
RVI20 Profile Release

TODO: revmark

Copyright and license information
This document is released under the Creative Commons Attribution 4.0 International License.

Copyright 2023 by RISC-V International.

Acknowledgements
Contributors to the RVI20 Profile (in alphabetical order) include:

• Krste Asanovic <krste@sifive.com> (SiFive)

We express our gratitude to everyone that contributed to, reviewed or improved this specification through their comments and questions.

1. RISC-V Profiles
RISC-V was designed to provide a highly modular and extensible instruction set, and includes a large and growing set of standard extensions. In
addition, users may add their own custom extensions. This flexibility can be used to highly optimize a specialized design by including only the exact
set of ISA features required for an application, but the same flexibility also leads to a combinatorial explosion in possible ISA choices. Profiles specify
a much smaller common set of ISA choices that capture the most value for most users, and which thereby enable the software community to focus
resources on building a rich software ecosystem with application and operating system portability across different implementations.


Another pragmatic concern is the long and unwieldy ISA strings required to encode common sets of extensions, which will continue
to grow as new extensions are defined.

Each profile is built on a standard base ISA plus a set of mandatory ISA extensions, and provides a small set of standard ISA options to extend the
mandatory components. Profiles provide a convenient shorthand for describing the ISA portions of hardware and software platforms, and also guide
the development of common software toolchains shared by different platforms that use the same profile. The intent is that the software ecosystem
focus on supporting the profiles' mandatory base and standard options, instead of attempting to support every possible combination of individual
extensions. Similarly, hardware vendors should aim to structure their offerings around standard profiles to increase the likelihood their designs will
have mainstream software support.


Profiles are not intended to prohibit the use of combinations of individual ISA extensions or the addition of custom extensions,
which can continue to be used for more specialized applications albeit without the expectation of widespread software support or
portability between hardware platforms.



As RISC-V evolves over time, the set of ISA features will grow, and new platforms will be added that may need different profiles. To
manage this evolution, RISC-V is adopting a model of regular annual releases of new ISA profiles, following an ISA roadmap
managed by the RISC-V Technical Steering Committee. The architecture profiles will also be used for branding and to advertise
compatibility with the RISC-V standard.

1.1. Profiles versus Platforms
Profiles only describe ISA features, not a complete execution environment.

A software platform is a specification for an execution environment, in which software targeted for that software platform can run.

Table of Contents
Copyright and license information. 1

Acknowledgements . 1

1. RISC-V Profiles . 1

2. RVI Profile Family . 3

3. RVI20 Profile Release . 4

Appendix A: Profile Comparisons. 8

Appendix B: Extension Details. 10

Appendix C: Instruction Details . 25

Appendix D: CSR Details . 205

Appendix E: IDL Function Details. 279

1

https://creativecommons.org/licenses/by/4.0/
mailto:krste@sifive.com

A hardware platform is a specification for a hardware system (which can be viewed as a physical realization of an execution environment).

Both software and hardware platforms include specifications for many features beyond details of the ISA used by RISC-V harts in the platform (e.g.,
boot process, calling convention, behavior of environment calls, discovery mechanism, presence of certain memory-mapped hardware devices, etc.).
Architecture profiles factor out ISA-specific definitions from platform definitions to allow ISA profiles to be reused across different platforms, and to
be used by tools (e.g., compilers) that are common across many different platforms.

A platform can add additional constraints on top of those in a profile. For example, mandating an extension that is a standard option in the
underlying profile, or constraining some implementation-specific parameter in the profile to lie within a certain range.

A platform cannot remove mandates or reduce other requirements in a profile.

 A new profile should be proposed if existing profiles do not match the needs of a new platform.

1.2. Components of a Profile

1.2.1. Profile Family

Every profile is a member of a profile family. A profile family is a set of profiles that share the same base ISA but which vary in highest-supported
privilege mode. The initial two types of family are:

• generic unprivileged instructions (I)

• application processors running rich operating systems (A)

 More profile families may be added over time.

A profile family may be updated no more than annually, and the release calendar year is treated as part of the profile family name.

Each profile family is described in more detail below.

1.2.2. Profile Privilege Mode

RISC-V has a layered architecture supporting multiple privilege modes, and most RISC-V platforms support more than one privilege mode. Software
is usually written assuming a particular privilege mode during execution. For example, application code is written assuming it will be run in user
mode, and kernel code is written assuming it will be run in supervisor mode.



