {{T0_SIZE - FROM SIZE{1'b1}}, from value};

E.86. check f ok

Checks if instructions from the F extension can be executed, and, if not, raise an exception.

Return Type .
void

Arguments
Bits<INSTR_ENC_SIZE> encoding

if (MUTABLE_MISA F && CSR[misa].F == 0) {
raise(ExceptionCode::Illegallnstruction, mode(), encoding);

}
if (CSR[mstatus].FS == @) {
raise(ExceptionCode::IllegalInstruction, mode(), encoding);

}

E.87. is_sp_neg_inf?

Return true if sp_value is negative infinity.

Return Type
Boolean

Arguments
Bits<32> sp_value

return sp_value == SP_NEG_INF;

E.88. is_sp_pos_inf?

Return true if sp_value is positive infinity.

Return Type
Boolean

Arguments
Bits<32> sp_value

397

return sp_value == SP_POS_INF;

E.89. is_sp_neg norm?
Returns true if sp_value is a negative normal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 1) && (sp_value[30:23] != @b11111111) && !((sp_value[30:23] =

E.90. is_sp_pos_norm?
Returns true if sp_value is a positive normal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 0) && (sp_value[30:23] != @b11111111) && !((sp_value[30:23] =

E.91. is_sp_neg_subnorm?

Returns true if sp_value is a negative subnormal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 1) && (sp_value[30:23] == @) && (sp_value[22:0] != 0);

E.92. is_sp_pos_subnorm?

Returns true if sp_value is a positive subnormal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 0) && (sp_value[30:23] == @) && (sp_value[22:0] != 0);

E.93. is_sp_neg_zero?
Returns true if sp_value is negative zero.

Return Type
Boolean

Arguments
Bits<32> sp_value

return sp_value == SP_NEG_ZERO;

398

0b00000000) && sp_value[22:0] != 0);

= 0b00000000) && sp_value[22:0] !'= 0);

E.94. is_sp_pos_zero?
Returns true if sp_value is positive zero.

Return Type
Boolean

Arguments

Bits<32> sp_value

return sp_value == SP_POS_ZERO;

E.95. is_sp_nan?
Returns true if sp_value is a NaN (quiet or signaling)

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[30:23] == @0b11111111) && (sp_value[22:0] != 0);

E.96. is_sp_signaling nan?
Returns true if sp_value is a signaling NaN

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[30:23] == 0b11111111) && (sp_value[22] == @) && (sp_value[21:0] != 0);

E.97. is_sp_quiet_nan?
Returns true if sp_value is a quiet NaN

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[30:23] == 0b11111111) && (sp_value[22] == 1);

E.98. softfloat_shiftRightjam32

Shifts a right by the number of bits given in dist, which must not be zero. If any nonzero bits are shifted off, they are "jammed" into the least-
significant bit of the shifted value by setting the least-significant bit to 1. This shifted-and-jammed value is returned. The value of dist can be
arbitrarily large. In particular, if dist is greater than 32, the result will be either 0 or 1, depending on whether a is zero or nonzero.

Return Type
Bits

Arguments
Bits<32> a, Bits<32> dist

return (dist < 31) ? a >> dist | (a << (-dist 31 1!=0) 21 :0) : ((a'=0)?21:0);

399

E.99. softfloat_shiftRightjam64

Shifts a right by the number of bits given in dist, which must not be zero. If any nonzero bits are shifted off, they are "jammed" into the least-
significant bit of the shifted value by setting the least-significant bit to 1. This shifted-and-jammed value is returned.

The value of 'dist' can be arbitrarily large. In particular, if dist is greater than 64, the result will be either 0 or 1, depending on whether a is zero or
nonzero.

Return Type
Bits

Arguments
Bits<64> a, Bits<32> dist

return (dist < 63) ? a >> dist | (3 << (-dist 863 !=0) 21 :0) : ((a'=0)?21:0);

E.100. softfloat roundTolI32

Round to signed 32-bit integer, using rounding_mode

Return Type
Bits

Arguments
Bits<1> sign, Bits<64> sig, RoundingMode roundingMode

Bits<16> roundIncrement = 0x800;

if ((roundingMode != RoundingMode::RMM) &% (roundingMode != RoundingMode::RNE)) {
roundIncrement = 0;
if (sign == 1 ? (roundingMode == RoundingMode::RDN) : (roundingMode == RoundingMode::RUP)) {

roundIncrement = OxFFF;

}

}

Bits<16> roundBits = sig & OxFFF;

sig = sig + roundIncrement;

if ((sig & OxFFFFF00000000000) !'= @) {
set_fp_flag(FpFlag::NV);
return sign == 1 ? WORD_NEG_OVERFLOW : WORD_POS_OVERFLOW;

}

Bits<32> sig32 = sig >> 12;

if ((roundBits == 0x800 && (roundingMode == RoundingMode::RNE))) {
sig32 = sig32 & ~32'b1;

+

Bits<32> z = (sign == 1) ? -sig32 : sig32;

if ((z != 0) & $signed(z) < 's@) != (sign == 1) {
set_fp_flag(FpFlag::NV);
return sign == 1 ? WORD_NEG_OVERFLOW : WORD_POS_OVERFLOW;

}

if (roundBits != 0) {
set_fp_flag(FpFlag::NX);

}

return z;

E.101. softfloat roundToUI32

Round to unsigned 32-bit integer, using rounding_mode

Return Type
Bits

Arguments
Bits<1> sign, Bits<64> sig, RoundingMode roundingMode

Bits<16> roundIncrement = 0x800;
if ((roundingMode != RoundingMode::RMM) && (roundingMode != RoundingMode::RNE)) {
roundIncrement = 0;
if (sign == 1) {
if (sig == 0) {

400

return 0;

}

if (roundingMode == RoundingMode::RDN) {

set_fp_flag(FpFlag::NV);
}
} else {

if (roundingMode == RoundingMode::RUP) {

roundIncrement = OxFFF;
}
}

}
Bits<16> roundBits = sig & OxFFF;

sig = sig + roundIncrement;
if ((sig & OxFFFFF00000000000) !'= @) {
set_fp_flag(FpFlag::NV);

return sign == 1 7 UI32_NEG_OVERFLOW :

}
Bits<32> z = sig >> 12;

if ((roundBits == 0x800 && (roundingMode

z=12§& ~32'b1;

}

if ((z '=0) && (sign == 1)) {
set_fp_flag(FpFlag::NV);

return sign == 1 ? UI32_NEG_OVERFLOW :

}

if (roundBits !'= 0) {
set_fp_flag(FpFlag::NX);

}

return z;

E.102. packToF32UI

Pack components into a 32-bit value

Return Type

Arguments

return {sign, exp, sig};

E.103. packToF16UI

Pack components into a 16-bit value

Return Type

Arguments

return {sign, exp, sig};

UI32_POS_OVERFLOW;

== RoundingMode::RNE))) {

UI32_POS_OVERFLOW;

Bits

Bits<1> sign, Bits<8> exp, Bits<23> sig

Bits

Bits<1> sign, Bits<5> exp, Bits<10> sig

E.104. softfloat_normSubnormalF16Sig

normalize subnormal half-precision value

Return Type

Arguments

Bits<5>, Bits@0

Bits<16> hp_value

Bits<8> shift_dist = count_leading_zeros<16>(hp_value);

return 1 - shift_dist, hp_value << shift_dist;

401

E.105. softfloat roundPackToF32

Round FP value according to mdode and then pack it in IEEE format.

Return Type .
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

Bits<8> roundIncrement = 0x40;
if ((mode != RoundingMode::RNE) && (mode != RoundingMode::RMM)) {
roundIncrement = (mode == sign != @) ? RoundingMode::RDN : RoundingMode::RUP ? Ox7F : 0;
}
Bits<8> roundBits = sig & Ox7f;
if (OxFD <= exp) {
if ($signed(exp) < 's@) {
Boolean isTiny = ($signed(exp) < -8's1) || (sig + roundIncrement < 0x80000000);
sig = softfloat_shiftRightJam32(sig, -exp);
exp = 0;
roundBits = sig & Ox7F;
if (isTiny && (roundBits != 0)) {
set_fp_flag(FpFlag::UF);
}
} else if ('shFD < $signed(exp) || (0x80000000 <= sig + roundIncrement)) {
set_fp_flag(FpFlag::0F);
set_fp_flag(FpFlag::NX);
return packToF32UI(sign, OxFF, @) - roundIncrement == @) ? 1 : 0); } } sig = (sig + roundIncrement);
if (sig == 0) {
exp = 0;
}
return packToF32UI(sign, exp, sig);

E.106. softfloat normRoundPackToF32

Normalize, round, and pack into a 32-bit floating point value

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

Bits<8> shiftDist = count_leading_zeros<32>(sig) - 1;
exp = exp - shiftDist;
if ((7 <= shiftDist) && (exp < OxFD)) {
return packToF32UI(sign, (sig != @) ? exp : 0, sig << (shiftDist - 7));

} else {
return softfloat_roundPackToF32(sign, exp, sig << shiftDist, mode);
ks
E.107. signF32UlI
Extract sign-bit of a 32-bit floating point number
Return Type
Bits®
Arguments
Bits<32> a

return a[31];

E.108. expF32UI

Extract exponent of a 32-bit floating point number

402

Return Type
Bits®

Arguments
Bits<32> a

return a[30:23];

E.109. fracF32UI

Extract significand of a 32-bit floating point number

Return Type
Bits

Arguments
Bits<32> a

return a[22:0];

E.110. returnNonSignalingNaN

Returns a non-signalling NaN version of the floating-point number Does not modify the input

Return Type
U32
Arguments
U32 a
U32 a_copy = a;
a_copy[22] = 1'b1;

return a_copy;

E.111. returnMag

Returns magnitude of the given number Does not modify the input

Return Type
u32

Arguments
U32 a

U32 a_copy = a;
a_copy[31] = 1'b0;
return a_copy;

E.112. returnLargerMag

Returns the larger number between a and b by magnitude If either number is signaling NaN then that is made quiet

Return Type
U32
Arguments
U32 a, U32 b
U32 mag_a = returnMag(a);
U32 mag_b = returnMag(b);

U32 nonsig_a = returnNonSignalingNaN(a);
U32 nonsig_b = returnNonSignalingNaN(b);
if (mag_a < mag_b) {

403

return nonsig_b;

}
if (mag_b < mag_a) {
return nonsig_a;

}

return (nonsig_a < nonsig_b) ? nonsig_a : nonsig_b;

E.113. softfloat_propagateNaNF32UI

Interpreting 'a' and 'b' as the bit patterns of two 32-bit floating- | point values, at least one of which is a NaN, returns the bit pattern of | the
combined NaN result. If either 'a' or 'b' has the pattern of a | signaling NaN, the invalid exception is raised.

Return Type
u32

Arguments
U32 a, U32 b

Boolean isSigNaN_a = is_sp_signaling_nan?(a);

Boolean isSigNaN_b = is_sp_signaling_nan?(b);

if (isSigNaN_a || isSigNaN_b) {
set_fp_flag(FpFlag::NV);

}

return SP_CANONICAL_NAN;

E.114. softfloat_addMagsF32

Returns sum of the magnitudes of 2 floating point numbers

Return Type
u32

Arguments
U32 a, U32 b, RoundingMode mode

Bits<8> expA = expF32UI(a);
Bits<23> sigA = fracF32UI(a);
Bits<8> expB = expF32UI(b);
Bits<23> sigB = fracF32UI(b);
U32 sigZ;
U32 z;
Bits<1> signZ;
Bits<8> expZ;
Bits<8> expDiff = expA - expB;
if (expDiff == 8'd0) {
if (expA == 8'd0) {
Z=a+b;
return z;
}
if (expA == 8'hFF) {
if ((sigA !=8'd0) || (sigB !'=8'd0)) {
return softfloat_propagateNaNF32UI(a, b);
}
return a;
}
signZ = signF32UI(a);
expZ = expA;
sigZ = 32'h01000000 + sigA + sigB;
if (sigZ & 0x1) == 0) && (expZ < 8'hFE {
sigZ = sigZ >> 1;
return (32'h@ + (signZ << 31) + (expZ << 23) + sigl);
}
sigl = sigl << b;
} else {
signZ = signF32UI(a);
U32 sigA_32 = 32'h@ + (sigA << 6);
U32 sigB_32 = 32'h@ + (sigA << 6);
if (expDiff < 0) {
if (expB == 8'hFF) {
if (sigB !'=0) {

404

return softfloat_propagateNaNF32UI(a, b);
}
return packToF32UI(signZ, 8'hFF, 23'h0);
}
expZ = expB;
SsigA_32 = (expA == 0) ? 2 * sigA_32 : (sigA_32 + 0x20000000);
sigA_32 = softfloat_shiftRightJam32(sigA_32, (32'h@ - expDiff));
} else {
if (expA == 8'hFF) {
if (sigA !=0) {
return softfloat_propagateNaNF32UI(a, b);

¥

return a;
}
expl = expA;

sigB_32 = (expB == 0) ? 2 * sigB_32 : (sigB_32 + 0x20000000);
sigB_32 = softfloat_shiftRightJam32(sigB_32, (32'h@ + expDiff));
}
U32 sigZ = 0x20000000 + sigA + sigB;
if (sigZ < 0x40000000) {
expZ = expZ - 1;
sigl = sigl << 1;
}

}
return softfloat_roundPackToF32(signZ, expZ, sigZ[22:0], mode);

E.115. softfloat_subMagsF32

Returns difference of the magnitudes of 2 floating point numbers

Return Type
u32

Arguments
U32 a, U32 b, RoundingMode mode

Bits<8> expA = expF32UI(a);
Bits<23> sigA = fracF32UI(a);
Bits<8> expB = expF32UI(b);
Bits<23> sigB = fracF32UI(b);
U32 sigZ;
U32 z;
Bits<1> signZ;
Bits<8> expZ;
U32 sigDiff;
U32 sigX;
U32 sigY;
U32 sigA_32;
U32 sigB_32;
Bits<8> shiftDist;
Bits<8> expDiff = expA - expB;
if (expDiff == 8'd0) {
if (expA == 8'hFF) {
if ((sigA !=8'd0) || (sigB !=8'd0)) {
return softfloat_propagateNaNF32UI(a, b);
}
return a;
}
sigDiff = sigA - sigB;
if (sigDiff == 0) {
return packToF32UI(((mode == RoundingMode::RDN) ? 1 : @), @, 0);
}
if (expA !'=0) {
expA = expA - 1;
}
signZ = signF32UI(a);
if (sigDiff < @) {
signZ = ~signZ;
sigDiff = -32'sh1 * sigDiff;
}
shiftDist = count_leading_zeros<32>(sigDiff) - 8;
expZ = expA - shiftDist;

405

if (expZ < 0) {
shiftDist = expA;

expZ = 0;
}
return packToF32UI(signZ, expZ, sigDiff << shiftDist);
} else {

signZ = signF32UI(a);
sigA_32 = 32'h0 + (sigA << 7);
sigB_32 = 32'h0 + (sigB << 7);
if (expDiff < 0) {

signZ = ~signZ;

if (expB == OxFF) {

if (sigB_32 !=0) {
return softfloat_propagateNaNF32UI(a, b);

}

return packToF32UI(signZ, expB, 0);
}
expZ = expB - 1;
sigX = sigB_32 | 0x40000000;

sigY = sigA_32 + ((expA != 0) ? 0x40000000 : sigA_32);
expDiff = -expDiff;
} else {
if (expA == OxFF) {
if (sigA_32 1= 0) {
return softfloat_propagateNaNF32UI(a, b);

}
return a;
}
expZ = expA - 1;
sigX = sigA_32 | 0x40000000;
sigY = sigB_32 + ((expB != @) ? 0x40000000 : sigB_32);

}
return softfloat_normRoundPackToF32(signZ, expZ, sigX - softfloat_shiftRightJam32(sigY, expDiff), mode);

}

E.116. £32_add

Returns sum of 2 floating point numbers

Return Type
u32

Arguments
U32 a, U32 b, RoundingMode mode

U32 a_xor b = a /A b;
if (signF32UI(a_xor_b) == 1) {

return softfloat_subMagsF32(a, b, mode);
} else {

return softfloat_addMagsF32(a, b, mode);
}

E.117. £32 sub

Returns difference of 2 floating point numbers

Return Type
u32

Arguments
U32 a, U32 b, RoundingMode mode

U32 a_xor b = a /A b;
if (signF32UI(a_xor_b) == 1) {

return softfloat_addMagsF32(a, b, mode);
} else {

return softfloat_subMagsF32(a, b, mode);
}

406

E.118.132_to_f32

Converts 32-bit signed integer to 32-bit floating point number

Return Type
u32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = a[31];
if ((a & Ox7FFFFFFF) == 0) {
return (sign == 1) ? packToF32UI(1, 0x9E, @) : packToF32UI(@, @, 0);
ks
U32 magnitude_of_A = returnMag(a);
return softfloat_normRoundPackToF32(sign, @x9C, magnitude_of_A, mode);

E.119. ui32_to_f32

Converts 32-bit unsigned integer to 32-bit floating point number

Return Type
U32
Arguments
U32 a, RoundingMode mode
if (a ==0) {
return a;
+

if (a[31] == 1) {

return softfloat_roundPackToF32(@, 0x9D, a >> 1 | (a & 1), mode);
} else {

return softfloat_normRoundPackToF32(@, 0x9C, a, mode);
}

E.120. f32_to_132

Converts 32-bit floating point number to a signed 32-bit integer

Return Type
u32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = signF32UI(a);

Bits<8> exp = expF32UI(a);

Bits<23> sig = fracF32UI(a);

Bits<8> shiftDist;

Ub4 sigb4;

if ((exp == 8'hFF) && (sig !=0)) {
sign = 0;
set_fp_flag(FpFlag::NV);
return I32_NAN;

}
if (exp !'=0) {

sig = sig | 32'h00800000;
}

sigbd = sig ‘<< 32;
shiftDist = 8'hAA - exp;
if (shiftDist > 0) {
sigb4 = softfloat_shiftRightJam64(sigb4, shiftDist);

+
return softfloat_roundToI32(sign, sigb4, mode);

407

E.121. £32_to_ui32

Converts 32-bit floating point number to an unsigned 32-bit integer

Return Type
u32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = signF32UI(a);

Bits<8> exp = expF32UI(a);

Bits<23> sig = fracF32UI(a);

Bits<8> shiftDist;

Ub4 sigb4;

if ((exp == 8'hFF) && (sig !=0)) {
sign = 0;
set_fp_flag(FpFlag::NV);
return UI32_NAN;

}
if (exp !'=0) {

sig = sig | 32'h00800000;
}

sigbd = sig ‘<< 32;
shiftDist = 8'hAA - exp;
if (shiftDist > 0) {
sigb4 = softfloat_shiftRightJam64(sigb4, shiftDist);

+
return softfloat_roundToUI32(sign, sigb4, mode);

E.122. softfloat_roundPackToF32_no_flag

Round FP value according to mdode and then pack it in IEEE format. No flags to be set

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

Bits<8> roundIncrement = 0x40;
if ((mode != RoundingMode::RNE) && (mode != RoundingMode::RMM)) {
roundIncrement = (mode == sign != @) ? RoundingMode::RDN : RoundingMode::RUP ? Ox7F : 0;
}
Bits<8> roundBits = sig & Ox7f;
if (OxFD <= exp) {
if ($signed(exp) < 's0@) {
Boolean isTiny = ($signed(exp) < -8's1) || (sig + roundIncrement < 0x80000000);
sig = softfloat_shiftRightJam32(sig, -exp);
exp = 0;
roundBits = sig & Ox7F;
} else if ('shFD < $signed(exp) || (0x80000000 <= sig + roundIncrement)) {
return packToF32UI(sign, OxFF, @) - roundIncrement == @) ? 1 : 0); } } sig = (sig + roundIncrement);
if (sig == 0) {
exp = 0;
}
return packToF32UI(sign, exp, sig);

E.123. softfloat_normRoundPackToF32_no_flag

Normalize, round, and pack into a 32-bit floating point value No flags to be set

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

408

Bits<8> shiftDist = count_leading_zeros<32>(sig) - 1;
exp = exp - shiftDist;
if ((7 <= shiftDist) && (exp < 0xFD)) {

return packToF32UI(sign, (sig != @) ? exp : 0, sig << (shiftDist - 7));

} else {

return softfloat_roundPackToF32_no_flag(sign, exp, sig << shiftDist, mode);

}

E.124.132_to_f32_no_flag
Converts 32-bit signed integer to 32-bit floating point number No flags to be set

Return Type
U32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = a[31];
if ((a & OXTFFFFFFF) == 0) {
return (sign == 1) ? packToF32UI(1, @x9E, @) : packToF32UI(@, @, 0);
}
U32 magnitude_of_A = returnMag(a);

return softfloat_normRoundPackToF32_no_flag(sign, @x9C, magnitude_of_A, mode);

E.125. softfloat_roundTolI32_no_flag

Round to signed 32-bit integer, using rounding_mode No flag to be set

Return Type
Bits

Arguments

Bits<1> sign, Bits<64> sig, RoundingMode roundingMode

Bits<16> roundIncrement = 0x800;

if ((roundingMode != RoundingMode::RMM) && (roundingMode != RoundingMode::RNE)) {

roundIncrement = 0;

if (sign == 1 ? (roundingMode == RoundingMode::RDN) : (roundingMode
roundIncrement = OxFFF;

}

+
Bits<16> roundBits = sig & OxFFF;

sig = sig + roundIncrement;
if ((sig & OxFFFFFO0000000000) !'= @) {
return sign == 1 ? WORD_NEG_OVERFLOW : WORD_POS_OVERFLOW;
}
Bits<32> sig32 = sig >> 12;
if ((roundBits == 0x800 && (roundingMode == RoundingMode::RNE))) {
sig32 = sig32 & ~32'b1;
}
Bits<32> z = (sign == 1) ? -sig32 : sig32;
if ((z != 0) & $signed(z) < 's@) != (sign == 1) {
return sign == 1 ? WORD_NEG_OVERFLOW : WORD_PQS_OVERFLOW;
}

return z;

E.126. f32_to_i32_no_flag

Converts 32-bit floating point number to a signed 32-bit integer No flags to be set

Return Type
u32

Arguments
U32 a, RoundingMode mode

RoundingMode: :RUP)) {

409

Bits<1> sign = signF32UI(a);
Bits<8> exp = expF32UI(a);
Bits<23> sig = fracF32UI(a);
Bits<8> shiftDist;

Ub4 sigb4;

if ((exp == 8'hFF) && (sig !=0)) {
sign = 0;
return I32 _NAN;

}

if (exp !'=0) {
sig = sig | 32'h00800000;

}

sigbd = sig ‘<< 32;
shiftDist = 8'hAA - exp;
if (shiftDist > 0) {
sigb4 = softfloat_shiftRightJam64(sigb4, shiftDist);

}
return softfloat_roundToI32_no_flag(sign, sigb4, mode);

E.127. round_f32_to_integral

Rounds 32-bit floating point number to a signed 32-bit integer. This 32-bit integer is represented as a floating point number and returned.

Return Type
u32

Arguments
U32 a, RoundingMode mode

if ((is_sp_neg_inf?(a)) || (is_sp_pos_inf?(a)) || (is_sp_pos_zero?(a)) || (is_sp_neg_zero?(a))) {
return a;

} else if (is_sp_signaling_nan?(a)) {
set_fp_flag(FpFlag::NV);
return a;

}

U32 intermediate;

intermediate = 32 _to_i32_no_flag(a, mode);

return i32_to_f32_no_flag(intermediate, mode);

E.128. vector_state

Get the current vector state from CSRs

Return Type
VectorState

Arguments None

VectorState state;
state.log2_sew = 3 + CSR[vtype].VSEW;
state.sew = 7'b1 << state.log2_sew;
Bits<3> vimul = CSR[vtype].VLMUL;
state.lmul_type = CSR[vtype].VLMUL[2] == 1'b1 ? VectorLmulType::Divide : VectorLmulType::Multiply;
state.log2_1lmul = CSR[vtype].VLMUL[1:0];
if (vimul == 3'b101) {
state.log2_lmul = 3;
} else if (vlimul == 3'b110) {
state.log2_lmul = 2;
} else if (vimul == 3'b111) {
state.log2_lmul = 1;
} else if (vimul == 3'b100) {
unpredictable("VLMUL value 0b100 is reserved");
}

return state;

E.129. mode

Returns the current active privilege mode.

410

Return Type
PrivilegeMode

Arguments None

if ((Yimplemented?(ExtensionName::S)) && (!implemented?(ExtensionName::U)) && (!implemented?(ExtensionName::H))) {

return PrivilegeMode::M;
} else {
return current_mode;

}

E.130. set mode no refresh

Set the current privilege mode to new_mode, but don’t refresh interrupts

Return Type
void

Arguments
PrivilegeMode new_mode

if (new_mode != current_mode) {
notify_mode_change(new_mode, current_mode);
current_mode = new_mode;

}

E.131. set. mode

Set the current privilege mode to new_mode

Return Type
void

Arguments
PrivilegeMode new_mode

if (new_mode != current_mode) {
notify_mode_change(new_mode, current_mode);
current_mode = new_mode;
refresh_pending_interrupts();

}

E.132. compatible_mode?

Returns true if target_mode is more privileged than actual_mode.

Return Type
Boolean

Arguments
PrivilegeMode target_mode, PrivilegeMode actual_mode

if (target_mode == PrivilegeMode::M) {

return actual_mode == PrivilegeMode::M;
} else if (target_mode == PrivilegeMode::S) {

return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S);
} else if (target_mode == PrivilegeMode::U) {

return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S) || (actual_mode ==
} else if (target_mode == PrivilegeMode::VS) {

return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S) || (actual_mode ==
} else if (target_mode == PrivilegeMode::VU) {

return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S) || (actual_mode ==
(actual_mode == PrivilegeMode::VU);
}

PrivilegeMode::U);
PrivilegeMode::VS);

PrivilegeMode::VS) ||

411

E.133. exception_handling_mode

Returns the target privilege mode that will handle synchronous exception exception_code

Return Type
PrivilegeMode

Arguments
ExceptionCode exception_code

if (mode() == PrivilegeMode::M) {
return PrivilegeMode::M;
} else if (implemented?(ExtensionName::S) && mode() == PrivilegeMode::HS) || (mode() == PrivilegeMode::U) {
if (($bits(CSR[CSR[medeleg]]) & (MXLEN'1 << $bits(exception_code))) != 0) {
return PrivilegeMode: :HS;
} else {
return PrivilegeMode::M;
}
} else {
assert(implemented?(ExtensionName::H) && mode() == PrivilegeMode::VS) || (mode() == PrivilegeMode::VU, "Unexpected mode");
if (($bits(CSR[CSR[medeleq]]) & (MXLEN'1 << $bits(exception_code))) != 0) {
if (($bits(CSR[CSR[hedeleg]]) & (MXLEN'1 << $bits(exception_code))) != 0) {
return PrivilegeMode::VS;
} else {
return PrivilegeMode: :HS;

}
} else {
return PrivilegeMode::M;

}
}

E.134. creg2reg

Maps a C register index (e.g., rs1' in the specification) to an X register index. From the specification:

Table 18. Registers specified by the three-bit rs1’, rs2', and rd' fields of the CIW, CL, CS, CA, and CB formats.

RVC Register Number 000 001 010 011 100 101 110 111
x8 x9 x10 x11 x12 x13 x14 x15
s@ s1 a@ al a2 a3 a4 a5
f8 f9 f10 f11 f12 f13 f14 f15
fs@ fs1 fa@ fal fa2 fa3 fad fab

Integer Register Number
Integer Register ABI Name
Floating-Point Register Number

Floating-Point Register ABI Name

Return Type
Bits®

Arguments
Bits<3> creg_idx

return {2'b01, creg_idx};

E.135. unimplemented_csr

Either raises an Illegallnstruction exception or enters unpredictable state, depending on the setting of the TRAP_ON_UNIMPLEMENTED_CSR
parameter

Return Type
void

Arguments
Bits<INSTR_ENC_SIZE> encoding

if (TRAP_ON_UNIMPLEMENTED_CSR) {
raise(ExceptionCode::Illegallnstruction, mode(), encoding);
} else {
unpredictable("Accessing an unimplmented CSR");

412

E.136. mtval readonly?

Returns whether or not CSR[mtval] is read-only based on implementation options

Return Type
Boolean

Arguments None

return !(REPORT_VA_IN_MTVAL_ON_BREAKPOINT || REPORT_VA_IN_MTVAL_ON_LOAD_MISALIGNED || REPORT_VA_IN_MTVAL_ON_STORE_AMO_MISALIGNED ||
REPORT_VA_IN_MTVAL_ON_INSTRUCTION_MISALIGNED || REPORT_VA_IN_MTVAL_ON_LOAD_ACCESS_FAULT ||
REPORT_VA_IN_MTVAL_ON_STORE_AMO_ACCESS_FAULT || REPORT_VA_IN_MTVAL_ON_INSTRUCTION_ACCESS_FAULT ||
REPORT_VA_IN_MTVAL_ON_LOAD_PAGE _FAULT || REPORT_VA_IN_MTVAL_ON_STORE_AMO_PAGE_FAULT || REPORT_VA_IN_MTVAL_ON_INSTRUCTION_PAGE_FAULT
|| REPORT_ENCODING_IN_MTVAL_ON_ILLEGAL_INSTRUCTION || REPORT_CAUSE_IN_MTVAL_ON_SHADOW_STACK_SOFTWARE_CHECK ||
REPORT_CAUSE_IN_MTVAL_ON_LANDING_PAD_SOFTWARE_CHECK);

E.137. stval_readonly?

Returns whether or not CSR[stval] is read-only based on implementation options

Return Type
Boolean

Arguments None

if (implemented?(ExtensionName::S)) {

return !(REPORT_VA_IN_STVAL_ON_BREAKPOINT || REPORT_VA_IN_STVAL_ON_LOAD_MISALIGNED || REPORT_VA_IN_STVAL_ON_STORE_AMO_MISALIGNED
| | REPORT_VA_IN_STVAL_ON_INSTRUCTION_MISALIGNED || REPORT_VA_IN_STVAL_ON_LOAD_ACCESS_FAULT ||
REPORT_VA_IN_STVAL_ON_STORE_AMO_ACCESS_FAULT || REPORT_VA_IN_STVAL_ON_INSTRUCTION_ACCESS_FAULT ||
REPORT_VA_IN_STVAL_ON_LOAD_PAGE_FAULT || REPORT_VA_IN_STVAL_ON_STORE_AMO_PAGE_FAULT || REPORT_VA_IN_STVAL_ON_INSTRUCTION_PAGE_FAULT
| | REPORT_ENCODING_IN_STVAL_ON_ILLEGAL_INSTRUCTION || REPORT_CAUSE_IN_STVAL_ON_SHADOW_STACK_SOFTWARE_CHECK | |
REPORT _CAUSE _IN_STVAL_ON_LANDING_PAD_SOFTWARE _CHECK);
} else {

return true;

}

E.138. vstval_readonly?

Returns whether or not CSR[vstval] is read-only based on implementation options

Return Type
Boolean

Arguments None

if (implemented?(ExtensionName::H)) {

return !(REPORT_VA_IN_VSTVAL_ON_BREAKPOINT || REPORT_VA_IN_VSTVAL_ON_LOAD_MISALIGNED ||
REPORT_VA_IN_VSTVAL_ON_STORE_AMO_MISALIGNED || REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_MISALIGNED ||
REPORT_VA_IN_VSTVAL_ON_LOAD_ACCESS_FAULT || REPORT_VA_IN_VSTVAL_ON_STORE_AMO_ACCESS_FAULT ||
REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_ACCESS_FAULT || REPORT_VA_IN_VSTVAL_ON_LOAD_PAGE_FAULT ||
REPORT_VA_IN_VSTVAL_ON_STORE_AMO_PAGE_FAULT || REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_PAGE_FAULT ||
REPORT_ENCODING_IN_VSTVAL_ON_ILLEGAL_INSTRUCTION || REPORT_CAUSE_IN_VSTVAL_ON_SHADOW_STACK_SOFTWARE_CHECK ||
REPORT _CAUSE _IN_VSTVAL_ON_LANDING_PAD_SOFTWARE_CHECK);
} else {

return true;

}

E.139. mtval for

Given an exception code and a legal non-zero value for mtval, returns the value to be written in mtval considering implementation options

Return Type
XReg

413

Arguments
ExceptionCode exception_code, XReg tval

if (exception_code == ExceptionCode::Breakpoint) {
return REPORT_VA_IN_MTVAL_ON_BREAKPOINT ? tval : 0;

} else if (exception_code == ExceptionCode::LoadAddressMisaligned) {
return REPORT_VA_IN_MTVAL_ON_LOAD_MISALIGNED ? tval : 0;

} else if (exception_code == ExceptionCode::StoreAmoAddressMisaligned) {
return REPORT_VA_IN_MTVAL_ON_STORE_AMO_MISALIGNED ? tval : 0;

} else if (exception_code == ExceptionCode::InstructionAddressMisaligned) {
return REPORT_VA_IN_MTVAL_ON_INSTRUCTION_MISALIGNED ? tval : 0;

} else if (exception_code == ExceptionCode::LoadAccessFault) {
return REPORT_VA_IN_MTVAL_ON_LOAD_ACCESS_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::StoreAmoAccessFault) {
return REPORT_VA_IN_MTVAL_ON_STORE_AMO_ACCESS_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::InstructionAccessFault) {
return REPORT_VA_IN_MTVAL_ON_INSTRUCTION_ACCESS_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::LoadPageFault) {
return REPORT_VA_IN_MTVAL_ON_LOAD_PAGE_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::StoreAmoPageFault) {
return REPORT_VA_IN_MTVAL_ON_STORE_AMO_PAGE_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::InstructionPageFault) {
return REPORT_VA_IN_MTVAL_ON_INSTRUCTION_PAGE_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::I1legallnstruction) {
return REPORT_ENCODING_IN_MTVAL_ON_ILLEGAL_INSTRUCTION ? tval : 0;

} else if (exception_code == ExceptionCode::SoftwareCheck) {
return tval;

} else {
return 0;

}

E.140. stval_for

Given an exception code and a legal non-zero value for stval, returns the value to be written in stval considering implementation options

Return Type
XReg

Arguments
ExceptionCode exception_code, XReg tval

if (exception_code == ExceptionCode::Breakpoint) {
return REPORT_VA_IN_STVAL_ON_BREAKPOINT ? tval : 0;

} else if (exception_code == ExceptionCode::LoadAddressMisaligned) {
return REPORT_VA_IN_STVAL_ON_LOAD_MISALIGNED ? tval : 0;

} else if (exception_code == ExceptionCode::StoreAmoAddressMisaligned) {
return REPORT_VA_IN_STVAL_ON_STORE_AMO_MISALIGNED ? tval : 0;

} else if (exception_code == ExceptionCode::InstructionAddressMisaligned) {
return REPORT_VA_IN_STVAL_ON_INSTRUCTION_MISALIGNED ? tval : 0;

} else if (exception_code == ExceptionCode::LoadAccessFault) {
return REPORT_VA_IN_STVAL_ON_LOAD_ACCESS_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::StoreAmoAccessFault) {
return REPORT_VA_IN_STVAL_ON_STORE_AMO_ACCESS_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::InstructionAccessFault) {
return REPORT_VA_IN_STVAL_ON_INSTRUCTION_ACCESS_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::LoadPageFault) {
return REPORT_VA_IN_STVAL_ON_LOAD_PAGE_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::StoreAmoPageFault) {
return REPORT_VA_IN_STVAL_ON_STORE_AMO_PAGE_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::InstructionPageFault) {
return REPORT_VA_IN_STVAL_ON_INSTRUCTION_PAGE_FAULT ? tval : 0;

} else if (exception_code == ExceptionCode::I1legallnstruction) {
return REPORT_ENCODING_IN_STVAL_ON_ILLEGAL_INSTRUCTION ? tval : 0;

} else if (exception_code == ExceptionCode::SoftwareCheck) {
return tval;

} else {
return 0;

}

414

E.141. vstval_for

Given an exception code and a legal non-zero value for vstval, returns the value to be written in vstval considering implementation options

Return Type

Arguments

XReg

ExceptionCode exception_code, XReg tval

if (exception_code == ExceptionCode::Breakpoint) {
return REPORT_VA_IN_VSTVAL_ON_BREAKPOINT ? tval : 0;

} else if (exception_code ==

ExceptionCode: :LoadAddressMisaligned) {

return REPORT_VA_IN_VSTVAL_ON_LOAD_MISALIGNED ? tval : 0;

} else if (exception_code ==

ExceptionCode::StoreAmoAddressMisaligned) {

return REPORT_VA_IN_VSTVAL_ON_STORE_AMO_MISALIGNED ? tval : 0;

} else if (exception_code ==

ExceptionCode::InstructionAddressMisaligned) {

return REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_MISALIGNED ? tval : 0;

} else if (exception_code ==

ExceptionCode: :LoadAccessFault) {

return REPORT_VA_IN_VSTVAL_ON_LOAD_ACCESS_FAULT ? tval : 0;

} else if (exception_code ==

ExceptionCode::StoreAmoAccessFault) {

return REPORT_VA_IN_VSTVAL_ON_STORE_AMO_ACCESS_FAULT ? tval : 0;

} else if (exception_code ==

ExceptionCode::InstructionAccessFault) {

return REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_ACCESS_FAULT ? tval : 0;

} else if (exception_code ==

ExceptionCode: :LoadPageFault) {

return REPORT_VA_IN_VSTVAL_ON_LOAD_PAGE_FAULT ? tval : 0;

} else if (exception_code ==

ExceptionCode::StoreAmoPageFault) {

return REPORT_VA_IN_VSTVAL_ON_STORE_AMO_PAGE_FAULT ? tval : 0;

} else if (exception_code ==

ExceptionCode::InstructionPageFault) {

return REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_PAGE_FAULT ? tval : 0;

} else if (exception_code ==

ExceptionCode::I1legallnstruction) {

return REPORT_ENCODING_IN_VSTVAL_ON_ILLEGAL_INSTRUCTION ? tval : 0;

} else if (exception_code ==
return tval;

} else {
return 0;

}

ExceptionCode: :SoftwareCheck) {

E.142. raise_guest_page_fault

Raise a guest page fault exception.

Return Type

Arguments

ExceptionCode code;
Boolean write_gpa_in_tval;

void

MemoryOperation op, XReg gpa, XReg gva, XReg tinst_value, PrivilegeMode from_mode

if (op == MemoryOperation::Read) {
code = ExceptionCode: :LoadGuestPageFault;
write_gpa_in_tval = REPORT_GPA_IN_TVAL_ON_LOAD_GUEST_PAGE_FAULT;
} else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
code = ExceptionCode::StoreAmoGuestPageFault;
write_gpa_in_tval = REPORT_GPA_IN_TVAL_ON_STORE_AMO_GUEST_PAGE_FAULT;

} else {

assert(op == MemoryOperation::Fetch, "unexpected memory operation");
code = ExceptionCode::InstructionGuestPageFault;
write_gpa_in_tval = REPORT_GPA_IN_TVAL_ON_INSTRUCTION_GUEST_PAGE_FAULT;

}

PrivilegeMode handling_mode = exception_handling_mode(code);
if (handling_mode == PrivilegeMode::S) {
CSR[htval].VALUE = write_gpa_in_tval ? (gpa >> 2) : 0;
CSR[htinst].VALUE = tinst_value;

CSR[sepc].PC = $pc;
if (!stval_readonly?()) {

CSR[stval].VALUE = stval_

}

for(code, gva);

$pc = {CSR[stvec].BASE, 2'b0@};

415

CSR[scause].INT = 1'b0;

CSR[scause].CODE = $bits(code);
CSR[hstatus].GVA = 1;
CSR[hstatus].SPV = 1;

CSR[hstatus].SPVP = $bits(from_mode)[0];
CSR[mstatus].SPP = $bits(from_mode)[0];
} else {
assert(handling_mode == PrivilegeMode::M, "unexpected privilege mode");
CSR[mtval2].VALUE = write_gpa_in_tval ? (gpa >> 2) : 0;
CSR[mtinst].VALUE = tinst_value;
CSR[mstatus].MPP = $bits(from_mode)[1:0];
if (MXLEN == 64) {
CSR[mstatus].MPV = 1;
} else {
CSR[mstatush].MPV = 1;
}
}
set_mode(handling_mode);
abort_current_instruction();

E.143. raise

Raise synchronous exception number exception_code.
The exception may be imprecise, and will cause execution to enter an unpredictable state, if PRECISE_SYNCHRONOUS_EXCEPTIONS is false.

Otherwise, the exception will be precise.

Return Type .
void

Arguments
ExceptionCode exception_code, PrivilegeMode from_mode, XReg tval

if (!'PRECISE_SYNCHRONOUS_EXCEPTIONS) {
unpredictable("Imprecise synchronous exception");
} else {
raise_precise(exception_code, from_mode, tval);

}

E.144. raise_precise

Raise synchronous exception number exception_code.