Software can be run in a mode different than the one for which it was written. For example, privileged code using privileged ISA
features can be run in a user-mode execution environment, but will then cause traps into the enclosing execution environment
when privileged instructions are executed. This behavior might be exploited, for example, to emulate a privileged execution
environment using a user-mode execution environment.

The profile for a privilege mode describes the ISA features for an execution environment that has the eponymous privilege mode as the most-
privileged mode available, but also includes all supported lower-privilege modes. In general, available instructions vary by privilege mode, and the
behavior of RISC-V instructions can depend on the current privilege mode. For example, an S-mode profile includes U-mode as well as S-mode and
describes the behavior of instructions when running in different modes in an S-mode execution environment, such as how an ecall instruction in U-
mode causes a contained trap into an S-mode handler whereas an ecall in S-mode causes a requested trap out to the execution environment.

A profile may specify that certain conditions will cause a requested trap (such as an ecall made in the highest-supported privilege mode) or fatal trap
to the enclosing execution environment. The profile does not specify the behavior of the enclosing execution environment iusually n handling
requested or fatal traps.


In particular, a profile does not specify the set of ECALLs available in the outer execution environment. This should be documented
in the appropriate binary interface to the outer execution environment (e.g., Linux user ABI, or RISC-V SEE).


In general, a profile can be implemented by an execution environment using any hardware or software technique that provides
compatible functionality, including pure software emulation.

A profile does not specify any invisible traps.

 In particular, a profile does not constrain how invisible traps to a more-privileged mode can be used to emulate profile features.

A more-privileged profile can always support running software to implement a less-privileged profile from the same profile family. For example, a
platform supporting the S-mode profile can run a supervisor-mode operating system that provides user-mode execution environments supporting
the U-mode profile.


Instructions in a U-mode profile, which are all executed in user mode, have potentially different behaviors than instructions
executed in user mode in an S-mode profile. For this reason, a U-mode profile cannot be considered a subset of an S-mode profile.

2

1.2.3. Profile ISA Features

An architecture profile has a mandatory ratified base instruction set (RV32I or RV64I for the current profiles). The profile also includes ratified ISA
extensions placed into two categories:

1. Mandatory

2. Optional

As the name implies, Mandatory ISA extensions are a required part of the profile. Implementations of the profile must provide these. The
combination of the profile base ISA plus the mandatory ISA extensions are termed the profile mandates, and software using the profile can assume
these always exist.

The Optional category (also known as options) contains extensions that may be added as options, and which are expected to be generally supported
as options by the software ecosystem for this profile.


The level of "support" for an Optional extension will likely vary greatly among different software components supporting a profile.
Users would expect that software claiming compatibility with a profile would make use of any available supported options, but as a
bare minimum software should not report errors or warnings when supported options are present in a system.

An optional extension may comprise many individually named and ratified extensions but a profile option requires all constituent extensions are
present. In particular, unless explicitly listed as a profile option, individual extensions are not by themselves a profile option even when required as
part of a profile option. For example, the Zbkb extension is not by itself a profile option even though it is a required component of the Zkn option.


Profile optional extensions are intended to capture the granularity at which the broad software ecosystem is expected to cope with
combinations of extensions.

All components of a ratified profile must themselves have been ratified.

Platforms may provide a discovery mechanism to determine what optional extensions are present.

Extensions that are not explicitly listed in the mandatory or optional categories are termed non-profile extensions, and are not considered parts of
the profile. Some non-profile extensions can be added to an implementation without conflicting with the mandatory or optional components of a
profile. In this case, the implementation is still compatible with the profile even though additional non-profile extensions are present. Other non-
profile extensions added to an implementation might alter or conflict with the behavior of the mandatory or optional extensions in a profile, in
which case the implementation would not be compatible with the profile.


Extensions that are released after a given profile is released are by definition non-profile extensions. For example, mandatory or
optional profile extensions for a new profile might be prototyped as non-profile extensions on an earlier profile.

2. RVI Profile Family
The RVI profile family documents the initial set of unprivileged instructions.

2.1. RVI Description
The RVI profile family provides a generic target for software toolchains and represent the minimum level of compatibility with RISC-V ratified
standards.


Profiles in this family are designated as unprivileged profiles as opposed to user-mode profiles. Code using this profile family can run
in any privilege mode, and so requested and fatal traps may be horizontal traps into an execution environment running in the same
privilege mode.