Return Type
void

Arguments)) o
ExceptionCode exception_code, PrivilegeMode from_mode, XReg tval

PrivilegeMode handling_mode = exception_handling_mode(exception_code);
if (handling_mode == PrivilegeMode::M) {
CSR[mepc].PC = $pc;
if (!mtval_readonly?()) {
CSR[mtval].VALUE = mtval_for(exception_code, tval);
}
$pc = {CSR[mtvec].BASE, 2'b00};
CSR[mcause].INT = 1'b0;
CSR[mcause].CODE = $bits(exception_code);
if (CSR[misa].H == 1) {
CSR[mtval2].VALUE = 0;
CSR[mtinst].VALUE = 0;
if (from_mode == PrivilegeMode::VU || from_mode == PrivilegeMode::VS) {
if (MXLEN == 32) {
CSR[mstatush].MPV = 1;
} else {
CSR[mstatus].MPV = 1;
}
} else {
if (MXLEN == 32) {

416

CSR[mstatush].MPV = 0;
} else {
CSR[mstatus].MPV = 0;
}
}
}
CSR[mstatus].MPP = $bits(from_mode);
} else if (CSR[misa].S == 1 && (handling_mode == PrivilegeMode::S)) {
CSR[sepc].PC = $pc;
if (!stval_readonly?()) {
CSR[stval].VALUE = stval_for(exception_code, tval);
b
$pc = {CSR[stvec].BASE, 2'b00};
CSR[scause].INT = 1'b0;
CSR[scause].CODE = $bits(exception_code);
CSR[mstatus].SPP = $bits(from_mode)[0];
if (CSR[misa].H == 1) {
CSR[htval].VALUE = 0;
CSR[htinst].VALUE = 0;
CSR[hstatus].SPV = $bits(from_mode)[2];
if (from_mode == PrivilegeMode::VU || from_mode == PrivilegeMode::VS) {
CSR[hstatus].SPV = 1;
if (exception_code == ExceptionCode::Breakpoint) && (REPORT_VA_IN_STVAL_ON_BREAKPOINT || exception_code ==
ExceptionCode: :LoadAddressMisaligned) && (REPORT_VA_IN_STVAL_ON_LOAD_MISALIGNED || exception_code ==
ExceptionCode: :StoreAmoAddressMisaligned) && (REPORT_VA_IN_STVAL_ON_STORE_AMO_MISALIGNED || exception_code ==
ExceptionCode::InstructionAddressMisaligned) && (REPORT_VA_IN_STVAL_ON_INSTRUCTION_MISALIGNED || exception_code ==
ExceptionCode: :LoadAccessFault) && (REPORT_VA_IN_STVAL_ON_LOAD_ACCESS_FAULT || exception_code ==
ExceptionCode: :StoreAmoAccessFault) && (REPORT_VA_IN_STVAL_ON_STORE_AMO_ACCESS_FAULT || exception_code ==
ExceptionCode::InstructionAccessFault) && (REPORT_VA_IN_STVAL_ON_INSTRUCTION_ACCESS_FAULT || exception_code ==
ExceptionCode: :LoadPageFault) && (REPORT_VA_IN_STVAL_ON_LOAD_PAGE_FAULT || exception_code == ExceptionCode::StoreAmoPageFault) &&
(REPORT_VA_IN_STVAL_ON_STORE_AMO_PAGE_FAULT || exception_code == ExceptionCode::InstructionPageFault) &&
(REPORT_VA_IN_STVAL_ON_INSTRUCTION_PAGE_FAULT) {
CSR[hstatus].GVA = 1;

} else {
CSR[hstatus].GVA = 0;
}
CSR[hstatus].SPVP = $bits(from_mode)[0];
} else {
CSR[hstatus].SPV = 0;
CSR[hstatus].GVA = 0;

}
}
} else if (CSR[misa].H == 1 && (handling_mode == PrivilegeMode::VS)) {
CSR[vsepc].PC = $pc;
if (lvstval_readonly?()) {
CSR[vstval].VALUE = vstval_for(exception_code, tval);
}
$pc = {CSR[vstvec].BASE, 2'b00};
CSR[vscause].INT = 1'b0;
CSR[vscause].CODE = $hits(exception_code);
CSR[vsstatus].SPP = $bits(from_mode)[0];
}
set_mode(handling_mode);
abort_current_instruction();

E.145. ialign
Returns IALIGN, the smallest instruction encoding size, in bits.
Return Type

Bits®
Arguments None

if (implemented?(ExtensionName::C) && (CSR[misa].C == 0x1)) {
return 16;

} else {
return 32;

}

417

E.146. jump

Jump to virtual address target_addr.

If target address is misaligned, raise a MisalignedAddress exception.

Return Type
void

Arguments
XReg target_addr

if ((ialign() == 16) && target_addr & O0x1) != 0 {
raise(ExceptionCode::InstructionAddressMisaligned, mode(), target_addr);

} else if ((ialign() == 32) && (target_addr & 0x3) != 0) {
raise(ExceptionCode::InstructionAddressMisaligned, mode(), target_addr);

}
$pc = target_addr;

E.147. jump_halfword

Jump to virtual halfword address target_hw_addr.

If target address is misaligned, raise a MisalignedAddress exception.

Return Type
void

Arguments
XReg target_hw_addr

assert((target_hw_addr & 0x1) == 0x@, "Expected halfword-aligned address in jump_halfword");
if (ialign() != 16) {
if ((target_hw_addr & 0x3) != 0) {
raise(ExceptionCode::InstructionAddressMisaligned, mode(), target_hw_addr);

}

}
$pc = target_hw_addr;

E.148. valid_interrupt_code?

Returns true if code is a legal interrupt number.

Return Type
Boolean

Arguments
XReg code

if (code > 1 ‘<< $enum_element_size(InterruptCode - 1)) {
return false;

}
if ($array_includes?($enum_to_a(InterruptCode), code)) {

return true;
} else {
return false;

}

E.149. valid_exception_code?

Returns true if code is a legal exception number.

Return Type
Boolean

418

Arguments

XReg code

if (code > 1 ‘<< $enum_element_size(ExceptionCode - 1)) {
return false;

}

if ($array_includes?($enum_to_a(ExceptionCode), code)) {
return true;

} else {

return false;

}
E.150. xlen
Returns the effective XLEN for the current privilege mode.
Return Type
Bits®
Arguments None

if (MXLEN == 32) {

return 32;

} else {

if (mode() == PrivilegeMode::M) {

}

}

if (CSR[misa].MXL == $bits(XRegWidth::XLEN32)) {
return 32;

} else if (CSR[misa].MXL == $bits(XRegWidth::XLEN64)) {
return 64;

} else {
unreachable();

}

else if (implemented?(ExtensionName::S) && mode() == PrivilegeMode:

if (CSR[mstatus].SXL == $bits(XRegWidth::XLEN32)) {
return 32;

} else if (CSR[mstatus].SXL == $bits(XRegWidth::XLEN64)) {
return 64;

} else {
unreachable();

}

else if (implemented?(ExtensionName::U) && mode() == PrivilegeMode:

if (CSR[mstatus].UXL == $bits(XRegWidth::XLEN32)) {
return 32;

} else if (CSR[mstatus].UXL == $bits(XRegWidth::XLEN64)) {
return 64;

} else {
unreachable();

}

else if (implemented?(ExtensionName::H) && mode() == PrivilegeMode:

if (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {
return 32;

} else if (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN64)) {
return 64;

} else {
unreachable();

}

else if (implemented?(ExtensionName::H) && mode() == PrivilegeMode:

if (CSR[vsstatus].UXL == $bits(XRegWidth::XLEN32)) {
return 32;

} else if (CSR[vsstatus].UXL == $bits(XRegWidth::XLEN64)) {
return 64;

} else {
unreachable();

}

:S) {

:U) {

:VS) {

VU) {

419

E.151. virtual mode?

Returns True if the current mode is virtual (VS or VU).

Return Type
Boolean

Arguments None

return (mode() == PrivilegeMode::VS) || (mode() == PrivilegeMode::VU);

E.152. mask _eaddr

Mask upper N bits of an effective address if pointer masking is enabled

Return Type
XReg

Arguments
XReg eaddr

return eaddr;

E.153. pmp_match_64

Given a physical address, see if any PMP entry matches.

If there is a complete match, return the PmpCfg that guards the region. If there is no match or a partial match, report that result.

Return Type
PmpMatchResult, PmpCfg

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size

Bits<12> pmpcfg@_addr = 0x3a0;

Bits<12> pmpaddr@_addr = 0x3b0;

for (U32 i = @; i < NUM_PMP_ENTRIES; i++) {
Bits<12> pmpcfg_idx = pmpcfg@_addr + (i / 8) * 2;
Bits<6> shamt = (i % 8) * 8;
Csr pmpcfg_csr = direct_csr_lookup(pmpcfg_idx);
PmpCfg cfg = (csr_hw_read(pmpcfg_csr) >> shamt)[7:0];
Bits<12> pmpaddr_idx = pmpaddr@_addr + 1i;
Csr pmpaddr_csr = direct_csr_lookup(pmpaddr_idx);
Bits<64> pmpaddr_csr_value = csr_sw_read(pmpaddr_csr);
Bits<PHYS_ADDR_WIDTH> range_base = 0;
Bits<PHYS_ADDR_WIDTH> range_limit = @;
if (cfg.A == $bits(PmpCfg_A::TOR)) {

if (i ==0) {
range_base = 0;
} else {

Csr tor_pmpaddr_csr = direct_csr_lookup(pmpaddr_idx - 1);
range_base = (csr_sw_read(tor_pmpaddr_csr))[PHYS_ADDR_WIDTH - 1:0];
}
range_limit = (pmpaddr_csr_value)[PHYS_ADDR_WIDTH - 1:0] - 1;
} else if (cfg.A == $bits(PmpCfg_A::NAPQOT)) {
Bits<PHYS_ADDR_WIDTH - 1> pmpaddr_value = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 1:0];
Bits<PHYS_ADDR_WIDTH - 1> mask = pmpaddr_value A (pmpaddr_value + 1);
range_base = (pmpaddr_value & ~mask);
range_limit = range_base + mask;
} else if (cfg.A == $bits(PmpCfg_A::NA4)) {
range_base = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 1:0];
range_limit = range_base + 3;
}
if (paddr {
return PmpMatchResult::FullMatch, cfg;
} else if (! {
return PmpMatchResult::PartialMatch, -;
}

420

}

return PmpMatchResult::NoMatch, -;

E.154. pmp_match_32

Given a physical address, see if any PMP entry matches.

If there is a complete match, return the PmpCfg that guards the region. If there is no match or a partial match, report that result.

Return Type

PmpMatchResult, PmpCfg

Arguments

Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size

Bits<12> pmpcfg@_addr = 0x3a0;
Bits<12> pmpaddr@_addr = 0x3b0;
for (U32 i = @; i < NUM_PMP_ENTRIES; i++) {

}

Bits<12> pmpcfg_idx = pmpcfg@_addr + (i / 4);

Bits<6> shamt = (i % 4) * 8;

Csr pmpcfg_csr = direct_csr_lookup(pmpcfg_idx);

PmpCfg cfg = (csr_hw_read(pmpcfg_csr) >> shamt)[7:0];
Bits<12> pmpaddr_idx = pmpaddr@_addr + 1i;

Csr pmpaddr_csr = direct_csr_lookup(pmpaddr_idx);
Bits<32> pmpaddr_csr_value = csr_sw_read(pmpaddr_csr);
Bits<PHYS_ADDR_WIDTH> range_base = 0;
Bits<PHYS_ADDR_WIDTH> range_limit = @;

if (cfg.A == $bits(PmpCfg_A::TOR)) {

if (i ==0) {
range_base = 0;
} else {

Csr tor_pmpaddr_csr = direct_csr_lookup(pmpaddr_idx - 1);
range_base = csr_sw_read(tor_pmpaddr_csr)[PHYS_ADDR_WIDTH - 1:0];

}

range_limit = (pmpaddr_csr_value)[PHYS_ADDR_WIDTH - 1:0] - 1;

} else if (cfg.A == $bits(PmpCfg_A::NAPQOT)) {

Bits<PHYS_ADDR_WIDTH - 1> pmpaddr_value = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 3:0];
Bits<PHYS_ADDR_WIDTH - 1> mask = pmpaddr_value A (pmpaddr_value + 1);

range_base = pmpaddr_value & ~mask;
range_limit = range_base + mask;
} else if (cfg.A == $bits(PmpCfg_A::NA4)) {

range_base = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 1:0];

range_limit = range_base + 3;
}
if (paddr {

return PmpMatchResult::FullMatch, cfg;
} else if (! {

return PmpMatchResult::PartialMatch, -;
}

return PmpMatchResult::NoMatch, -;

E.155. pmp_match

Given a physical address, see if any PMP entry matches.

If there is a complete match, return the PmpCfg that guards the region. If there is no match or a partial match, report that result.

Return Type

PmpMatchResult, PmpCfg

Arguments

Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size

if (MXLEN == 64) {

return pmp_match_64(paddr, access_size);

} else {

}

return pmp_match_32(paddr, access_size);

421

E.156. mpv

Returns the current value of CSR[mstatus].MPV (wWhen MXLEN == 64) of CSR[mstatush].MPV (when MXLEN == 32)

Return Type
Bits®

Arguments None

if (implemented?(ExtensionName::H)) {

return (MXLEN == 32) ? CSR[mstatush].MPV : CSR[mstatus].MPV;
} else {

assert(false, "TOD0");

}

E.157. effective ldst mode

Returns the effective privilege mode for normal explicit loads and stores, taking into account the current actual privilege mode and modifications
from mstatus.MPRV.

Return Type
PrivilegeMode

Arguments None

if (mode() == PrivilegeMode::M) {
if (CSR[misa].U == 1 && CSR[mstatus].MPRV == 1) {
if (CSR[mstatus].MPP == 0b00) {
if (CSR[misa].H == 1 && mpv() == 0b1) {
return PrivilegeMode: :VU;
} else {
return PrivilegeMode::U;
}
} else if (CSR[misa].S == 1 && CSR[mstatus].MPP == 0b01) {
if (CSR[misa].H == 1 && mpv() == @0b1) {
return PrivilegeMode::VS;
} else {
return PrivilegeMode::S;
}
}
}
}

return mode();

E.158. pmp_check

Given a physical address and operation type, return whether or not the access is allowed by PMP.

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size, MemoryOperation type

PrivilegeMode mode = effective_ldst_mode();
PmpMatchResult match_result;
PmpCfg cfg;
(match_result, cfg = pmp_match(paddr, access_size));
if (match_result == PmpMatchResult::FullMatch) {
if (mode == PrivilegeMode::M && (cfg.L == 0)) {
return true;
}
if (type == MemoryOperation::Write && (cfg.W == 0)) {
return false;
} else if (type == MemoryOperation::Read && (cfg.R == 0)) {
return false;
} else if (type == MemoryOperation::Fetch && (cfg.X == 0)) {
return false;

}

422

} else if (match_result == PmpMatchResult::NoMatch) {
if (mode == PrivilegeMode::M) {
return true;
} else {
return false;
}
} else {
assert(match_result == PmpMatchResult::PartialMatch, "PMP matching logic error");
return false;

}

return true;

E.159. access check

Checks if the physical address paddr is able to access memory, and raises the appropriate exception if not.

Return Type
void

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size, XReg vaddr, MemoryOperation type,

ExceptionCode fault_type, PrivilegeMode from_mode

if (paddr > 1 ‘<< PHYS_ADDR_WIDTH) - access_size {
raise(fault_type, from_mode, vaddr);
}
if (implemented?(ExtensionName::Smpmp)) {
if (!pmp_check(paddr[PHYS_ADDR_WIDTH - 1:0], access_size, type)) {
raise(fault_type, from_mode, vaddr);
}
}

E.160. base32?

return True iff current effective XLEN == 32

Return Type
Boolean

Arguments None

if (MXLEN == 32) {
return true;
} else {
XRegWidth xlen32 = XRegWidth::XLEN32;
if (mode() == PrivilegeMode::M) {
return CSR[misa].MXL == $bits(x1len32);
} else if (implemented?(ExtensionName::S) && mode() == PrivilegeMode::S) {
return CSR[mstatus].SXL == $bits(xlen32);
} else if (implemented?(ExtensionName::U) && mode() == PrivilegeMode::U) {
return CSR[mstatus].UXL == $bits(x1len32);
} else if (implemented?(ExtensionName::H) && mode() == PrivilegeMode::VS) {
return CSR[hstatus].VSXL == $bits(xlen32);

} else {
assert(implemented?(ExtensionName::H) &% mode() == PrivilegeMode::VU, "Unexpected mode");
return CSR[vsstatus].UXL == $bits(xlen32);
}
}

E.161. base64?

return True iff current effective XLEN == 64

Return Type
Boolean

Arguments None

423

return xlen() == 64;

E.162. current_translation_mode

Returns the current first-stage translation mode for an explicit load or store from mode given the machine state (e.g., value of satp or vsatp csr).

Returns SatpMode::Reserved if the setting found in satp or vsatp is invalid.

Return Type
SatpMode

Arguments
PrivilegeMode mode

PrivilegeMode effective_mode = effective_ldst_mode();
if (effective_mode == PrivilegeMode::M) {
return SatpMode::Bare;
+
if (CSR[misa].H == 1'b1) {
if (effective_mode == PrivilegeMode::VS || effective_mode == PrivilegeMode::VU) {
Bits<4> mode_val = CSR[vsatp].MODE;
if (mode_val == $bhits(SatpMode::Bare)) {
return SatpMode::Bare;
} else if (mode_val == $bits(SatpMode::Sv32)) {
if (MXLEN == 64) {
if ((effective_mode == PrivilegeMode::VS) && (CSR[hstatus].VSXL != $bits(XRegWidth::XLEN32))) {
return SatpMode::Reserved;
}
if ((effective_mode == PrivilegeMode::VU) && (CSR[vsstatus].UXL != $bits(XRegWidth::XLEN32))) {
return SatpMode::Reserved;
}
}
if (1SV32_VSMODE_TRANSLATION) {
return SatpMode::Reserved;
}
return SatpMode::Sv32;
} else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::S5v39))) {
if (effective_mode == PrivilegeMode::VS && CSR[hstatus].VSXL != $bits(XRegWidth::XLEN64)) {
return SatpMode::Reserved;
}
if (effective_mode == PrivilegeMode::VU && CSR[vsstatus].UXL != $bits(XRegWidth::XLEN64)) {
return SatpMode::Reserved;
}
if (!SV39 _VSMODE_TRANSLATION) {
return SatpMode: :Reserved;
}
return SatpMode::Sv39;
} else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv48))) {
if (effective_mode == PrivilegeMode::VS && CSR[hstatus].VSXL != $bits(XRegWidth::XLEN64)) {
return SatpMode::Reserved;
}
if (effective_mode == PrivilegeMode::VU && CSR[vsstatus].UXL != $bits(XRegWidth::XLEN64)) {
return SatpMode::Reserved;
}
if (!SV48_VSMODE_TRANSLATION) {
return SatpMode::Reserved;
}
return SatpMode: :Sv48;
} else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv57))) {
if (effective_mode == PrivilegeMode::VS && CSR[hstatus].VSXL != $bits(XRegWidth::XLEN64)) {
return SatpMode::Reserved;
}
if (effective_mode == PrivilegeMode::VU && CSR[vsstatus].UXL != $bits(XRegWidth::XLEN64)) {
return SatpMode::Reserved;
}
if (1SV57_VSMODE_TRANSLATION) {
return SatpMode::Reserved;
}
return SatpMode::Sv57;
} else {
return SatpMode::Reserved;

424

}
} else {
return SatpMode::Reserved;
}
} else if (CSR[misa]l.S == 1'b1) {

assert(effective_mode == PrivilegeMode::S || effective_mode == PrivilegeMode::U, "unexpected priv mode");

Bits<4> mode_val = CSR[satp].MODE;
if (mode_val == $bits(SatpMode::Bare)) {
return SatpMode: :Bare;

} else if (mode_val == $bits(SatpMode::Sv32)) {

if (MXLEN == 64) {

if (effective_mode == PrivilegeMode::S && CSR[mstatus].SXL

return SatpMode::Reserved;

}

if (effective_mode == PrivilegeMode::U && CSR[sstatus].UXL

return SatpMode::Reserved;
}
}

if (limplemented?(ExtensionName::Sv32)) {

return SatpMode::Reserved;

}
return SatpMode::Sv32;

} else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::
if (effective_mode == PrivilegeMode::S && CSR[mstatus].

return SatpMode::Reserved;

}

if (effective_mode == PrivilegeMode::U &% CSR[sstatus].

return SatpMode: :Reserved;

}

if (limplemented?(ExtensionName::Sv39)) {

return SatpMode: :Reserved;

}
return SatpMode::Sv39;

} else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::
if (effective_mode == PrivilegeMode::S &% CSR[mstatus].

return SatpMode: :Reserved;

}

if (effective_mode == PrivilegeMode::U &% CSR[sstatus].

return SatpMode::Reserved;

}

if (limplemented?(ExtensionName::Sv48)) {

return SatpMode: :Reserved;

}
return SatpMode::Sv48;

} else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::
if (effective_mode == PrivilegeMode::S && CSR[mstatus].

return SatpMode: :Reserved;

}

if (effective_mode == PrivilegeMode::U &% CSR[sstatus].

return SatpMode: :Reserved;

}

if (Yimplemented?(ExtensionName::Sv57)) {

return SatpMode::Reserved;

}
return SatpMode: :Sv57;
} else {
return SatpMode: :Reserved;
}
} else {
return SatpMode: :Reserved;
}

5v39))) {

SXL = $bits(XRegWidth:

UXL != $bits(XRegWidth:

Sv48))) {

SXL 1= $bits(XRegWidth:

UXL != $bits(XRegWidth::

Sv57))) {

SXL != $bits(XRegWidth:

UXL != $bits(XRegWidth:

E.163. current_gstage_translation_mode

I= $bits(XRegWidth::XLEN32)) {

I= $bits(XRegWidth::XLEN32)) {

:XLEN64)) {

:XLEN64)) {

:XLENG4)) {

XLEN64)) {

:XLEN64)) {

:XLEN64)) {

Returns the current second-stage translation mode for a load or store from VS-mode or VU-mode.