2.2. RVI Naming Scheme
The profile family name is RVI (RISC-V base Integer instructions). A profile release name is an integer (currently 2 digits, could grow in the future). A
full profile name is comprised of, in order:

• Prefix RVI for RISC-V Integer

• Profile release

• Privilege mode:

◦ U Unprivileged (available to any privilege mode, U is not User-mode)

• A base ISA XLEN specifier (32, 64)


Profile names are embeddable into RISC-V ISA naming strings. This implies that there will be no standard ISA extension with a
name that matches the profile naming convention. This allows tools that process the RISC-V ISA naming string to parse and/or
process a combined string.

3

2.3. RVI Profile Releases
The following profile releases are defined in this profile family:

Name

RVI20

State

ratified

Ratification date

2023-04-03

3. RVI20 Profile Release
The two profiles RVI20U32 and RVI20U64 correspond to the RV32I and RV64I base ISAs respectively.

RVI20 has 1 associated implementation-defined parameters across all its defined profiles.

3.1. RVI20 Description
This profile release defines the RISC-V base ISA unprivileged instructions.

3.2. RVI20U32 Profile
This profile specifies the ISA features available to generic unprivileged execution environments.

3.2.1. Mandatory Extensions

The RVI20U32 Profile has 1 mandatory extension.

• I Base integer ISA (RV32I or RV64I)

Version ~> 2.1



RVI is the mandatory base ISA for RVA, and is little-endian.

As per the unprivileged architecture specification, the ecall instruction causes a requested trap to the execution environment.

Misaligned loads and stores might not be supported.

The fence.tso instruction is mandatory.



The fence.tso instruction was incorrectly described as optional in the 2019 ratified specifications. However,
fence.tso is encoded within the standard fence encoding such that implementations must treat it as a simple
global fence if they do not natively support TSO-ordering optimizations. As software can always assume
without any penalty that fence.tso is being exploited by a hardware implementation, there is no advantage to
making the instruction a profile option. Later versions of the unprivileged ISA specifications correctly indicate
that fence.tso is mandatory.

3.2.2. Optional Extensions

The RVI20U32 Profile has 11 optional extensions.

• A Atomic instructions

Version ~> 2.1

• C Compressed instructions

Version ~> 2.0

• D Double-precision floating-point

Version ~> 2.2

 
The rationale to not include Q as a profile option is that quad-precision floating-point is unlikely to be
implemented in hardware, and so we do not require or expect software to expend effort optimizing use of Q
instructions in case they are present.

4

• F Single-precision floating-point

Version ~> 2.2

• M Integer multiply and divide

Version ~> 2.0

• Zca C instructions excluding floating-point loads/stores

Version ~> 1.0

• Zcd Compressed double-precision floating-point loads/stores

Version ~> 1.0

• Zcf Compressed single-precision floating-point loads/stores

Version ~> 1.0

• Zicntr Base Counters and Timers

Version ~> 2.0

• Zifencei Instruction fence

Version ~> 2.0

• Zihpm Hardware Performance Counters

Version ~> 2.0

 The number of counters is platform-specific.

3.2.3. Recommendations

Recommendations are not strictly mandated but are included to guide implementers making design choices.

• Implementations are strongly recommended to raise illegal-instruction exceptions on attempts to execute unimplemented opcodes.

3.2.4. Implementation-dependencies

RVI20U32 has 1 associated implementation-defined parameters.

TIME_CSR_IMPLEMENTED

Whether or not a real hardware time CSR exists. Implementations can either provide a real CSR or emulate access at M-mode.

Possible values:

true

time/timeh exists, and accessing it will not cause an IllegalInstruction trap

false

time/timeh does not exist. Accessing the CSR will cause an IllegalInstruction trap or enter an unpredictable state, depending on
TRAP_ON_UNIMPLEMENTED_CSR. Privileged software may emulate the time CSR, or may pass the exception to a lower level.

3.3. RVI20U64 Profile
This profile specifies the ISA features available to generic unprivileged execution environments.

3.3.1. Mandatory Extensions

The RVI20U64 Profile has 1 mandatory extension.

• I Base integer ISA (RV32I or RV64I)

Version ~> 2.1



RVI is the mandatory base ISA for RVA, and is little-endian.

As per the unprivileged architecture specification, the ecall instruction causes a requested trap to the execution environment.

Misaligned loads and stores might not be supported.

The fence.tso instruction is mandatory.

5



The fence.tso instruction was incorrectly described as optional in the 2019 ratified specifications. However,
fence.tso is encoded within the standard fence encoding such that implementations must treat it as a simple
global fence if they do not natively support TSO-ordering optimizations. As software can always assume
without any penalty that fence.tso is being exploited by a hardware implementation, there is no advantage to
making the instruction a profile option. Later versions of the unprivileged ISA specifications correctly indicate
that fence.tso is mandatory.

3.3.2. Optional Extensions

The RVI20U64 Profile has 11 optional extensions.

• A Atomic instructions

Version ~> 2.1

• C Compressed instructions

Version ~> 2.0

• D Double-precision floating-point

Version ~> 2.2

 
The rationale to not include Q as a profile option is that quad-precision floating-point is unlikely to be
implemented in hardware, and so we do not require or expect software to expend effort optimizing use of Q
instructions in case they are present.

• F Single-precision floating-point

Version ~> 2.2

• M Integer multiply and divide

Version ~> 2.0

• Zca C instructions excluding floating-point loads/stores

Version ~> 1.0

• Zcd Compressed double-precision floating-point loads/stores

Version ~> 1.0

• Zcf Compressed single-precision floating-point loads/stores

Version ~> 1.0

• Zicntr Base Counters and Timers

Version ~> 2.0

• Zifencei Instruction fence

Version ~> 2.0

• Zihpm Hardware Performance Counters

Version ~> 2.0

 The number of counters is platform-specific.

3.3.3. Recommendations

Recommendations are not strictly mandated but are included to guide implementers making design choices.

• Implementations are strongly recommended to raise illegal-instruction exceptions on attempts to execute unimplemented opcodes.

3.3.4. Implementation-dependencies

RVI20U64 has 1 associated implementation-defined parameters.

TIME_CSR_IMPLEMENTED

Whether or not a real hardware time CSR exists. Implementations can either provide a real CSR or emulate access at M-mode.

6

Possible values:

true

time/timeh exists, and accessing it will not cause an IllegalInstruction trap

false

time/timeh does not exist. Accessing the CSR will cause an IllegalInstruction trap or enter an unpredictable state, depending on
TRAP_ON_UNIMPLEMENTED_CSR. Privileged software may emulate the time CSR, or may pass the exception to a lower level.

7

Appendix A: Profile Comparisons

A.1. Generic Unprivileged Profile Releases
The Generic Unprivileged processor kind has 1 processor profile releases that reference a total of 12 extensions.

Table 1. Extension Presence

Extension RVI20

A optional

C optional

D optional

F optional

I mandatory

M optional

Zca optional

Zcd optional

Zcf optional

Zicntr optional

Zifencei optional

Zihpm optional

A.2. RVI Profile Releases
The RVI Profile Family has 1 releases that reference a total of 12 extensions.

Table 2. Extension Presence

Extension RVI20

A optional

C optional

D optional

F optional

I mandatory

M optional

Zca optional

Zcd optional

Zcf optional

Zicntr optional

Zifencei optional

Zihpm optional

A.3. RVI20 Profiles
The RVI20 Profile Release has 2 profiles that reference a total of 12 extensions.

 Extensions present in a profile are also present in higher-privileged profiles in the same profile release.

Table 3. Extension Presence

Extension RVI20U32 RVI20U64

A option option

C option option

D option option

F option option

I mandatory mandatory

M option option

Zca option option

8

Extension RVI20U32 RVI20U64

Zcd option option

Zcf option option

Zicntr option option

Zifencei option option

Zihpm option option

9

Appendix B: Extension Details

B.1. Extension A
Long Name: Atomic instructions
Version Requirement: ~> 2.1
A Extension Presence

profile v2.1.0

RVI20U32 optional

RVI20U64 optional

B.1.1. Available Versions

Version 2.1.0

State ratified

Ratification date 2019-12

B.1.2. Synopsis

The atomic-instruction extension, named A, contains instructions that atomically read-modify-write memory to support synchronization between
multiple RISC-V harts running in the same memory space. The two forms of atomic instruction provided are load-reserved/store-conditional
instructions and atomic fetch-and-op memory instructions. Both types of atomic instruction support various memory consistency orderings
including unordered, acquire, release, and sequentially consistent semantics. These instructions allow RISC-V to support the RCsc memory
consistency model. cite:[Gharachorloo90memoryconsistency]


After much debate, the language community and architecture community appear to have finally settled on release consistency as
the standard memory consistency model and so the RISC-V atomic support is built around this model.

The A extension comprises instructions provided by the Zaamo and Zalrsc extensions.