Return Type

Arguments

return $enum(HgatpMode, CSR[hgatp].MODE);

HgatpMode

None

425

E.164. translate_gstage

Translates a guest physical address to a physical address.

Return Type
TranslationResult

Arguments
XReg gpaddr, XReg vaddr, MemoryOperation op, PrivilegeMode effective_mode,

Bits<INSTR_ENC_SIZE> encoding

TranslationResult result;
if (effective_mode == PrivilegeMode::S || effective_mode == PrivilegeMode::U) {
result.paddr = gpaddr;
return result;
}
Boolean mxr = CSR[mstatus].MXR == 1;
if (GSTAGE_MODE_BARE && CSR[hgatp].MODE == $bits(HgatpMode::Bare)) {
result.paddr = gpaddr;
return result;
} else if (SV32X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv32x4)) {
return gstage_page_walk<32, 34, 32, 2>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else if (SV39X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv39x4)) {
return gstage_page_walk<39, 56, 64, 3>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else if (SV48X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv48x4)) {
return gstage_page_walk<48, 56, 64, 4>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else if (SV57X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv57x4)) {
return gstage_page_walk<57, 56, 64, 5>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else {
if (op == MemoryOperation::Read) {
raise_guest_page_fault(op, gpaddr, vaddr, tinst_value_for_guest_page_fault(op, encoding, true), effective_mode);
} else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
raise_guest_page_fault(op, gpaddr, vaddr, tinst_value_for_guest_page_fault(op, encoding, true), effective_mode);
} else {
assert(op == MemoryOperation::Fetch, "unexpected memory op");
raise_guest_page_fault(op, gpaddr, vaddr, tinst_value_for_guest_page_fault(op, encoding, true), effective_mode);
b
}

E.165. tinst_value_for_guest_page_fault

Returns the value of htinst/mtinst for a Guest Page Fault

Return Type
XReg

Arguments
MemoryOperation op, Bits<INSTR_ENC_SIZE> encoding, Boolean for_final_vs_pte

if (for_final_vs_pte) {
if (op == MemoryOperation::Fetch) {

if (TINST_VALUE_ON_FINAL_INSTRUCTION_GUEST_PAGE_FAULT == "always zero") {
return 0;

} else {
assert (TINST_VALUE_ON_FINAL_INSTRUCTION_GUEST_PAGE_FAULT == "always pseudoinstruction”, "Instruction guest page faults can

only report zero/pseudo instruction in tval");

return 0x00002000;

}

} else if (op == MemoryOperation::Read) {

if (TINST_VALUE_ON_FINAL_LOAD_GUEST_PAGE_FAULT == "always zero") {
return 0;

} else if (TINST_VALUE_ON_FINAL_LOAD_GUEST_PAGE_FAULT == "always pseudoinstruction") {
if (($array_size(VSXLEN) == 1 && VSXLEN[@] == 32) || MXLEN == 64) && (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {

return 0x00002000;
} else {
return 0x00003000;

}

} else if (TINST_VALUE_ON_FINAL_LOAD_GUEST_PAGE_FAULT == "always transformed standard instruction") {
return tinst_transform(encoding, 0);

} else {

426

unpredictable("Custom value written into htinst/mtinst");
}
} else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
if (TINST_VALUE_ON_FINAL_STORE_AMO_GUEST_PAGE_FAULT == "always zero") {
return 0;
} else if (TINST_VALUE_ON_FINAL_STORE_AMO_GUEST_PAGE_FAULT == "always pseudoinstruction") {

if (($array_size(VSXLEN) == 1 && VSXLEN[@] == 32) || MXLEN == 64) && (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {

return 0x00002020;
} else {

return 0x00003020;
}

} else if (TINST_VALUE_ON_FINAL_STORE_AMO_GUEST_PAGE_FAULT == "always transformed standard instruction") {

return tinst_transform(encoding, 0);
} else {
unpredictable("Custom value written into htinst/mtinst");
}
}
} else {
if (REPORT_GPA_IN_TVAL_ON_INTERMEDIATE_GUEST_PAGE_FAULT) {

if (($array_size(VSXLEN) == 1 && VSXLEN[@] == 32) || MXLEN == 64) & (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {

return 0x00002000;

} else if (($array_size(VSXLEN) == 1 && VSXLEN[@] == 64) || MXLEN == 64) && (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN64)) {

return 0x00003000;
}
}
}

E.166. tinst_transform

Returns the standard transformation of an encoding for htinst/mtinst

Return Type
Bits<INSTR_ENC_SIZE>

Arguments
Bits<INSTR_ENC_SIZE> encoding, Bits<5> addr_offset

if (encoding[1:0] == @b11) {
if (encoding[6:2] == 5'b00001) {
return {{12{1'b0}}, addr_offset, encoding[14:0]};
} else if (encoding[6:2] == 5'b01000) {
return {{7{1'b0}}, encoding[24:20], addr_offset, encoding[14:12], {5{1'b0@}}, encoding[6:0]};
} else if (encoding[6:2] == 5'b01011) {
return {encoding[31:20], addr_offset, encoding[14:0]};
} else if (encoding[6:2] == 5'b00011) {
return {encoding[31:20], addr_offset, encoding[14:0]};

} else {
assert(false, "Bad transform");
}
} else {
assert(false, "TODO: compressed instruction");

}

E.167. transformed standard instruction for tinst

Transforms an instruction encoding for htinst.

Return Type
Bits<INSTR_ENC_SIZE>

Arguments
Bits<INSTR_ENC_SIZE> original

assert(false, "TODO");
return 0;

427

E.168. tinst value

Returns the value of htinst/mtinst for the given exception code.

Return Type
XReg

Arguments
ExceptionCode code, Bits<INSTR_ENC_SIZE> encoding

if (code == ExceptionCode::InstructionAddressMisaligned) {
if (TINST_VALUE_ON_INSTRUCTION_ADDRESS_MISALIGNED == "always zero") {
return 0;
} else {
unpredictable("An unpredictable value is written into tinst in response to an InstructionAddressMisaligned exception");
}
} else if (code == ExceptionCode::InstructionAccessFault) {
return 0;
} else if (code == ExceptionCode::I1legallnstruction) {
return 0;
} else if (code == ExceptionCode::Breakpoint) {
if (TINST_VALUE_ON_BREAKPOINT == "always zero") {
return 0;
} else {
unpredictable("An unpredictable value is written into tinst in response to a Breakpoint exception");
}
} else if (code == ExceptionCode::Virtuallnstruction) {
if (TINST_VALUE_ON_VIRTUAL_INSTRUCTION == "always zero") {
return 9;
} else {
unpredictable("An unpredictable value is written into tinst in response to a Virtuallnstruction exception");
}
} else if (code == ExceptionCode::LoadAddressMisaligned) {
if (TINST_VALUE_ON_LOAD_ADDRESS_MISALIGNED == "always zero") {
return 0;
} else if (TINST_VALUE_ON_LOAD_ADDRESS_MISALIGNED == "always transformed standard instruction") {
return transformed_standard_instruction_for_tinst(encoding);
} else {
unpredictable("An unpredictable value is written into tinst in response to a LoadAddressMisaligned exception");
}
} else if (code == ExceptionCode::LoadAccessFault) {
if (TINST_VALUE_ON_LOAD_ACCESS_FAULT == "always zero") {
return 0;
} else if (TINST_VALUE_ON_LOAD_ACCESS_FAULT == "always transformed standard instruction") {
return transformed_standard_instruction_for_tinst(encoding);
} else {
unpredictable("An unpredictable value is written into tinst in response to a LoadAccessFault exception");
}
} else if (code == ExceptionCode::StoreAmoAddressMisaligned) {
if (TINST_VALUE_ON_STORE_AMO_ADDRESS_MISALIGNED == "always zero") {
return 0;
} else if (TINST_VALUE_ON_STORE_AMO_ADDRESS_MISALIGNED == "always transformed standard instruction") {
return transformed_standard_instruction_for_tinst(encoding);
} else {
unpredictable("An unpredictable value is written into tinst in response to a StoreAmoAddressMisaligned exception");
}
} else if (code == ExceptionCode::StoreAmoAccessFault) {
if (TINST_VALUE_ON_STORE_AMO_ACCESS_FAULT == "always zero") {
return 0;
} else if (TINST_VALUE_ON_STORE_AMO_ACCESS_FAULT == "always transformed standard instruction") {
return transformed_standard_instruction_for_tinst(encoding);
} else {
unpredictable("An unpredictable value is written into tinst in response to a StoreAmoAccessFault exception");
}
} else if (code == ExceptionCode::Ucall) {
if (TINST_VALUE_ON_UCALL == "always zero") {
return 0;
} else {
unpredictable("An unpredictable value is written into tinst in response to a UCall exception");
by
} else if (code == ExceptionCode::Scall) {
if (TINST_VALUE_ON_SCALL == "always zero") {
return 9;

428

} else {
unpredictable("An unpredictable value is written into tinst in response to a SCall exception");
}
} else if (code == ExceptionCode::Mcall) {
if (TINST_VALUE_ON_MCALL == "always zero") {
return 0;
} else {
unpredictable("An unpredictable value is written into tinst in response to a MCall exception");
}
} else if (code == ExceptionCode::VScall) {
if (TINST_VALUE_ON_VSCALL == "always zero") {
return 0;
} else {
unpredictable("An unpredictable value is written into tinst in response to a VSCall exception");
}
} else if (code == ExceptionCode::InstructionPageFault) {
return 0;
} else if (code == ExceptionCode::LoadPageFault) {
if (TINST_VALUE_ON_LOAD_PAGE_FAULT == "always zero") {
return 0;
} else if (TINST_VALUE_ON_LOAD_PAGE_FAULT == "always transformed standard instruction") {
return transformed_standard_instruction_for_tinst(encoding);
} else {
unpredictable("An unpredictable value is written into tinst in response to a LoadPageFault exception");
}
} else if (code == ExceptionCode::StoreAmoPageFault) {
if (TINST_VALUE_ON_STORE_AMO_PAGE_FAULT == "always zero") {
return 0;
} else if (TINST_VALUE_ON_STORE_AMO_PAGE_FAULT == "always transformed standard instruction") {
return transformed_standard_instruction_for_tinst(encoding);
} else {
unpredictable("An unpredictable value is written into tinst in response to a StoreAmoPageFault exception");
by
} else {
assert(false, "Unhandled exception type");

}

E.169. gstage_page_walk

Translate guest physical address to physical address through a page walk.

May raise a Guest Page Fault if an error involving the page table structure occurs along the walk.

Implicit reads of the page table are accessed check, and may raise Access Faults. Implicit writes (updates of A/D) are also accessed checked, and may

raise Access Faults
The translated address is not accessed checked.

Returns the translated physical address.

Return Type
TranslationResult

Arguments

XReg gpaddr, XReg vaddr, MemoryOperation op, PrivilegeMode effective_mode, Boolean

for_final_vs_pte, Bits<INSTR_ENC_SIZE> encoding

Bits<PA_SIZE> ppn;
TranslationResult result;
U32 VPN _SIZE = (LEVELS ==2) ? 10 : 9;

ExceptionCode access_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadAccessFault : (op == MemoryOperation::Fetch ?

ExceptionCode::InstructionAccessFault : ExceptionCode::StoreAmoAccessFault);

ExceptionCode page_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadGuestPageFault : (op == MemoryOperation::Fetch ?

ExceptionCode::InstructionGuestPageFault : ExceptionCode::StoreAmoGuestPageFault);
Boolean mxr = for_final_vs_pte && (CSR[mstatus].MXR == 1);
Boolean pbmte = implemented?(ExtensionName::Svpbmt) && CSR[menvcfg].PBMTE == 1;
Boolean adue = implemented?(ExtensionName::Svadu) && CSR[menvcfg].ADUE == 1;
Bits<32> tinst = tinst_value_for_guest_page_fault(op, encoding, for_final_vs_pte);
U32 max_gpa_width = LEVELS * VPN_SIZE + 2 + 12;
if (gpaddr >> max_gpa_width != 0) {

raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);

}
ppn = CSR[hgatp].PPN;

429

for (U32 i = (LEVELS - 1); i >=0; i--) {
U32 this_vpn_size = (i == (LEVELS - 1)) ? VPN_SIZE + 2 : VPN_SIZE;
U32 vpn = (gpaddr >> (12 + VPN_SIZE * i)) & 1 << this_vpn_size) - 1); Bits<PA_SIZE> pte_paddr = (ppn << 12) + (vpn * (PTESIZE /
8;
if (!pma_applies?(PmaAttribute::HardwarePageTableRead, pte_paddr, PTESIZE)) {
raise(access_fault_code, PrivilegeMode::U, vaddr);
}
access_check(pte_paddr, PTESIZE, vaddr, MemoryOperation::Read, access_fault_code, effective_mode);
Bits<PTESIZE> pte = read_physical_memory<PTESIZE>(pte_paddr);
PteFlags pte_flags = pte[9:0];
if ((VA_SIZE != 32) && (pte[58:54] !=0)) {
raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
if (limplemented?(ExtensionName::Svrsw60t59b)) {
if ((PTESIZE >= 64) && pte[60:59] != 0) {
raise_quest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
}

if (limplemented?(ExtensionName: :Svnapot)) {
if ((PTESIZE >= 64) && pte[63] !=0) {
raise_quest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
I
}
if ((PTESIZE >= 64) && !pbmte && (pte[62:61] != 0)) {
raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
if ((PTESIZE >= 64) && pbmte && (pte[62:61] == 3)) {
raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
if (pte_flags.V == 0) {
raise_quest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
if (pte_flags.R == 0 && pte_flags.W == 1) {
raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
if (pte_flags.R == 1 || pte_flags.X == 1) {
if (pte_flags.U == 0) {
raise_quest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
if (op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite && (pte_flags.W == 0)) {
raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
} else if ((op == MemoryOperation::Fetch) && (pte_flags.X == 0)) {
raise_quest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
} else if ((op == MemoryOperation::Read) || (op == MemoryOperation::ReadModifyWrite)) {
if (!mxr) && (pte_flags.R == 0 || mxr) && (pte_flags.X == 0 && pte_flags.R == 0) {
raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
}
if ((i > 0) & (pte[(i - 1) * VPN_SIZE:0] !'=0)) {
raise_quest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
if ((pte_flags.A == @) || pte_flags.D == @) && ((op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite)) {
if (adue) {
if (!pma_applies?(PmaAttribute::RsrvEventual, pte_paddr, PTESIZE)) {
raise(access_fault_code, PrivilegeMode::U, vaddr);
}
if (!pma_applies?(PmaAttribute::HardwarePageTableWrite, pte_paddr, PTESIZE)) {
raise(access_fault_code, PrivilegeMode::U, vaddr);
}
access_check(pte_paddr, PTESIZE, vaddr, MemoryOperation::Write, access_fault_code, effective_mode);
Boolean success;
Bits<PTESIZE> updated_pte;
if (pte_flags.D == @ && (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite)) {
updated_pte = pte | 0b11000000;
} else {
updated_pte
}
if (PTESIZE == 32) {
success = atomic_check_then_write_32(pte_paddr, pte, updated_pte);
} else if (PTESIZE == 64) {
success = atomic_check_then_write_64(pte_paddr, pte, updated_pte);
} else {
assert(false, "Unexpected PTESIZE");
}

if (!success) {

pte | 0b01000000;

430

i=1+1;
} else {
result.paddr = pte_paddr;
if (PTESIZE >= 64) {
result.pbmt = $enum(Pbmt, pte[62:61]);
}
result.pte_flags = pte_flags;
return result;
}
} else {
raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}

}
} else {

if (i ==0) {
raise_quest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
if (pte_flags.D == 1 || pte_flags.A == 1 || pte_flags.U == 1) {
raise_quest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
if ((VA_SIZE != 32) && (pte[62:61] !=0)) {
raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
if ((VA_SIZE !'= 32) && pte[63] !=0) {
raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
ppn = pte[PA_SIZE - 3:10] << 12;

E.170. stagel_page_walk
Translate virtual address to physical address through a page walk.

May raise a Page Fault if an error involving the page table structure occurs along the walk.

Implicit reads of the page table are accessed check, and may raise Access Faults. Implicit writes (updates of A/D) are also accessed checked, and may
raise Access Faults

The translated address is not accessed checked.

Returns the translated guest physical address.

Return Type
TranslationResult

Arguments
Bits<MXLEN> vaddr, MemoryOperation op, PrivilegeMode effective_mode,

Bits<INSTR_ENC_SIZE> encoding

Bits<PA_SIZE> ppn;
TranslationResult result;
U32 VPN_SIZE = (LEVELS ==2) ? 10 : 9;
ExceptionCode access_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadAccessFault : (op == MemoryOperation::Fetch ?
ExceptionCode::InstructionAccessFault : ExceptionCode::StoreAmoAccessFault);
ExceptionCode page_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadPageFault : (op == MemoryOperation::Fetch ?
ExceptionCode::InstructionPageFault : ExceptionCode::StoreAmoPageFault);
Boolean sse = false;
Boolean adue;
if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode::VS || effective_mode == PrivilegeMode::VU)) {
adue = implemented?(ExtensionName::Svadu) && CSR[henvcfg].ADUE == 1;
} else {
adue = implemented?(ExtensionName::Svadu) && CSR[menvcfg].ADUE == 1;
}
Boolean pbmte;
if (VA_SIZE == 32) {
pbmte = false;
} else {
if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode::VS || effective_mode == PrivilegeMode::VU)) {
pbmte = implemented?(ExtensionName::Svpbmt) && CSR[henvcfg].PBMTE == 1;
} else {
pbmte = implemented?(ExtensionName::Svpbmt) && CSR[menvcfg].PBMTE == 1;

}

431

}

Boolean mxr;

if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode
mxr = (CSR[mstatus].MXR == 1) || (CSR[vsstatus].MXR ==

}

}

ppn = CSR[vsatp].PPN;

else {

mxr = CSR[mstatus].MXR == 1;
ppn = CSR[satp].PPN;

Boolean sum;

if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode

}
}

sum = CSR[vsstatus].SUM == 1;
else {
sum = CSR[mstatus].SUM == 1;

::VS || effective_mode == PrivilegeMode::VU)) {

1);

:VS)) {

if ((VA_SIZE < xlen()) && (vaddr[xlen() - 1:VA_SIZE] != {xlen() - VA_SIZE{vaddr[VA_SIZE - 1]}})) {

}

raise(page_fault_code, mode(), vaddr);

for (U32 I = (LEVELS - 1); I >=0; I--) {

432

U32 vpn = (vaddr >> (12 + VPN_SIZE * I)) & 1 ‘<< VPN_SIZE) - 1);

Bits<PA_SIZE> pte_gpaddr

(ppn << 12) + (vpn * (PTESIZE / 8;

TranslationResult pte_phys = translate_gstage(pte_gpaddr, vaddr, MemoryOperation::Read, effective_mode, encoding);
if (!pma_applies?(PmaAttribute::HardwarePageTableRead, pte_phys.paddr, PTESIZE)) {

raise(access_fault_code, mode(), vaddr);

}

access_check(pte_phys.paddr, PTESIZE, vaddr, MemoryOperation::Read, access_fault_code, effective_mode);

Bits<PTESIZE> pte = read_physical_memory<PTESIZE>(pte_phys.paddr);

PteFlags pte_flags = pte[9:0];

Boolean ss_page = (pte_flags.R == 0) && (pte_flags.W == 1) && (pte_flags.X == 0);

if ((VA_SIZE != 32) && (pte[58:54] !=10)) {
raise(page_fault_code, mode(), vaddr);
}
if (pte_flags.V == 0) {
raise(page_fault_code, mode(), vaddr);
}
if (Isse) {
if ((pte_flags.R == 0) && (pte_flags.W == 1)) {
raise(page_fault_code, mode(), vaddr);
}
}
if (pbmte) {
if (pte[62:61] == 3) {
raise(page_fault_code, mode(), vaddr);
}
} else {
if ((PTESIZE >= 64) && (pte[62:61] != 0)) {
raise(page_fault_code, mode(), vaddr);
}
b
if (Yimplemented?(ExtensionName: :Svrsw60t59b)) {
if ((PTESIZE >= 64) && pte[60:59] != 0) {
raise(page_fault_code, mode(), vaddr);
}
}
if (limplemented?(ExtensionName: :Svnapot)) {
if ((PTESIZE >= 64) && (pte[63] !=0)) {
raise(page_fault_code, mode(), vaddr);
}

}
if (pte_flags.R == 1 || pte_flags.X == 1) {

Bits<PA_SIZE> paddr_base = pte[PA_SIZE - 3:I * VPN_SIZE + 10] ‘<< (I * VPN_SIZE + 12);

Bits<PA_SIZE> offset = vaddr[I * VPN_SIZE + 11:0];

if (op == MemoryOperation::Read || op == MemoryOperation::ReadModifyWrite) {
if (!mxr) &% (pte_flags.R == 0 || mxr) && (pte_flags.X == 0 && pte_flags.R == 0) {

raise(page_fault_code, mode(), vaddr);

}

if (effective_mode == PrivilegeMode::U && pte_flags.U == 0) {

raise(page_fault_code, mode(), vaddr);

} else if (CSR[misa].H == 1 && effective_mode == PrivilegeMode::VU && pte_flags.U == 0) {

raise(page_fault_code, mode(), vaddr);

} else if (effective_mode == PrivilegeMode::S && pte_flags.U == 1 && !sum) {

raise(page_fault_code, mode(), vaddr);

} else if (effective_mode == PrivilegeMode::VS && pte_flags.U == 1 && !sum) {

raise(page_fault_code, mode(), vaddr);
}
}

if (op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite && (pte_flags.W == 0)) {
raise(page_fault_code, mode(), vaddr);

} else if ((op == MemoryOperation::Fetch) && (pte_flags.X == 0)) {
raise(page_fault_code, mode(), vaddr);

} else if ((op == MemoryOperation::Fetch) && ss_page) {
raise(page_fault_code, mode(), vaddr);

}

raise(page_fault_code, mode(), vaddr) if;

if ((pte_flags.A == @) || pte_flags.D == @) && ((op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite)) {

if (adue) {

TranslationResult pte_phys = translate_gstage(pte_gpaddr, vaddr, MemoryOperation::Write, effective_mode, encoding);

if (!pma_applies?(PmaAttribute::RsrvEventual, pte_phys.paddr, PTESIZE)) {
raise(access_fault_code, effective_mode, vaddr);

}
if (!pma_applies?(PmaAttribute::HardwarePageTableWrite, pte_phys.paddr, PTESIZE)) {
raise(access_fault_code, effective _mode, vaddr);

}

access_check(pte_phys.paddr, PTESIZE, vaddr, MemoryOperation::Write, access_fault_code, effective_mode);

Boolean success;
Bits<PTESIZE> updated_pte;
if (pte_flags.D == 0 && (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite)) {
updated_pte = pte | 0b11000000;
} else {
updated_pte
}
if (PTESIZE == 32) {
success = atomic_check_then_write_32(pte_phys.paddr, pte, updated_pte);
} else if (PTESIZE == 64) {
success = atomic_check_then_write_64(pte_phys.paddr, pte, updated_pte);
} else {
assert(false, "Unexpected PTESIZE");
}
if (lsuccess) {
I=1+1;
} else {

pte | 0b01000000;

TranslationResult pte_phys = translate_gstage(paddr_base + offset, vaddr, op, effective_mode, encoding);

result.paddr = pte_phys.paddr;
result.pbmt = pte_phys.pbmt == Pbmt::PMA ? $enum(Pbmt, pte[62:61]) : pte_phys.pbmt;
result.pte_flags = pte_flags;
return result;
}
} else {
raise(page_fault_code, mode(), vaddr);
}
}
TranslationResult pte_phys = translate_gstage(paddr_base + offset, vaddr, op, effective_mode, encoding);
result.paddr = pte_phys.paddr;
if (PTESIZE >= 64) {
result.pbmt = pte_phys.pbmt == Pbmt::PMA ? $enum(Pbmt, pte[62:61]) : pte_phys.pbmt;
}
result.pte_flags = pte_flags;
return result;
else {
if (I ==20) {
raise(page_fault_code, mode(), vaddr);
}
if (pte_flags.D == 1 || pte_flags.A == 1 || pte_flags.U == 1) {
raise(page_fault_code, mode(), vaddr);
}
if ((VA_SIZE != 32) && (pte[62:61] !=0)) {
raise(page_fault_code, mode(), vaddr);
}
if ((VA_SIZE !'= 32) && pte[63] !=0) {
raise(page_fault_code, mode(), vaddr);
}
ppn = pte[PA_SIZE - 3:10];

E.171. translate

Translate a virtual address for operation type op that appears to execute at effective_mode.

433

The translation will depend on the effective privilege mode.
May raise a Page Fault or Access Fault.

The final physical address is not access checked (for PMP, PMA, etc., violations). (though intermediate page table reads will be)

Return Type
TranslationResult

Arguments
XReg vaddr, MemoryOperation op, PrivilegeMode effective_mode, Bits<INSTR_ENC_SIZE>

encoding

Boolean cached translation valid;
CachedTranslationResult cached _translation_result;
cached_translation_result = cached_translation(vaddr, op);
if (cached_translation_result.valid) {
return cached_translation_result.result;
}
TranslationResult result;
if (effective_mode == PrivilegeMode::M) {
result.paddr = vaddr;
return result;
}
SatpMode translation_mode = current_translation_mode(effective_mode);
if (translation_mode == SatpMode::Reserved) {
if (op == MemoryOperation::Read) {
raise(ExceptionCode::LoadPageFault, mode(), vaddr);
} else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
raise(ExceptionCode::StoreAmoPageFault, mode(), vaddr);
} else {
assert(op == MemoryOperation::Fetch, "Unexpected memory operation");
raise(ExceptionCode::InstructionPageFault, mode(), vaddr);
}
}
if (translation_mode == SatpMode::Bare) {
result.paddr = vaddr;
} else if (xlen() == 32 && translation_mode == SatpMode::Sv32) {
result = stagel_page_walk<32, 34, 32, 2>(vaddr, op, effective_mode, encoding);
} else if (xlen() == 64 && translation_mode == SatpMode::Sv39) {
result = stagel_page_walk<39, 56, 64, 3>(vaddr, op, effective_mode, encoding);
} else if (xlen() == 64 && translation_mode == SatpMode::Sv48) {
result = stagel_page_walk<48, 56, 64, 4>(vaddr, op, effective_mode, encoding);
} else if (xlen() == 64 && translation_mode == SatpMode::Sv57) {
result = stagel_page_walk<57, 56, 64, 5>(vaddr, op, effective_mode, encoding);
} else {
assert(false, "Unexpected SatpMode");
}
maybe_cache_translation(vaddr, op, result);
return result;

E.172. canonical vaddr?

Returns whether or not vaddr is a valid (i.e., canonical) virtual address.

If pointer masking (S**pm) is enabled, then vaddr will be masked before checking the canonical address.

Return Type
Boolean

Arguments
XReg vaddr

if (CSR[misa].S == 1'b0) {
return true;
}
SatpMode satp_mode;
if (virtual_mode?()) {
satp_mode = $enum(SatpMode, CSR[vsatp].MODE);
} else {
satp_mode = $enum(SatpMode, CSR[satp].MODE);

434

}

XReg eaddr = mask_eaddr(vaddr);

if (SATP_MODE_BARE && (satp_mode == SatpMode::Bare)) {
return true;

} else if ((MXLEN == 32) && satp_mode == SatpMode::Sv32) {
return true;

} else if ((MXLEN == 64) && satp_mode == SatpMode::Sv39) {
return eaddr[63:39] == {25{eaddr[38]}};

} else if ((MXLEN == 64) &% satp_mode == SatpMode::Sv48) {
return eaddr[63:48] == {16{eaddr[47]}};

} else if ((MXLEN == 64) && satp_mode == SatpMode::Sv57) {
return eaddr[63:57] == {6{eaddr[56]}};

}

E.173. canonical_gpaddr?

Returns whether or not gpaddr is a valid (i.e., canonical) guest physical address.

Return Type
Boolean

Arguments
XReg gpaddr

SatpMode satp_mode = $enum(SatpMode, CSR[satp].MODE);

if (satp_mode == SatpMode::Bare) {
return true;

} else if (satp_mode == SatpMode::Sv32) {
return true;

} else if ((MXLEN > 32) && (satp_mode == SatpMode::Sv39)) {
return gpaddr[63:39] == {25{gpaddr[38]}};

} else if ((MXLEN > 32) && (satp_mode == SatpMode::Sv48)) {
return gpaddr[63:48] == {16{gpaddr[47]}};

} else if ((MXLEN > 32) && (satp_mode == SatpMode::Sv57)) {
return gpaddr[63:57] == {6{gpaddr[56]}};

+

E.174. misaligned_is_atomic?

Returns true if an access starting at physical_address that is N bits long is atomic.

This function takes into account any Atomicity Granule PMAs, so it should not be used for load-reserved/store-conditional, since those PMAs do
not apply to those accesses.

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> physical_address

return false if (MISALIGNED_MAX ATOMICITY_GRANULE SIZE == 0);

if (pma_applies?(PmaAttribute::MAG16, physical_address, N) && in_naturally_aligned_region?<128>(physical_address, N)) {
return true;

} else if (pma_applies?(PmaAttribute::MAG8, physical_address, N) && in_naturally_aligned_region?<64>(physical_address, N)) {
return true;

} else if (pma_applies?(PmaAttribute::MAG4, physical_address, N) && in_naturally_aligned_region?<32>(physical_address, N)) {
return true;

} else if (pma_applies?(PmaAttribute::MAG2, physical_address, N) && in_naturally_aligned_region?<16>(physical_address, N)) {
return true;

} else {
return false;

}

E.175. read_memory_aligned

Read from virtual memory using a known aligned address.

435

Return Type
Bits<LEN>

Arguments
XReg virtual_address, Bits<INSTR_ENC_SIZE> encoding

TranslationResult result;
if (CSR[misa]l.S == 1) {
result = translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(), encoding);
} else {
result.paddr = virtual_address;
}
access_check(result.paddr, LEN, virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault, effective_ldst_mode());
return read_physical_memory<LEN>(result.paddr);

E.176. read_memory

Read from virtual memory.

Return Type
Bits<LEN>

Arguments
XReg virtual_address, Bits<INSTR_ENC_SIZE> encoding

Boolean aligned = is_naturally_aligned<LEN>(virtual_address);
XReg physical_address;
if (aligned) {
return read_memory_aligned<LEN>(virtual_address, encoding);
+
if (MISALIGNED_MAX_ATOMICITY_GRANULE_SIZE > 0) {
asser t (MISALIGNED_LDST_EXCEPTION_PRIORITY == "low", "Invalid config: can't mix low-priority misaligned exceptions with large
atomicity granule");
physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(), encoding).paddr
: virtual_address;
if (misaligned_is_atomic?<LEN>(physical_address)) {
access_check(physical_address, LEN, virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault,
effective_ldst_mode());
return read_physical_memory<LEN>(physical_address);
}
}
if (IMISALIGNED_LDST) {
if (MISALIGNED_LDST_EXCEPTION_PRIORITY == "low") {
physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(),
encoding).paddr : virtual_address;
access_check(physical_address, LEN, virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault,
effective_ldst_mode());
}
raise(ExceptionCode::LoadAddressMisaligned, mode(), virtual_address);
} else {
if (MISALIGNED_SPLIT_STRATEGY == "sequential_bytes") {
Bits<LEN> result = 0;
for (U32 I =0; I < (LEN/ 8); I++) {
result = result | (read_memory_aligned<8>(virtual_address + I, encoding) ‘<< (8 * I));
}
return result;
} else if (MISALIGNED SPLIT_STRATEGY == "custom") {
unpredictable("An implementation is free to break a misaligned access any way, leading to unpredictable behavior when any part
of the misaligned access causes an exception");
}
}

E.177. read_memory_xlen

Read XLEN bits from memory

Return Type
Bits<MXLEN>

436

Arguments
XReq virtual_address, Bits<INSTR_ENC_SIZE> encoding

if (xlen() == 32) {

return read_memory<32>(virtual_address, encoding);
} else {

return read_memory<64>(virtual_address, encoding);

}

E.178. write_memory_xlen

Read XLEN bits from memory

Return Type
void

Arguments
XReg virtual_address, Bits<MXLEN> value, Bits<INSTR_ENC_SIZE> encoding

it (xlen() == 32) {

return write_memory<32>(virtual_address, value, encoding);
} else {

return write_memory<64>(virtual_address, value, encoding);

}

E.179. read_memory_xlen_aligned

Read from virtual memory XLEN (which may be runtime-determined) bits using a known aligned address.

Return Type
Bits<MXLEN>

Arguments
XReg virtual_address, Bits<INSTR_ENC_SIZE> encoding

TranslationResult result;
if (CSR[misal.S == 1) {
result = translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(), encoding);
} else {
result.paddr = virtual_address;
}
access_check(result.paddr, xlen(), virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault, effective_ldst_mode());
if (xlen() == 32) {
return read_physical_memory<32>(result.paddr);
} else {
return read_physical_memory<64>(result.paddr);

}

E.180. invalidate reservation_set

Invalidates any currently held reservation set.

This function may be called by the platform, independent of any actions occurring in the local hart, for any or no reason.

o The platform must call this function if an external hart or device accesses part of this reservation set while reservation_set_valid
could be true.

Return Type
void

Arguments None

reservation_set_valid = false;

437

E.181. register_reservation_set

Register a reservation for a physical address range that subsumes [physical_address, physical_address + N).

Return Type .
void

Arguments
Bits<MXLEN> physical_address, Bits<MXLEN> length

reservation_set_valid = true;
reservation_set_address = physical_address;
if (LRSC_RESERVATION_STRATEGY == "reserve naturally-aligned 64-byte region") {
reservation_set_address = physical_address & ~MXLEN'h3f;
reservation_set size = 64;
} else if (LRSC_RESERVATION_STRATEGY == "reserve naturally-aligned 128-byte region") {
reservation_set_address = physical_address & ~MXLEN'h7f;
reservation_set size = 128;
} else if (LRSC_RESERVATION_STRATEGY == "reserve exactly enough to cover the access") {
reservation_set_address = physical_address;
reservation_set_size = length;
} else if (LRSC_RESERVATION_STRATEGY == "custom") {
unpredictable("Implementations may set reservation sets of any size, as long as they cover the reserved accessed");
} else {
assert(false, "Unexpected LRSC_RESERVATION_STRATEGY");
}

E.182. load_reserved

Register a reservation for virtual_address at least N bits long and read the value from memory.
If aq is set, then also perform a memory model acquire.
If rl is set, then also perform a memory model release (software is discouraged from doing so).

This function assumes alignment checks have already occurred.

Return Type
Bits<N>

Arguments
Bits<MXLEN> virtual address, Bits<1> aq, Bits<1> rl, Bits<INSTR_ENC SIZE>

encoding

Bits<PHYS_ADDR_WIDTH> physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Read,
effective_ldst_mode(), encoding).paddr : virtual_address;
if (pma_applies?(PmaAttribute::RsrvNone, physical_address, N)) {
raise(ExceptionCode::LoadAccessFault, mode(), virtual_address);
}
if (ag ==1) {
memory_model_acquire();

}
if (rl ==1) {
memory_model_release();

+

register_reservation_set(physical_address, N);

if (CSR[misa].S == 1 && LRSC_FAIL_ON_VA_SYNONYM) {
reservation_virtual_address = virtual_address;

}

return read_memory_aligned<N>(physical_address, encoding);

E.183. store _conditional

Atomically check the reservation set to ensure:
e itisvalid
* it covers the region addressed by this store

 the address setting the reservation set matches virtual address

438

If the preceding are met, perform the store and return 0. Otherwise, return 1.

Return Type
Boolean

Arguments
Bits<MXLEN> virtual_address, Bits<MXLEN> value, Bits<1> aq, Bits<1> ri,

Bits<INSTR_ENC_SIZE> encoding

Bits<PHYS_ADDR_WIDTH> physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write,
effective_ldst_mode(), encoding).paddr : virtual_address;
if (pma_applies?(PmaAttribute::RsrvNone, physical_address, N)) {
raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
}
access_check(physical_address, N, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective _ldst _mode());
if (aq == 1) {
memory_model_acquire();

}

if (rl ==1) {
memory_model_release();

}

if (reservation_set valid == false) {
return false;
}
if (!contains?(reservation_set_address, reservation_set_size, physical_address, N)) {
invalidate_reservation_set();
return false;
}
if (LRSC_FAIL_ON_NON_EXACT_LRSC) {
if (reservation_physical_address != physical_address || reservation_size != N) {
invalidate reservation_set();
return false;
}
+
if (LRSC_FAIL_ON_VA_SYNONYM) {
if (reservation_virtual_address != virtual_address || reservation_size != N) {
invalidate _reservation_set();
return false;
}
}
write_physical_memory<N>(physical_address, value);
return true;

E.184. amo

Atomically read-modify-write the location at virtual_address.
The value written to virtual_address will depend on op.

If aq is 1, then the amo also acts as a memory model acquire. If rl is 1, then the amo also acts as a memory model release.

Return Type
Bits<N>

Arguments
XReg virtual_address, Bits<N> value, AmoOperation op, Bits<1> ag, Bits<1> rl,

Bits<INSTR_ENC_SIZE> encoding

Boolean aligned = is_naturally_aligned<N>(virtual_address);
if (laligned && MISALIGNED_LDST_EXCEPTION_PRIORITY == "high") {
raise(ExceptionCode::StoreAmoAddressMisaligned, mode(), virtual_address);
}
Bits<PHYS_ADDR_WIDTH> physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::ReadModifyWrite,
effective_ldst_mode(), encoding).paddr : virtual_address;
if (pma_applies?(PmaAttribute::AmoNone, physical_address, N)) {
raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
} else if (op == AmoOperation::Add || op == AmoOperation::Max || op == AmoOperation::Maxu || op == AmoOperation::Min || op ==
AmoOperation::Minu && !pma_applies?(PmaAttribute::AmoArithmetic, physical_address, N)) {
raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
} else if (op == AmoOperation::And || op == AmoOperation::0r || op == AmoOperation::Xor && !pma_applies?(PmaAttribute::Amological,

439

physical_address, N)) {
raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
} else {
assert(pma_applies?(PmaAttribute::AmoSwap, physical_address, N) && op == AmoOperation::Swap, "Bad AMO operation");
+
if (laligned && !misaligned_is_atomic?<N>(physical_address)) {
raise(ExceptionCode::StoreAmoAddressMisaligned, mode(), virtual_address);
}
if (N ==32) {
return atomic_read_modify_write_32(physical_address, value, op);
} else {
return atomic_read_modify_write_64(physical_address, value, op);

}

E.185. write_memory_aligned

Write to virtual memory using a known aligned address.