B.1.3. Specifying Ordering of Atomic Instructions

The base RISC-V ISA has a relaxed memory model, with the FENCE instruction used to impose additional ordering constraints. The address space is
divided by the execution environment into memory and I/O domains, and the FENCE instruction provides options to order accesses to one or both of
these two address domains.

To provide more efficient support for release consistency cite:[Gharachorloo90memoryconsistency], each atomic instruction has two bits, aq and rl,
used to specify additional memory ordering constraints as viewed by other RISC-V harts. The bits order accesses to one of the two address domains,
memory or I/O, depending on which address domain the atomic instruction is accessing. No ordering constraint is implied to accesses to the other
domain, and a FENCE instruction should be used to order across both domains.

If both bits are clear, no additional ordering constraints are imposed on the atomic memory operation. If only the aq bit is set, the atomic memory
operation is treated as an acquire access, i.e., no following memory operations on this RISC-V hart can be observed to take place before the acquire
memory operation. If only the rl bit is set, the atomic memory operation is treated as a release access, i.e., the release memory operation cannot be
observed to take place before any earlier memory operations on this RISC-V hart. If both the aq and rl bits are set, the atomic memory operation is
sequentially consistent and cannot be observed to happen before any earlier memory operations or after any later memory operations in the same
RISC-V hart and to the same address domain.

B.2. Extension C
Long Name: Compressed instructions
Version Requirement: ~> 2.0
C Extension Presence

profile v2.0.0

RVI20U32 optional

RVI20U64 optional

B.2.1. Available Versions

Version 2.0.0

State ratified

Ratification date 2019-12

10

B.2.2. Synopsis

The C extension reduces static and dynamic code size by adding short 16-bit instruction encodings for common operations. The C extension can be
added to any of the base ISAs (RV32, RV64, RV128), and we use the generic term "RVC" to cover any of these. Typically, 50%-60% of the RISC-V
instructions in a program can be replaced with RVC instructions, resulting in a 25%-30% code-size reduction.

B.2.3. Overview

RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V instructions when:

• the immediate or address offset is small, or

• one of the registers is the zero register (x0), the ABI link register (x1), or the ABI stack pointer (x2), or

• the destination register and the first source register are identical, or

• the registers used are the 8 most popular ones.

The C extension is compatible with all other standard instruction extensions. The C extension allows 16-bit instructions to be freely intermixed with
32-bit instructions, with the latter now able to start on any 16-bit boundary, i.e., IALIGN=16. With the addition of the C extension, no instructions can
raise instruction-address-misaligned exceptions.

 Removing the 32-bit alignment constraint on the original 32-bit instructions allows significantly greater code density.

The compressed instruction encodings are mostly common across RV32C, RV64C, and RV128C, but as shown in Table 34, a few opcodes are used for
different purposes depending on base ISA. For example, the wider address-space RV64C and RV128C variants require additional opcodes to compress
loads and stores of 64-bit integer values, while RV32C uses the same opcodes to compress loads and stores of single-precision floating-point values.
Similarly, RV128C requires additional opcodes to capture loads and stores of 128-bit integer values, while these same opcodes are used for loads and
stores of double-precision floating-point values in RV32C and RV64C. If the C extension is implemented, the appropriate compressed floating-point
load and store instructions must be provided whenever the relevant standard floating-point extension (F and/or D) is also implemented. In addition,
RV32C includes a compressed jump and link instruction to compress short-range subroutine calls, where the same opcode is used to compress
ADDIW for RV64C and RV128C.



Double-precision loads and stores are a significant fraction of static and dynamic instructions, hence the motivation to include them
in the RV32C and RV64C encoding.

Although single-precision loads and stores are not a significant source of static or dynamic compression for benchmarks compiled
for the currently supported ABIs, for microcontrollers that only provide hardware single-precision floating-point units and have an
ABI that only supports single-precision floating-point numbers, the single-precision loads and stores will be used at least as
frequently as double-precision loads and stores in the measured benchmarks. Hence, the motivation to provide compressed support
for these in RV32C.

Short-range subroutine calls are more likely in small binaries for microcontrollers, hence the motivation to include these in RV32C.

Although reusing opcodes for different purposes for different base ISAs adds some complexity to documentation, the impact on
implementation complexity is small even for designs that support multiple base ISAs. The compressed floating-point load and store
variants use the same instruction format with the same register specifiers as the wider integer loads and stores.