Return Type .
void

Arguments
XReg virtual_address, Bits<LEN> value, Bits<INSTR_ENC_SIZE> encoding

XReg physical_address;

physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(), encoding).paddr :
virtual_address;

access_check(physical_address, LEN, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective _ldst _mode());

write_physical_memory<LEN>(physical_address, value);

E.186. write_memory

Write to virtual memory

Return Type .
void

Arguments
XReg virtual_address, Bits<LEN> value, Bits<INSTR_ENC_SIZE> encoding

Boolean aligned = is_naturally_aligned<LEN>(virtual_address);
XReg physical_address;
if (aligned) {

write_memory_aligned<LEN>(virtual_address, value, encoding);

return ;
}
if (MISALIGNED_MAX_ATOMICITY_GRANULE_SIZE > 0) {
assert(MISALIGNED_LDST_EXCEPTION_PRIORITY == "low", "Invalid config: can't mix low-priority misaligned exceptions with large

atomicity granule");
physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(), encoding).paddr
: virtual_address;
if (misaligned_is_atomic?<LEN>(physical_address)) {
access_check(physical_address, LEN, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective ldst _mode());
write_physical_memory<LEN>(physical_address, value);
return ;
}
}
if (IMISALIGNED_LDST) {
if (MISALIGNED_LDST_EXCEPTION_PRIORITY == "low") {
physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(),
encoding).paddr : virtual_address;
access_check(physical_address, LEN, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective _ldst _mode());
}
raise(ExceptionCode::StoreAmoAddressMisaligned, mode(), virtual_address);
} else {
if (MISALIGNED_SPLIT_STRATEGY == "sequential_bytes") {
for (U32 I =0; I < (LEN/ 8); I++) {

440

write_memory_aligned<8>(virtual_address + I, (value >> (8 * I))[7:0], encoding);

}
} else if (MISALIGNED_SPLIT_STRATEGY == "custom") {

unpredictable("An implementation is free to break a misaligned access any way, leading to unpredictable behavior when any part
of the misaligned access causes an exception");

}
}

E.187. write_memory_xlen_aligned

Write to virtual memory XLEN bits (which may be runtime determined) using a known aligned address.

Return Type
void

Arguments
XReg virtual_address, Bits<MXLEN> value, Bits<INSTR_ENC_SIZE> encoding

XReg physical_address;
physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(), encoding).paddr :
virtual_address;
access_check(physical_address, xlen(), virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective_ldst_mode());
it (xlen() == 32) {
write_physical_memory<32>(physical_address, value);
} else {
write_physical_memory<64>(physical_address, value);

}

E.188. mstatus sd has known_reset

Returns true if the mstatus.SD bit has a defined reset value, as determined by various parameters.

Return Type
Boolean

Arguments None

Boolean fs_has_single_value = !implemented?(ExtensionName::F || ($array_size(MSTATUS_FS_LEGAL_VALUES) == 1));
Boolean vs_has_single_value = !implemented?(ExtensionName::V || ($array_size(MSTATUS_VS_LEGAL_VALUES) == 1));
return fs_has_single_value && vs_has_single_value;

E.189. mstatus sd reset value

Returns the reset value of mstatus.SD when known

Return Type
Bits®

Arguments None

assert(mstatus_sd_has_known_reset(), "mstatus_sd_reset_value is only defined when mstatus_sd_has_known_reset() == true");
Bits<2> fs_value, vs_value;
if ((!implemented?(ExtensionName::F)) || ($array_size(MSTATUS_FS_LEGAL_VALUES) == 1)) {

fs_value = (!implemented?(ExtensionName::F)) 7 @ : MSTATUS_FS_LEGAL_VALUES[@];

}

if ((!implemented?(ExtensionName::V)) || ($array_size(MSTATUS_VS_LEGAL_VALUES) == 1)) {
fs_value = (!implemented?(ExtensionName::V)) ? @ : MSTATUS_VS_LEGAL_VALUES[@];

}

return fs_value == 3) || (vs_value ==3? 1 : 0;

E.190. check zcmt enabled

If the Smstateen extension is implemented, then bit 2 in mstateen0, sstateen0, and hstateenO is implemented. If bit 2 of a controlling stateen@ CSR is
zero, then access to the jvt CSR and execution of a cm.jalt or cm.jt instruction by a lower privilege level results in an illegal-instruction trap (or, if
appropriate, a virtual-instruction trap).

441

Return Type]
void

Arguments
Bits<INSTR_ENC_SIZE> encoding

if ((mode() !'= PrivilegeMode::M && implemented?(ExtensionName::Smstateen) && CSR[mstateen@].JVT == 1'b@) || (mode() ==

PrivilegeMode::U && implemented?(ExtensionName::Ssstateen) &4 CSR[sstateen@].JVT == 1'b0)) {
raise(ExceptionCode::Illegallnstruction, mode(), encoding);

} else if ((mode() == PrivilegeMode::VS && implemented?(ExtensionName::Ssstateen) && CSR[hstateen0].JVT == 1'b@) || (mode() ==

PrivilegeMode::VU && implemented?(ExtensionName::Ssstateen) && (CSR[sstateen@].JVT == 1'b@ || CSR[hstateen@].JVT == 1'b0))) {
raise(ExceptionCode::VirtualInstruction, mode(), encoding);

}

442

	RVA20 Profile Release
	Table of Contents
	Copyright and license information
	Acknowledgements
	1. RISC-V Profiles
	1.1. Profiles versus Platforms
	1.2. Components of a Profile
	1.2.1. Profile Family
	1.2.2. Profile Privilege Mode
	1.2.3. Profile ISA Features

	2. RVA Profile Family
	2.1. RVA Description
	2.2. RVA Naming Scheme
	2.3. RVA Profile Releases

	3. RVA20 Profile Release
	3.1. RVA20 Description
	3.2. RVA20U64 Profile
	3.2.1. Mandatory Extensions
	3.2.2. Optional Extensions
	3.2.3. Recommendations
	3.2.4. Implementation-dependencies

	3.3. RVA20S64 Profile
	3.3.1. Mandatory Extensions
	3.3.2. Optional Extensions
	3.3.3. Implementation-dependencies

	Appendix A: Profile Comparisons
	A.1. Apps Processor Profile Releases
	A.2. RVA Profile Releases
	A.3. RVA20 Profiles

	Appendix B: Extension Details
	B.1. Extension A
	B.1.1. Available Versions
	B.1.2. Synopsis
	B.1.3. Specifying Ordering of Atomic Instructions

	B.2. Extension C
	B.2.1. Available Versions
	B.2.2. Synopsis
	B.2.3. Overview
	B.2.4. Compressed Instruction Formats

	B.3. Extension D
	B.3.1. Available Versions
	B.3.2. Synopsis
	B.3.3. D Register State
	B.3.4. NaN Boxing of Narrower Values
	B.3.5. Instructions

	B.4. Extension F
	B.4.1. Available Versions
	B.4.2. Synopsis
	B.4.3. F Register State
	Floating-Point Control and Status Register

	B.4.4. NaN Generation and Propagation
	B.4.5. Subnormal Arithmetic
	B.4.6. Instructions
	B.4.7. CSRs

	B.5. Extension I
	B.5.1. Available Versions
	B.5.2. Synopsis
	B.5.3. Instructions

	B.6. Extension M
	B.6.1. Available Versions
	B.6.2. Synopsis
	B.6.3. Instructions

	B.7. Extension S
	B.7.1. Available Versions
	B.7.2. Synopsis
	B.7.3. Instructions
	B.7.4. CSRs
	B.7.5. Parameters

	B.8. Extension Ssccptr
	B.8.1. Available Versions
	B.8.2. Synopsis

	B.9. Extension Sstvala
	B.9.1. Available Versions
	B.9.2. Synopsis

	B.10. Extension Sstvecd
	B.10.1. Available Versions
	B.10.2. Synopsis

	B.11. Extension Ssu64xl
	B.11.1. Available Versions
	B.11.2. Synopsis

	B.12. Extension Sv39
	B.12.1. Available Versions
	B.12.2. Synopsis

	B.13. Extension Sv48
	B.13.1. Available Versions
	B.13.2. Synopsis

	B.14. Extension Svade
	B.14.1. Available Versions
	B.14.2. Synopsis

	B.15. Extension Svbare
	B.15.1. Available Versions
	B.15.2. Synopsis

	B.16. Extension U
	B.16.1. Available Versions
	B.16.2. Synopsis
	B.16.3. CSRs
	B.16.4. Parameters

	B.17. Extension Za128rs
	B.17.1. Available Versions
	B.17.2. Synopsis

	B.18. Extension Zca
	B.18.1. Available Versions
	B.18.2. Synopsis
	B.18.3. Instructions

	B.19. Extension Zcd
	B.19.1. Available Versions
	B.19.2. Synopsis
	B.19.3. Instructions

	B.20. Extension Zcf
	B.20.1. Available Versions
	B.20.2. Synopsis
	B.20.3. Instructions

	B.21. Extension Ziccamoa
	B.21.1. Available Versions
	B.21.2. Synopsis

	B.22. Extension Ziccif
	B.22.1. Available Versions
	B.22.2. Synopsis

	B.23. Extension Zicclsm
	B.23.1. Available Versions
	B.23.2. Synopsis

	B.24. Extension Ziccrse
	B.24.1. Available Versions
	B.24.2. Synopsis

	B.25. Extension Zicntr
	B.25.1. Available Versions
	B.25.2. Synopsis
	B.25.3. CSRs
	B.25.4. Parameters

	B.26. Extension Zicsr
	B.26.1. Available Versions
	B.26.2. Synopsis
	B.26.3. Instructions

	B.27. Extension Zifencei
	B.27.1. Available Versions
	B.27.2. Synopsis
	B.27.3. Instructions

	B.28. Extension Zihpm
	B.28.1. Available Versions
	B.28.2. Synopsis
	B.28.3. CSRs

	Appendix C: Instruction Details
	C.1. add
	C.1.1. Encoding
	C.1.2. Description
	C.1.3. Access
	C.1.4. Decode Variables
	C.1.5. IDL Operation
	C.1.6. Sail Operation
	C.1.7. Exceptions

	C.2. addi
	C.2.1. Encoding
	C.2.2. Description
	C.2.3. Access
	C.2.4. Decode Variables
	C.2.5. IDL Operation
	C.2.6. Sail Operation
	C.2.7. Exceptions

	C.3. and
	C.3.1. Encoding
	C.3.2. Description
	C.3.3. Access
	C.3.4. Decode Variables
	C.3.5. IDL Operation
	C.3.6. Sail Operation
	C.3.7. Exceptions

	C.4. andi
	C.4.1. Encoding
	C.4.2. Description
	C.4.3. Access
	C.4.4. Decode Variables
	C.4.5. IDL Operation
	C.4.6. Sail Operation
	C.4.7. Exceptions

	C.5. auipc
	C.5.1. Encoding
	C.5.2. Description
	C.5.3. Access
	C.5.4. Decode Variables
	C.5.5. IDL Operation
	C.5.6. Sail Operation
	C.5.7. Exceptions

	C.6. beq
	C.6.1. Encoding
	C.6.2. Description
	C.6.3. Access
	C.6.4. Decode Variables
	C.6.5. IDL Operation
	C.6.6. Sail Operation
	C.6.7. Exceptions

	C.7. bge
	C.7.1. Encoding
	C.7.2. Description
	C.7.3. Access
	C.7.4. Decode Variables
	C.7.5. IDL Operation
	C.7.6. Sail Operation
	C.7.7. Exceptions

	C.8. bgeu
	C.8.1. Encoding
	C.8.2. Description
	C.8.3. Access
	C.8.4. Decode Variables
	C.8.5. IDL Operation
	C.8.6. Sail Operation
	C.8.7. Exceptions

	C.9. blt
	C.9.1. Encoding
	C.9.2. Description
	C.9.3. Access
	C.9.4. Decode Variables
	C.9.5. IDL Operation
	C.9.6. Sail Operation
	C.9.7. Exceptions

	C.10. bltu
	C.10.1. Encoding
	C.10.2. Description
	C.10.3. Access
	C.10.4. Decode Variables
	C.10.5. IDL Operation
	C.10.6. Sail Operation
	C.10.7. Exceptions

	C.11. bne
	C.11.1. Encoding
	C.11.2. Description
	C.11.3. Access
	C.11.4. Decode Variables
	C.11.5. IDL Operation
	C.11.6. Sail Operation
	C.11.7. Exceptions

	C.12. c.add
	C.12.1. Encoding
	C.12.2. Description
	C.12.3. Access
	C.12.4. Decode Variables
	C.12.5. IDL Operation
	C.12.6. Sail Operation
	C.12.7. Exceptions

	C.13. c.addi
	C.13.1. Encoding
	C.13.2. Description
	C.13.3. Access
	C.13.4. Decode Variables
	C.13.5. IDL Operation
	C.13.6. Exceptions

	C.14. c.addi16sp
	C.14.1. Encoding
	C.14.2. Description
	C.14.3. Access
	C.14.4. Decode Variables
	C.14.5. IDL Operation
	C.14.6. Exceptions

	C.15. c.addi4spn
	C.15.1. Encoding
	C.15.2. Description
	C.15.3. Access
	C.15.4. Decode Variables
	C.15.5. IDL Operation
	C.15.6. Exceptions

	C.16. c.and
	C.16.1. Encoding
	C.16.2. Description
	C.16.3. Access
	C.16.4. Decode Variables
	C.16.5. IDL Operation
	C.16.6. Sail Operation
	C.16.7. Exceptions

	C.17. c.andi
	C.17.1. Encoding
	C.17.2. Description
	C.17.3. Access
	C.17.4. Decode Variables
	C.17.5. IDL Operation
	C.17.6. Sail Operation
	C.17.7. Exceptions

	C.18. c.beqz
	C.18.1. Encoding
	C.18.2. Description
	C.18.3. Access
	C.18.4. Decode Variables
	C.18.5. IDL Operation
	C.18.6. Sail Operation
	C.18.7. Exceptions

	C.19. c.bnez
	C.19.1. Encoding
	C.19.2. Description
	C.19.3. Access
	C.19.4. Decode Variables
	C.19.5. IDL Operation
	C.19.6. Sail Operation
	C.19.7. Exceptions

	C.20. c.ebreak
	C.20.1. Encoding
	C.20.2. Description
	C.20.3. Access
	C.20.4. Decode Variables
	C.20.5. IDL Operation
	C.20.6. Sail Operation
	C.20.7. Exceptions

	C.21. c.fld
	C.21.1. Encoding
	C.21.2. Description
	C.21.3. Access
	C.21.4. Decode Variables
	C.21.5. IDL Operation
	C.21.6. Exceptions

	C.22. c.fldsp
	C.22.1. Encoding
	C.22.2. Description
	C.22.3. Access
	C.22.4. Decode Variables
	C.22.5. IDL Operation
	C.22.6. Exceptions

	C.23. c.flw
	C.23.1. Encoding
	C.23.2. Description
	C.23.3. Access
	C.23.4. Decode Variables
	C.23.5. IDL Operation
	C.23.6. Exceptions

	C.24. c.flwsp
	C.24.1. Encoding
	C.24.2. Description
	C.24.3. Access
	C.24.4. Decode Variables
	C.24.5. IDL Operation
	C.24.6. Exceptions

	C.25. c.fsd
	C.25.1. Encoding
	C.25.2. Description
	C.25.3. Access
	C.25.4. Decode Variables
	C.25.5. IDL Operation
	C.25.6. Exceptions

	C.26. c.fsdsp
	C.26.1. Encoding
	C.26.2. Description
	C.26.3. Access
	C.26.4. Decode Variables
	C.26.5. IDL Operation
	C.26.6. Exceptions

	C.27. c.fsw
	C.27.1. Encoding
	C.27.2. Description
	C.27.3. Access
	C.27.4. Decode Variables
	C.27.5. IDL Operation
	C.27.6. Exceptions

	C.28. c.fswsp
	C.28.1. Encoding
	C.28.2. Description
	C.28.3. Access
	C.28.4. Decode Variables
	C.28.5. IDL Operation
	C.28.6. Exceptions

	C.29. c.j
	C.29.1. Encoding
	C.29.2. Description
	C.29.3. Access
	C.29.4. Decode Variables
	C.29.5. IDL Operation
	C.29.6. Exceptions

	C.30. c.jalr
	C.30.1. Encoding
	C.30.2. Description
	C.30.3. Access
	C.30.4. Decode Variables
	C.30.5. IDL Operation
	C.30.6. Exceptions

	C.31. c.jr
	C.31.1. Encoding
	C.31.2. Description
	C.31.3. Access
	C.31.4. Decode Variables
	C.31.5. IDL Operation
	C.31.6. Exceptions

	C.32. c.li
	C.32.1. Encoding
	C.32.2. Description
	C.32.3. Access
	C.32.4. Decode Variables
	C.32.5. IDL Operation
	C.32.6. Exceptions

	C.33. c.lui
	C.33.1. Encoding
	C.33.2. Description
	C.33.3. Access
	C.33.4. Decode Variables
	C.33.5. IDL Operation
	C.33.6. Exceptions

	C.34. c.lw
	C.34.1. Encoding
	C.34.2. Description
	C.34.3. Access
	C.34.4. Decode Variables
	C.34.5. IDL Operation
	C.34.6. Sail Operation
	C.34.7. Exceptions

	C.35. c.lwsp
	C.35.1. Encoding
	C.35.2. Description
	C.35.3. Access
	C.35.4. Decode Variables
	C.35.5. IDL Operation
	C.35.6. Exceptions

	C.36. c.mv
	C.36.1. Encoding
	C.36.2. Description
	C.36.3. Access
	C.36.4. Decode Variables
	C.36.5. IDL Operation
	C.36.6. Sail Operation
	C.36.7. Exceptions

	C.37. c.nop
	C.37.1. Encoding
	C.37.2. Description
	C.37.3. Access
	C.37.4. Decode Variables
	C.37.5. IDL Operation
	C.37.6. Exceptions

	C.38. c.or
	C.38.1. Encoding
	C.38.2. Description
	C.38.3. Access
	C.38.4. Decode Variables
	C.38.5. IDL Operation
	C.38.6. Sail Operation
	C.38.7. Exceptions

	C.39. c.slli
	C.39.1. Encoding
	C.39.2. Description
	C.39.3. Access
	C.39.4. Decode Variables
	C.39.5. IDL Operation
	C.39.6. Sail Operation
	C.39.7. Exceptions

	C.40. c.srai
	C.40.1. Encoding
	C.40.2. Description
	C.40.3. Access
	C.40.4. Decode Variables
	C.40.5. IDL Operation
	C.40.6. Sail Operation
	C.40.7. Exceptions

	C.41. c.srli
	C.41.1. Encoding
	C.41.2. Description
	C.41.3. Access
	C.41.4. Decode Variables
	C.41.5. IDL Operation
	C.41.6. Sail Operation
	C.41.7. Exceptions

	C.42. c.sub
	C.42.1. Encoding
	C.42.2. Description
	C.42.3. Access
	C.42.4. Decode Variables
	C.42.5. IDL Operation
	C.42.6. Sail Operation
	C.42.7. Exceptions

	C.43. c.sw
	C.43.1. Encoding
	C.43.2. Description
	C.43.3. Access
	C.43.4. Decode Variables
	C.43.5. IDL Operation
	C.43.6. Exceptions

	C.44. c.swsp
	C.44.1. Encoding
	C.44.2. Description
	C.44.3. Access
	C.44.4. Decode Variables
	C.44.5. IDL Operation
	C.44.6. Exceptions

	C.45. c.xor
	C.45.1. Encoding
	C.45.2. Description
	C.45.3. Access
	C.45.4. Decode Variables
	C.45.5. IDL Operation
	C.45.6. Sail Operation
	C.45.7. Exceptions

	C.46. csrrc
	C.46.1. Encoding
	C.46.2. Description
	C.46.3. Access
	C.46.4. Decode Variables
	C.46.5. IDL Operation
	C.46.6. Exceptions

	C.47. csrrci
	C.47.1. Encoding
	C.47.2. Description
	C.47.3. Access
	C.47.4. Decode Variables
	C.47.5. IDL Operation
	C.47.6. Exceptions

	C.48. csrrs
	C.48.1. Encoding
	C.48.2. Description
	C.48.3. Access
	C.48.4. Decode Variables
	C.48.5. IDL Operation
	C.48.6. Sail Operation
	C.48.7. Exceptions

	C.49. csrrsi
	C.49.1. Encoding
	C.49.2. Description
	C.49.3. Access
	C.49.4. Decode Variables
	C.49.5. IDL Operation
	C.49.6. Exceptions

	C.50. csrrw
	C.50.1. Encoding
	C.50.2. Description
	C.50.3. Access
	C.50.4. Decode Variables
	C.50.5. IDL Operation
	C.50.6. Sail Operation
	C.50.7. Exceptions

	C.51. csrrwi
	C.51.1. Encoding
	C.51.2. Description
	C.51.3. Access
	C.51.4. Decode Variables
	C.51.5. IDL Operation
	C.51.6. Sail Operation
	C.51.7. Exceptions

	C.52. div
	C.52.1. Encoding
	C.52.2. Description
	C.52.3. Access
	C.52.4. Decode Variables
	C.52.5. IDL Operation
	C.52.6. Sail Operation
	C.52.7. Exceptions

	C.53. divu
	C.53.1. Encoding
	C.53.2. Description
	C.53.3. Access
	C.53.4. Decode Variables
	C.53.5. IDL Operation
	C.53.6. Sail Operation
	C.53.7. Exceptions

	C.54. ebreak
	C.54.1. Encoding
	C.54.2. Description
	C.54.3. Access
	C.54.4. Decode Variables
	C.54.5. IDL Operation
	C.54.6. Sail Operation
	C.54.7. Exceptions

	C.55. ecall
	C.55.1. Encoding
	C.55.2. Description
	C.55.3. Access
	C.55.4. Decode Variables
	C.55.5. IDL Operation
	C.55.6. Sail Operation
	C.55.7. Exceptions

	C.56. fadd.d
	C.56.1. Encoding
	C.56.2. Description
	C.56.3. Access
	C.56.4. Decode Variables
	C.56.5. IDL Operation
	C.56.6. Exceptions

	C.57. fadd.s
	C.57.1. Encoding
	C.57.2. Description
	C.57.3. Access
	C.57.4. Decode Variables
	C.57.5. IDL Operation
	C.57.6. Sail Operation
	C.57.7. Exceptions

	C.58. fclass.d
	C.58.1. Encoding
	C.58.2. Description
	C.58.3. Access
	C.58.4. Decode Variables
	C.58.5. IDL Operation
	C.58.6. Exceptions

	C.59. fclass.s
	C.59.1. Encoding
	C.59.2. Description
	C.59.3. Access
	C.59.4. Decode Variables
	C.59.5. IDL Operation
	C.59.6. Sail Operation
	C.59.7. Exceptions

	C.60. fcvt.d.s
	C.60.1. Encoding
	C.60.2. Description
	C.60.3. Access
	C.60.4. Decode Variables
	C.60.5. IDL Operation
	C.60.6. Exceptions

	C.61. fcvt.d.w
	C.61.1. Encoding
	C.61.2. Description
	C.61.3. Access
	C.61.4. Decode Variables
	C.61.5. IDL Operation
	C.61.6. Exceptions

	C.62. fcvt.d.wu
	C.62.1. Encoding
	C.62.2. Description
	C.62.3. Access
	C.62.4. Decode Variables
	C.62.5. IDL Operation
	C.62.6. Exceptions

	C.63. fcvt.s.d
	C.63.1. Encoding
	C.63.2. Description
	C.63.3. Access
	C.63.4. Decode Variables
	C.63.5. IDL Operation
	C.63.6. Exceptions

	C.64. fcvt.s.w
	C.64.1. Encoding
	C.64.2. Description
	C.64.3. Access
	C.64.4. Decode Variables
	C.64.5. IDL Operation
	C.64.6. Sail Operation
	C.64.7. Exceptions

	C.65. fcvt.s.wu
	C.65.1. Encoding
	C.65.2. Description
	C.65.3. Access
	C.65.4. Decode Variables
	C.65.5. IDL Operation
	C.65.6. Sail Operation
	C.65.7. Exceptions

	C.66. fcvt.w.d
	C.66.1. Encoding
	C.66.2. Description
	C.66.3. Access
	C.66.4. Decode Variables
	C.66.5. IDL Operation
	C.66.6. Exceptions

	C.67. fcvt.w.s
	C.67.1. Encoding
	C.67.2. Description
	C.67.3. Access
	C.67.4. Decode Variables
	C.67.5. IDL Operation
	C.67.6. Sail Operation
	C.67.7. Exceptions

	C.68. fcvt.wu.d
	C.68.1. Encoding
	C.68.2. Description
	C.68.3. Access
	C.68.4. Decode Variables
	C.68.5. IDL Operation
	C.68.6. Exceptions

	C.69. fcvt.wu.s
	C.69.1. Encoding
	C.69.2. Description
	C.69.3. Access
	C.69.4. Decode Variables
	C.69.5. IDL Operation
	C.69.6. Sail Operation
	C.69.7. Exceptions

	C.70. fdiv.d
	C.70.1. Encoding
	C.70.2. Description
	C.70.3. Access
	C.70.4. Decode Variables
	C.70.5. IDL Operation
	C.70.6. Exceptions

	C.71. fdiv.s
	C.71.1. Encoding
	C.71.2. Description
	C.71.3. Access
	C.71.4. Decode Variables
	C.71.5. IDL Operation
	C.71.6. Sail Operation
	C.71.7. Exceptions

	C.72. fence
	C.72.1. Encoding
	C.72.2. Description
	C.72.3. Access
	C.72.4. Decode Variables
	C.72.5. IDL Operation
	C.72.6. Sail Operation
	C.72.7. Exceptions

	C.73. fence.i
	C.73.1. Encoding
	C.73.2. Description
	C.73.3. Access
	C.73.4. Decode Variables
	C.73.5. IDL Operation
	C.73.6. Sail Operation
	C.73.7. Exceptions

	C.74. fence.tso
	C.74.1. Encoding
	C.74.2. Description
	C.74.3. Access
	C.74.4. Decode Variables
	C.74.5. IDL Operation
	C.74.6. Sail Operation
	C.74.7. Exceptions

	C.75. feq.d
	C.75.1. Encoding
	C.75.2. Description
	C.75.3. Access
	C.75.4. Decode Variables
	C.75.5. IDL Operation
	C.75.6. Exceptions

	C.76. feq.s
	C.76.1. Encoding
	C.76.2. Description
	C.76.3. Access
	C.76.4. Decode Variables
	C.76.5. IDL Operation
	C.76.6. Sail Operation
	C.76.7. Exceptions

	C.77. fld
	C.77.1. Encoding
	C.77.2. Description
	C.77.3. Access
	C.77.4. Decode Variables
	C.77.5. IDL Operation
	C.77.6. Exceptions

	C.78. fle.d
	C.78.1. Encoding
	C.78.2. Description
	C.78.3. Access
	C.78.4. Decode Variables
	C.78.5. IDL Operation
	C.78.6. Exceptions

	C.79. fle.s
	C.79.1. Encoding
	C.79.2. Description
	C.79.3. Access
	C.79.4. Decode Variables
	C.79.5. IDL Operation
	C.79.6. Sail Operation
	C.79.7. Exceptions

	C.80. flt.d
	C.80.1. Encoding
	C.80.2. Description
	C.80.3. Access
	C.80.4. Decode Variables
	C.80.5. IDL Operation
	C.80.6. Exceptions

	C.81. flt.s
	C.81.1. Encoding
	C.81.2. Description
	C.81.3. Access
	C.81.4. Decode Variables
	C.81.5. IDL Operation
	C.81.6. Sail Operation
	C.81.7. Exceptions

	C.82. flw
	C.82.1. Encoding
	C.82.2. Description
	C.82.3. Access
	C.82.4. Decode Variables
	C.82.5. IDL Operation
	C.82.6. Sail Operation
	C.82.7. Exceptions

	C.83. fmadd.d
	C.83.1. Encoding
	C.83.2. Description
	C.83.3. Access
	C.83.4. Decode Variables
	C.83.5. IDL Operation
	C.83.6. Exceptions

	C.84. fmadd.s
	C.84.1. Encoding
	C.84.2. Description
	C.84.3. Access
	C.84.4. Decode Variables
	C.84.5. IDL Operation
	C.84.6. Sail Operation
	C.84.7. Exceptions

	C.85. fmax.d
	C.85.1. Encoding
	C.85.2. Description
	C.85.3. Access
	C.85.4. Decode Variables
	C.85.5. IDL Operation
	C.85.6. Exceptions

	C.86. fmax.s
	C.86.1. Encoding
	C.86.2. Description
	C.86.3. Access
	C.86.4. Decode Variables
	C.86.5. IDL Operation
	C.86.6. Sail Operation
	C.86.7. Exceptions

	C.87. fmin.d
	C.87.1. Encoding
	C.87.2. Description
	C.87.3. Access
	C.87.4. Decode Variables
	C.87.5. IDL Operation
	C.87.6. Exceptions

	C.88. fmin.s
	C.88.1. Encoding
	C.88.2. Description
	C.88.3. Access
	C.88.4. Decode Variables
	C.88.5. IDL Operation
	C.88.6. Sail Operation
	C.88.7. Exceptions

	C.89. fmsub.d
	C.89.1. Encoding
	C.89.2. Description
	C.89.3. Access
	C.89.4. Decode Variables
	C.89.5. IDL Operation
	C.89.6. Exceptions

	C.90. fmsub.s
	C.90.1. Encoding
	C.90.2. Description
	C.90.3. Access
	C.90.4. Decode Variables
	C.90.5. IDL Operation
	C.90.6. Sail Operation
	C.90.7. Exceptions

	C.91. fmul.d
	C.91.1. Encoding
	C.91.2. Description
	C.91.3. Access
	C.91.4. Decode Variables
	C.91.5. IDL Operation
	C.91.6. Exceptions

	C.92. fmul.s
	C.92.1. Encoding
	C.92.2. Description
	C.92.3. Access
	C.92.4. Decode Variables
	C.92.5. IDL Operation
	C.92.6. Sail Operation
	C.92.7. Exceptions

	C.93. fmv.w.x
	C.93.1. Encoding
	C.93.2. Description
	C.93.3. Access
	C.93.4. Decode Variables
	C.93.5. IDL Operation
	C.93.6. Sail Operation
	C.93.7. Exceptions

	C.94. fmv.x.w
	C.94.1. Encoding
	C.94.2. Description
	C.94.3. Access
	C.94.4. Decode Variables
	C.94.5. IDL Operation
	C.94.6. Sail Operation
	C.94.7. Exceptions

	C.95. fnmadd.d
	C.95.1. Encoding
	C.95.2. Description
	C.95.3. Access
	C.95.4. Decode Variables
	C.95.5. IDL Operation
	C.95.6. Exceptions

	C.96. fnmadd.s
	C.96.1. Encoding
	C.96.2. Description
	C.96.3. Access
	C.96.4. Decode Variables
	C.96.5. IDL Operation
	C.96.6. Sail Operation
	C.96.7. Exceptions

	C.97. fnmsub.d
	C.97.1. Encoding
	C.97.2. Description
	C.97.3. Access
	C.97.4. Decode Variables
	C.97.5. IDL Operation
	C.97.6. Exceptions

	C.98. fnmsub.s
	C.98.1. Encoding
	C.98.2. Description
	C.98.3. Access
	C.98.4. Decode Variables
	C.98.5. IDL Operation
	C.98.6. Sail Operation
	C.98.7. Exceptions

	C.99. fsd
	C.99.1. Encoding
	C.99.2. Description
	C.99.3. Access
	C.99.4. Decode Variables
	C.99.5. IDL Operation
	C.99.6. Exceptions

	C.100. fsgnj.d
	C.100.1. Encoding
	C.100.2. Description
	C.100.3. Access
	C.100.4. Decode Variables
	C.100.5. IDL Operation
	C.100.6. Exceptions

	C.101. fsgnj.s
	C.101.1. Encoding
	C.101.2. Description
	C.101.3. Access
	C.101.4. Decode Variables
	C.101.5. IDL Operation
	C.101.6. Sail Operation
	C.101.7. Exceptions

	C.102. fsgnjn.d
	C.102.1. Encoding
	C.102.2. Description
	C.102.3. Access
	C.102.4. Decode Variables
	C.102.5. IDL Operation
	C.102.6. Exceptions

	C.103. fsgnjn.s
	C.103.1. Encoding
	C.103.2. Description
	C.103.3. Access
	C.103.4. Decode Variables
	C.103.5. IDL Operation
	C.103.6. Sail Operation
	C.103.7. Exceptions

	C.104. fsgnjx.d
	C.104.1. Encoding
	C.104.2. Description
	C.104.3. Access
	C.104.4. Decode Variables
	C.104.5. IDL Operation
	C.104.6. Exceptions

	C.105. fsgnjx.s
	C.105.1. Encoding
	C.105.2. Description
	C.105.3. Access
	C.105.4. Decode Variables
	C.105.5. IDL Operation
	C.105.6. Sail Operation
	C.105.7. Exceptions

	C.106. fsqrt.d
	C.106.1. Encoding
	C.106.2. Description
	C.106.3. Access
	C.106.4. Decode Variables
	C.106.5. IDL Operation
	C.106.6. Exceptions

	C.107. fsqrt.s
	C.107.1. Encoding
	C.107.2. Description
	C.107.3. Access
	C.107.4. Decode Variables
	C.107.5. IDL Operation
	C.107.6. Sail Operation
	C.107.7. Exceptions

	C.108. fsub.d
	C.108.1. Encoding
	C.108.2. Description
	C.108.3. Access
	C.108.4. Decode Variables
	C.108.5. IDL Operation
	C.108.6. Exceptions

	C.109. fsub.s
	C.109.1. Encoding
	C.109.2. Description
	C.109.3. Access
	C.109.4. Decode Variables
	C.109.5. IDL Operation
	C.109.6. Sail Operation
	C.109.7. Exceptions

	C.110. fsw
	C.110.1. Encoding
	C.110.2. Description
	C.110.3. Access
	C.110.4. Decode Variables
	C.110.5. IDL Operation
	C.110.6. Sail Operation
	C.110.7. Exceptions

	C.111. jal
	C.111.1. Encoding
	C.111.2. Description
	C.111.3. Access
	C.111.4. Decode Variables
	C.111.5. IDL Operation
	C.111.6. Sail Operation
	C.111.7. Exceptions

	C.112. jalr
	C.112.1. Encoding
	C.112.2. Description
	C.112.3. Access
	C.112.4. Decode Variables
	C.112.5. IDL Operation
	C.112.6. Sail Operation
	C.112.7. Exceptions

	C.113. lb
	C.113.1. Encoding
	C.113.2. Description
	C.113.3. Access
	C.113.4. Decode Variables
	C.113.5. IDL Operation
	C.113.6. Sail Operation
	C.113.7. Exceptions

	C.114. lbu
	C.114.1. Encoding
	C.114.2. Description
	C.114.3. Access
	C.114.4. Decode Variables
	C.114.5. IDL Operation
	C.114.6. Sail Operation
	C.114.7. Exceptions

	C.115. ld
	C.115.1. Encoding
	C.115.2. Description
	C.115.3. Access
	C.115.4. Decode Variables
	C.115.5. IDL Operation
	C.115.6. Sail Operation
	C.115.7. Exceptions

	C.116. lh
	C.116.1. Encoding
	C.116.2. Description
	C.116.3. Access
	C.116.4. Decode Variables
	C.116.5. IDL Operation
	C.116.6. Sail Operation
	C.116.7. Exceptions

	C.117. lhu
	C.117.1. Encoding
	C.117.2. Description
	C.117.3. Access
	C.117.4. Decode Variables
	C.117.5. IDL Operation
	C.117.6. Sail Operation
	C.117.7. Exceptions

	C.118. lui
	C.118.1. Encoding
	C.118.2. Description
	C.118.3. Access
	C.118.4. Decode Variables
	C.118.5. IDL Operation
	C.118.6. Sail Operation
	C.118.7. Exceptions

	C.119. lw
	C.119.1. Encoding
	C.119.2. Description
	C.119.3. Access
	C.119.4. Decode Variables
	C.119.5. IDL Operation
	C.119.6. Sail Operation
	C.119.7. Exceptions

	C.120. mul
	C.120.1. Encoding
	C.120.2. Description
	C.120.3. Access
	C.120.4. Decode Variables
	C.120.5. IDL Operation
	C.120.6. Sail Operation
	C.120.7. Exceptions

	C.121. mulh
	C.121.1. Encoding
	C.121.2. Description
	C.121.3. Access
	C.121.4. Decode Variables
	C.121.5. IDL Operation
	C.121.6. Sail Operation
	C.121.7. Exceptions

	C.122. mulhsu
	C.122.1. Encoding
	C.122.2. Description
	C.122.3. Access
	C.122.4. Decode Variables
	C.122.5. IDL Operation
	C.122.6. Sail Operation
	C.122.7. Exceptions

	C.123. mulhu
	C.123.1. Encoding
	C.123.2. Description
	C.123.3. Access
	C.123.4. Decode Variables
	C.123.5. IDL Operation
	C.123.6. Sail Operation
	C.123.7. Exceptions

	C.124. or
	C.124.1. Encoding
	C.124.2. Description
	C.124.3. Access
	C.124.4. Decode Variables
	C.124.5. IDL Operation
	C.124.6. Sail Operation
	C.124.7. Exceptions

	C.125. ori
	C.125.1. Encoding
	C.125.2. Description
	C.125.3. Access
	C.125.4. Decode Variables
	C.125.5. IDL Operation
	C.125.6. Sail Operation
	C.125.7. Exceptions

	C.126. rem
	C.126.1. Encoding
	C.126.2. Description
	C.126.3. Access
	C.126.4. Decode Variables
	C.126.5. IDL Operation
	C.126.6. Sail Operation
	C.126.7. Exceptions

	C.127. remu
	C.127.1. Encoding
	C.127.2. Description
	C.127.3. Access
	C.127.4. Decode Variables
	C.127.5. IDL Operation
	C.127.6. Sail Operation
	C.127.7. Exceptions

	C.128. sb
	C.128.1. Encoding
	C.128.2. Description
	C.128.3. Access
	C.128.4. Decode Variables
	C.128.5. IDL Operation
	C.128.6. Sail Operation
	C.128.7. Exceptions

	C.129. sd
	C.129.1. Encoding
	C.129.2. Description
	C.129.3. Access
	C.129.4. Decode Variables
	C.129.5. IDL Operation
	C.129.6. Sail Operation
	C.129.7. Exceptions

	C.130. sfence.vma
	C.130.1. Encoding
	C.130.2. Description
	C.130.3. Access
	C.130.4. Decode Variables
	C.130.5. IDL Operation
	C.130.6. Sail Operation
	C.130.7. Exceptions

	C.131. sh
	C.131.1. Encoding
	C.131.2. Description
	C.131.3. Access
	C.131.4. Decode Variables
	C.131.5. IDL Operation
	C.131.6. Sail Operation
	C.131.7. Exceptions

	C.132. sll
	C.132.1. Encoding
	C.132.2. Description
	C.132.3. Access
	C.132.4. Decode Variables
	C.132.5. IDL Operation
	C.132.6. Sail Operation
	C.132.7. Exceptions

	C.133. slli
	C.133.1. Encoding
	C.133.2. Description
	C.133.3. Access
	C.133.4. Decode Variables
	C.133.5. IDL Operation
	C.133.6. Sail Operation
	C.133.7. Exceptions

	C.134. slt
	C.134.1. Encoding
	C.134.2. Description
	C.134.3. Access
	C.134.4. Decode Variables
	C.134.5. IDL Operation
	C.134.6. Sail Operation
	C.134.7. Exceptions

	C.135. slti
	C.135.1. Encoding
	C.135.2. Description
	C.135.3. Access
	C.135.4. Decode Variables
	C.135.5. IDL Operation
	C.135.6. Sail Operation
	C.135.7. Exceptions

	C.136. sltiu
	C.136.1. Encoding
	C.136.2. Description
	C.136.3. Access
	C.136.4. Decode Variables
	C.136.5. IDL Operation
	C.136.6. Sail Operation
	C.136.7. Exceptions

	C.137. sltu
	C.137.1. Encoding
	C.137.2. Description
	C.137.3. Access
	C.137.4. Decode Variables
	C.137.5. IDL Operation
	C.137.6. Sail Operation
	C.137.7. Exceptions

	C.138. sra
	C.138.1. Encoding
	C.138.2. Description
	C.138.3. Access
	C.138.4. Decode Variables
	C.138.5. IDL Operation
	C.138.6. Sail Operation
	C.138.7. Exceptions

	C.139. srai
	C.139.1. Encoding
	C.139.2. Description
	C.139.3. Access
	C.139.4. Decode Variables
	C.139.5. IDL Operation
	C.139.6. Sail Operation
	C.139.7. Exceptions

	C.140. sret
	C.140.1. Encoding
	C.140.2. Description
	C.140.3. Access
	C.140.4. Decode Variables
	C.140.5. IDL Operation
	C.140.6. Sail Operation
	C.140.7. Exceptions

	C.141. srl
	C.141.1. Encoding
	C.141.2. Description
	C.141.3. Access
	C.141.4. Decode Variables
	C.141.5. IDL Operation
	C.141.6. Sail Operation
	C.141.7. Exceptions

	C.142. srli
	C.142.1. Encoding
	C.142.2. Description
	C.142.3. Access
	C.142.4. Decode Variables
	C.142.5. IDL Operation
	C.142.6. Sail Operation
	C.142.7. Exceptions

	C.143. sub
	C.143.1. Encoding
	C.143.2. Description
	C.143.3. Access
	C.143.4. Decode Variables
	C.143.5. IDL Operation
	C.143.6. Sail Operation
	C.143.7. Exceptions

	C.144. sw
	C.144.1. Encoding
	C.144.2. Description
	C.144.3. Access
	C.144.4. Decode Variables
	C.144.5. IDL Operation
	C.144.6. Sail Operation
	C.144.7. Exceptions

	C.145. xor
	C.145.1. Encoding
	C.145.2. Description
	C.145.3. Access
	C.145.4. Decode Variables
	C.145.5. IDL Operation
	C.145.6. Sail Operation
	C.145.7. Exceptions

	C.146. xori
	C.146.1. Encoding
	C.146.2. Description
	C.146.3. Access
	C.146.4. Decode Variables
	C.146.5. IDL Operation
	C.146.6. Sail Operation
	C.146.7. Exceptions

	Appendix D: CSR Details
	D.1. cycle
	D.1.1. Attributes
	D.1.2. Format
	D.1.3. Field Summary
	D.1.4. Fields
	cycle.COUNT Field

	D.1.5. Software read

	D.2. fcsr
	D.2.1. Attributes
	D.2.2. Format
	D.2.3. Field Summary
	D.2.4. Fields
	fcsr.FRM Field
	fcsr.NV Field
	fcsr.DZ Field
	fcsr.OF Field
	fcsr.UF Field
	fcsr.NX Field

	D.3. fflags
	D.3.1. Attributes
	D.3.2. Format
	D.3.3. Field Summary
	D.3.4. Fields
	fflags.NV Field
	fflags.DZ Field
	fflags.OF Field
	fflags.UF Field
	fflags.NX Field

	D.3.5. Software write
	D.3.6. Software read

	D.4. frm
	D.4.1. Attributes
	D.4.2. Format
	D.4.3. Field Summary
	D.4.4. Fields
	frm.ROUNDINGMODE Field

	D.4.5. Software write
	D.4.6. Software read

	D.5. hpmcounter10
	D.5.1. Attributes
	D.5.2. Format
	D.5.3. Field Summary
	D.5.4. Fields
	hpmcounter10.COUNT Field

	D.5.5. Software read

	D.6. hpmcounter11
	D.6.1. Attributes
	D.6.2. Format
	D.6.3. Field Summary
	D.6.4. Fields
	hpmcounter11.COUNT Field

	D.6.5. Software read

	D.7. hpmcounter12
	D.7.1. Attributes
	D.7.2. Format
	D.7.3. Field Summary
	D.7.4. Fields
	hpmcounter12.COUNT Field

	D.7.5. Software read

	D.8. hpmcounter13
	D.8.1. Attributes
	D.8.2. Format
	D.8.3. Field Summary
	D.8.4. Fields
	hpmcounter13.COUNT Field

	D.8.5. Software read

	D.9. hpmcounter14
	D.9.1. Attributes
	D.9.2. Format
	D.9.3. Field Summary
	D.9.4. Fields
	hpmcounter14.COUNT Field

	D.9.5. Software read

	D.10. hpmcounter15
	D.10.1. Attributes
	D.10.2. Format
	D.10.3. Field Summary
	D.10.4. Fields
	hpmcounter15.COUNT Field

	D.10.5. Software read

	D.11. hpmcounter16
	D.11.1. Attributes
	D.11.2. Format
	D.11.3. Field Summary
	D.11.4. Fields
	hpmcounter16.COUNT Field

	D.11.5. Software read

	D.12. hpmcounter17
	D.12.1. Attributes
	D.12.2. Format
	D.12.3. Field Summary
	D.12.4. Fields
	hpmcounter17.COUNT Field

	D.12.5. Software read

	D.13. hpmcounter18
	D.13.1. Attributes
	D.13.2. Format
	D.13.3. Field Summary
	D.13.4. Fields
	hpmcounter18.COUNT Field

	D.13.5. Software read

	D.14. hpmcounter19
	D.14.1. Attributes
	D.14.2. Format
	D.14.3. Field Summary
	D.14.4. Fields
	hpmcounter19.COUNT Field

	D.14.5. Software read

	D.15. hpmcounter20
	D.15.1. Attributes
	D.15.2. Format
	D.15.3. Field Summary
	D.15.4. Fields
	hpmcounter20.COUNT Field

	D.15.5. Software read

	D.16. hpmcounter21
	D.16.1. Attributes
	D.16.2. Format
	D.16.3. Field Summary
	D.16.4. Fields
	hpmcounter21.COUNT Field

	D.16.5. Software read

	D.17. hpmcounter22
	D.17.1. Attributes
	D.17.2. Format
	D.17.3. Field Summary
	D.17.4. Fields
	hpmcounter22.COUNT Field

	D.17.5. Software read

	D.18. hpmcounter23
	D.18.1. Attributes
	D.18.2. Format
	D.18.3. Field Summary
	D.18.4. Fields
	hpmcounter23.COUNT Field

	D.18.5. Software read

	D.19. hpmcounter24
	D.19.1. Attributes
	D.19.2. Format
	D.19.3. Field Summary
	D.19.4. Fields
	hpmcounter24.COUNT Field

	D.19.5. Software read

	D.20. hpmcounter25
	D.20.1. Attributes
	D.20.2. Format
	D.20.3. Field Summary
	D.20.4. Fields
	hpmcounter25.COUNT Field

	D.20.5. Software read

	D.21. hpmcounter26
	D.21.1. Attributes
	D.21.2. Format
	D.21.3. Field Summary
	D.21.4. Fields
	hpmcounter26.COUNT Field

	D.21.5. Software read

	D.22. hpmcounter27
	D.22.1. Attributes
	D.22.2. Format
	D.22.3. Field Summary
	D.22.4. Fields
	hpmcounter27.COUNT Field

	D.22.5. Software read

	D.23. hpmcounter28
	D.23.1. Attributes
	D.23.2. Format
	D.23.3. Field Summary
	D.23.4. Fields
	hpmcounter28.COUNT Field

	D.23.5. Software read

	D.24. hpmcounter29
	D.24.1. Attributes
	D.24.2. Format
	D.24.3. Field Summary
	D.24.4. Fields
	hpmcounter29.COUNT Field

	D.24.5. Software read

	D.25. hpmcounter3
	D.25.1. Attributes
	D.25.2. Format
	D.25.3. Field Summary
	D.25.4. Fields
	hpmcounter3.COUNT Field

	D.25.5. Software read

	D.26. hpmcounter30
	D.26.1. Attributes
	D.26.2. Format
	D.26.3. Field Summary
	D.26.4. Fields
	hpmcounter30.COUNT Field

	D.26.5. Software read

	D.27. hpmcounter31
	D.27.1. Attributes
	D.27.2. Format
	D.27.3. Field Summary
	D.27.4. Fields
	hpmcounter31.COUNT Field

	D.27.5. Software read

	D.28. hpmcounter4
	D.28.1. Attributes
	D.28.2. Format
	D.28.3. Field Summary
	D.28.4. Fields
	hpmcounter4.COUNT Field

	D.28.5. Software read

	D.29. hpmcounter5
	D.29.1. Attributes
	D.29.2. Format
	D.29.3. Field Summary
	D.29.4. Fields
	hpmcounter5.COUNT Field

	D.29.5. Software read

	D.30. hpmcounter6
	D.30.1. Attributes
	D.30.2. Format
	D.30.3. Field Summary
	D.30.4. Fields
	hpmcounter6.COUNT Field

	D.30.5. Software read

	D.31. hpmcounter7
	D.31.1. Attributes
	D.31.2. Format
	D.31.3. Field Summary
	D.31.4. Fields
	hpmcounter7.COUNT Field

	D.31.5. Software read

	D.32. hpmcounter8
	D.32.1. Attributes
	D.32.2. Format
	D.32.3. Field Summary
	D.32.4. Fields
	hpmcounter8.COUNT Field

	D.32.5. Software read

	D.33. hpmcounter9
	D.33.1. Attributes
	D.33.2. Format
	D.33.3. Field Summary
	D.33.4. Fields
	hpmcounter9.COUNT Field

	D.33.5. Software read

	D.34. instret
	D.34.1. Attributes
	D.34.2. Format
	D.34.3. Field Summary
	D.34.4. Fields
	instret.COUNT Field

	D.34.5. Software read

	D.35. mcounteren
	D.35.1. Attributes
	D.35.2. Format
	D.35.3. Field Summary
	D.35.4. Fields
	mcounteren.CY Field
	mcounteren.TM Field
	mcounteren.IR Field
	mcounteren.HPM3 Field
	mcounteren.HPM4 Field
	mcounteren.HPM5 Field
	mcounteren.HPM6 Field
	mcounteren.HPM7 Field
	mcounteren.HPM8 Field
	mcounteren.HPM9 Field
	mcounteren.HPM10 Field
	mcounteren.HPM11 Field
	mcounteren.HPM12 Field
	mcounteren.HPM13 Field
	mcounteren.HPM14 Field
	mcounteren.HPM15 Field
	mcounteren.HPM16 Field
	mcounteren.HPM17 Field
	mcounteren.HPM18 Field
	mcounteren.HPM19 Field
	mcounteren.HPM20 Field
	mcounteren.HPM21 Field
	mcounteren.HPM22 Field
	mcounteren.HPM23 Field
	mcounteren.HPM24 Field
	mcounteren.HPM25 Field
	mcounteren.HPM26 Field
	mcounteren.HPM27 Field
	mcounteren.HPM28 Field
	mcounteren.HPM29 Field
	mcounteren.HPM30 Field
	mcounteren.HPM31 Field

	D.36. medeleg
	D.36.1. Attributes
	D.36.2. Format
	D.36.3. Field Summary
	D.36.4. Fields
	medeleg.IAM Field
	medeleg.IAF Field
	medeleg.II Field
	medeleg.B Field
	medeleg.LAM Field
	medeleg.LAF Field
	medeleg.SAM Field
	medeleg.SAF Field
	medeleg.EU Field
	medeleg.ES Field
	medeleg.EVS Field
	medeleg.EM Field
	medeleg.IPF Field
	medeleg.LPF Field
	medeleg.SPF Field
	medeleg.IGPF Field
	medeleg.LGPF Field
	medeleg.VI Field
	medeleg.SGPF Field

	D.37. satp
	D.37.1. Attributes
	D.37.2. Format
	D.37.3. Field Summary
	D.37.4. Fields
	satp.MODE Field
	satp.ASID Field
	satp.PPN Field

	D.37.5. Software write

	D.38. scause
	D.38.1. Attributes
	D.38.2. Format
	D.38.3. Field Summary
	D.38.4. Fields
	scause.INT Field
	scause.CODE Field

	D.38.5. Software write

	D.39. scounteren
	D.39.1. Attributes
	D.39.2. Format
	D.39.3. Field Summary
	D.39.4. Fields
	scounteren.CY Field
	scounteren.TM Field
	scounteren.IR Field
	scounteren.HPM3 Field
	scounteren.HPM4 Field
	scounteren.HPM5 Field
	scounteren.HPM6 Field
	scounteren.HPM7 Field
	scounteren.HPM8 Field
	scounteren.HPM9 Field
	scounteren.HPM10 Field
	scounteren.HPM11 Field
	scounteren.HPM12 Field
	scounteren.HPM13 Field
	scounteren.HPM14 Field
	scounteren.HPM15 Field
	scounteren.HPM16 Field
	scounteren.HPM17 Field
	scounteren.HPM18 Field
	scounteren.HPM19 Field
	scounteren.HPM20 Field
	scounteren.HPM21 Field
	scounteren.HPM22 Field
	scounteren.HPM23 Field
	scounteren.HPM24 Field
	scounteren.HPM25 Field
	scounteren.HPM26 Field
	scounteren.HPM27 Field
	scounteren.HPM28 Field
	scounteren.HPM29 Field
	scounteren.HPM30 Field
	scounteren.HPM31 Field

	D.40. sepc
	D.40.1. Attributes
	D.40.2. Format
	D.40.3. Field Summary
	D.40.4. Fields
	sepc.PC Field

	D.40.5. Software write
	D.40.6. Software read

	D.41. sip
	D.41.1. Attributes
	D.41.2. Format
	D.41.3. Field Summary
	D.41.4. Fields
	sip.SSIP Field
	sip.STIP Field
	sip.SEIP Field
	sip.LCOFIP Field

	D.42. sscratch
	D.42.1. Attributes
	D.42.2. Format
	D.42.3. Field Summary
	D.42.4. Fields
	sscratch.SCRATCH Field

	D.43. sstatus
	D.43.1. Attributes
	D.43.2. Format
	D.43.3. Field Summary
	D.43.4. Fields
	sstatus.SD Field
	sstatus.UXL Field
	sstatus.MXR Field
	sstatus.SUM Field
	sstatus.XS Field
	sstatus.FS Field
	sstatus.VS Field
	sstatus.SPP Field
	sstatus.UBE Field
	sstatus.SPIE Field
	sstatus.SIE Field

	D.44. stval
	D.44.1. Attributes
	D.44.2. Format
	D.44.3. Field Summary
	D.44.4. Fields
	stval.VALUE Field

	D.45. stvec
	D.45.1. Attributes
	D.45.2. Format
	D.45.3. Field Summary
	D.45.4. Fields
	stvec.BASE Field
	stvec.MODE Field

	D.45.5. Software write

	D.46. time
	D.46.1. Attributes
	D.46.2. Format
	D.46.3. Field Summary
	D.46.4. Fields
	time.COUNT Field

	D.46.5. Software read

	Appendix E: IDL Function Details
	E.1. implemented? (generated)
	E.2. implemented_version? (generated)
	E.3. implemented_csr? (generated)
	E.4. direct_csr_lookup (generated)
	E.5. indirect_csr_lookup (generated)
	E.6. csr_hw_read (generated)
	E.7. csr_sw_read (generated)
	E.8. csr_sw_write (generated)
	E.9. unpredictable (builtin)
	E.10. unreachable (builtin)
	E.11. read_hpm_counter (builtin)
	E.12. hartid (builtin)
	E.13. read_mcycle (builtin)
	E.14. read_mtime (builtin)
	E.15. sw_write_mcycle (builtin)
	E.16. cache_block_zero (builtin)
	E.17. eei_ecall_from_m (builtin)
	E.18. eei_ecall_from_s (builtin)
	E.19. eei_ecall_from_u (builtin)
	E.20. eei_ecall_from_vs (builtin)
	E.21. eei_ebreak (builtin)
	E.22. memory_model_acquire (builtin)
	E.23. memory_model_release (builtin)
	E.24. assert (builtin)
	E.25. notify_mode_change (builtin)
	E.26. abort_current_instruction (builtin)
	E.27. ebreak (builtin)
	E.28. prefetch_instruction (builtin)
	E.29. prefetch_read (builtin)
	E.30. prefetch_write (builtin)
	E.31. fence (builtin)
	E.32. fence_tso (builtin)
	E.33. ifence (builtin)
	E.34. pause (builtin)
	E.35. pow (generated)
	E.36. maybe_cache_translation (generated)
	E.37. cached_translation (generated)
	E.38. order_pgtbl_writes_before_vmafence (builtin)
	E.39. order_pgtbl_reads_after_vmafence (builtin)
	E.40. invalidate_translations (generated)
	E.41. read_physical_memory
	E.42. read_physical_memory_8 (builtin)
	E.43. read_physical_memory_16 (builtin)
	E.44. read_physical_memory_32 (builtin)
	E.45. read_physical_memory_64 (builtin)
	E.46. write_physical_memory
	E.47. write_physical_memory_8 (builtin)
	E.48. write_physical_memory_16 (builtin)
	E.49. write_physical_memory_32 (builtin)
	E.50. write_physical_memory_64 (builtin)
	E.51. wfi (builtin)
	E.52. pma_applies? (builtin)
	E.53. atomic_check_then_write_32 (builtin)
	E.54. atomic_check_then_write_64 (builtin)
	E.55. atomically_set_pte_a (builtin)
	E.56. atomically_set_pte_a_d (builtin)
	E.57. atomic_read_modify_write_32 (builtin)
	E.58. atomic_read_modify_write_64 (builtin)
	E.59. set_external_interrupt
	E.60. clear_external_interrupt
	E.61. set_software_interrupt
	E.62. clear_software_interrupt
	E.63. set_timer_interrupt
	E.64. clear_timer_interrupt
	E.65. refresh_pending_interrupts
	E.66. highest_priority_interrupt
	E.67. choose_interrupt
	E.68. take_interrupt
	E.69. fetch_memory_aligned_16
	E.70. fetch_memory_aligned_32
	E.71. power_of_2?
	E.72. has_virt_mem?
	E.73. max_va_size
	E.74. highest_set_bit
	E.75. lowest_set_bit
	E.76. bit_length
	E.77. count_leading_zeros
	E.78. sext
	E.79. is_naturally_aligned
	E.80. in_naturally_aligned_region?
	E.81. contains?
	E.82. set_fp_flag
	E.83. rm_to_mode
	E.84. mark_f_state_dirty
	E.85. nan_box
	E.86. check_f_ok
	E.87. is_sp_neg_inf?
	E.88. is_sp_pos_inf?
	E.89. is_sp_neg_norm?
	E.90. is_sp_pos_norm?
	E.91. is_sp_neg_subnorm?
	E.92. is_sp_pos_subnorm?
	E.93. is_sp_neg_zero?
	E.94. is_sp_pos_zero?
	E.95. is_sp_nan?
	E.96. is_sp_signaling_nan?
	E.97. is_sp_quiet_nan?
	E.98. softfloat_shiftRightJam32
	E.99. softfloat_shiftRightJam64
	E.100. softfloat_roundToI32
	E.101. softfloat_roundToUI32
	E.102. packToF32UI
	E.103. packToF16UI
	E.104. softfloat_normSubnormalF16Sig
	E.105. softfloat_roundPackToF32
	E.106. softfloat_normRoundPackToF32
	E.107. signF32UI
	E.108. expF32UI
	E.109. fracF32UI
	E.110. returnNonSignalingNaN
	E.111. returnMag
	E.112. returnLargerMag
	E.113. softfloat_propagateNaNF32UI
	E.114. softfloat_addMagsF32
	E.115. softfloat_subMagsF32
	E.116. f32_add
	E.117. f32_sub
	E.118. i32_to_f32
	E.119. ui32_to_f32
	E.120. f32_to_i32
	E.121. f32_to_ui32
	E.122. softfloat_roundPackToF32_no_flag
	E.123. softfloat_normRoundPackToF32_no_flag
	E.124. i32_to_f32_no_flag
	E.125. softfloat_roundToI32_no_flag
	E.126. f32_to_i32_no_flag
	E.127. round_f32_to_integral
	E.128. vector_state
	E.129. mode
	E.130. set_mode_no_refresh
	E.131. set_mode
	E.132. compatible_mode?
	E.133. exception_handling_mode
	E.134. creg2reg
	E.135. unimplemented_csr
	E.136. mtval_readonly?
	E.137. stval_readonly?
	E.138. vstval_readonly?
	E.139. mtval_for
	E.140. stval_for
	E.141. vstval_for
	E.142. raise_guest_page_fault
	E.143. raise
	E.144. raise_precise
	E.145. ialign
	E.146. jump
	E.147. jump_halfword
	E.148. valid_interrupt_code?
	E.149. valid_exception_code?
	E.150. xlen
	E.151. virtual_mode?
	E.152. mask_eaddr
	E.153. pmp_match_64
	E.154. pmp_match_32
	E.155. pmp_match
	E.156. mpv
	E.157. effective_ldst_mode
	E.158. pmp_check
	E.159. access_check
	E.160. base32?
	E.161. base64?
	E.162. current_translation_mode
	E.163. current_gstage_translation_mode
	E.164. translate_gstage
	E.165. tinst_value_for_guest_page_fault
	E.166. tinst_transform
	E.167. transformed_standard_instruction_for_tinst
	E.168. tinst_value
	E.169. gstage_page_walk
	E.170. stage1_page_walk
	E.171. translate
	E.172. canonical_vaddr?
	E.173. canonical_gpaddr?
	E.174. misaligned_is_atomic?
	E.175. read_memory_aligned
	E.176. read_memory
	E.177. read_memory_xlen
	E.178. write_memory_xlen
	E.179. read_memory_xlen_aligned
	E.180. invalidate_reservation_set
	E.181. register_reservation_set
	E.182. load_reserved
	E.183. store_conditional
	E.184. amo
	E.185. write_memory_aligned
	E.186. write_memory
	E.187. write_memory_xlen_aligned
	E.188. mstatus_sd_has_known_reset
	E.189. mstatus_sd_reset_value
	E.190. check_zcmt_enabled