RVC was designed under the constraint that each RVC instruction expands into a single 32-bit instruction in either the base ISA (RV32I/E, RV64I/E, or
RV128I) or the F and D standard extensions where present. Adopting this constraint has two main benefits:

• Hardware designs can simply expand RVC instructions during decode, simplifying verification and minimizing modifications to existing
microarchitectures.

• Compilers can be unaware of the RVC extension and leave code compression to the assembler and linker, although a compression-aware
compiler will generally be able to produce better results.


We felt the multiple complexity reductions of a simple one-one mapping between C and base IFD instructions far outweighed the
potential gains of a slightly denser encoding that added additional instructions only supported in the C extension, or that allowed
encoding of multiple IFD instructions in one C instruction.

It is important to note that the C extension is not designed to be a stand-alone ISA, and is meant to be used alongside a base ISA.



Variable-length instruction sets have long been used to improve code density. For example, the IBM Stretch cite:[stretch], developed
in the late 1950s, had an ISA with 32-bit and 64-bit instructions, where some of the 32-bit instructions were compressed versions of
the full 64-bit instructions. Stretch also employed the concept of limiting the set of registers that were addressable in some of the
shorter instruction formats, with short branch instructions that could only refer to one of the index registers. The later IBM 360
architecture cite:[ibm360] supported a simple variable-length instruction encoding with 16-bit, 32-bit, or 48-bit instruction formats.

In 1963, CDC introduced the Cray-designed CDC 6600 cite:[cdc6600], a precursor to RISC architectures, that introduced a register-rich
load-store architecture with instructions of two lengths, 15-bits and 30-bits. The later Cray-1 design used a very similar instruction
format, with 16-bit and 32-bit instruction lengths.

The initial RISC ISAs from the 1980s all picked performance over code size, which was reasonable for a workstation environment,

11

but not for embedded systems. Hence, both ARM and MIPS subsequently made versions of the ISAs that offered smaller code size by
offering an alternative 16-bit wide instruction set instead of the standard 32-bit wide instructions. The compressed RISC ISAs
reduced code size relative to their starting points by about 25-30%, yielding code that was significantly smaller than 80x86. This
result surprised some, as their intuition was that the variable-length CISC ISA should be smaller than RISC ISAs that offered only 16-
bit and 32-bit formats.

Since the original RISC ISAs did not leave sufficient opcode space free to include these unplanned compressed instructions, they
were instead developed as complete new ISAs. This meant compilers needed different code generators for the separate compressed
ISAs. The first compressed RISC ISA extensions (e.g., ARM Thumb and MIPS16) used only a fixed 16-bit instruction size, which gave
good reductions in static code size but caused an increase in dynamic instruction count, which led to lower performance compared
to the original fixed-width 32-bit instruction size. This led to the development of a second generation of compressed RISC ISA
designs with mixed 16-bit and 32-bit instruction lengths (e.g., ARM Thumb2, microMIPS, PowerPC VLE), so that performance was
similar to pure 32-bit instructions but with significant code size savings. Unfortunately, these different generations of compressed
ISAs are incompatible with each other and with the original uncompressed ISA, leading to significant complexity in documentation,
implementations, and software tools support.

Of the commonly used 64-bit ISAs, only PowerPC and microMIPS currently supports a compressed instruction format. It is
surprising that the most popular 64-bit ISA for mobile platforms (ARM v8) does not include a compressed instruction format given
that static code size and dynamic instruction fetch bandwidth are important metrics. Although static code size is not a major
concern in larger systems, instruction fetch bandwidth can be a major bottleneck in servers running commercial workloads, which
often have a large instruction working set.

Benefiting from 25 years of hindsight, RISC-V was designed to support compressed instructions from the outset, leaving enough
opcode space for RVC to be added as a simple extension on top of the base ISA (along with many other extensions). The philosophy
of RVC is to reduce code size for embedded applications and to improve performance and energy-efficiency for all applications due
to fewer misses in the instruction cache. Waterman shows that RVC fetches 25%-30% fewer instruction bits, which reduces
instruction cache misses by 20%-25%, or roughly the same performance impact as doubling the instruction cache size.
cite:[waterman-ms]

B.2.4. Compressed Instruction Formats

Table 4 shows the nine compressed instruction formats. CR, CI, and CSS can use any of the 32 RVI registers, but CIW, CL, CS, CA, and CB are limited to
just 8 of them. Table 5 lists these popular registers, which correspond to registers x8 to x15. Note that there is a separate version of load and store
instructions that use the stack pointer as the base address register, since saving to and restoring from the stack are so prevalent, and that they use
the CI and CSS formats to allow access to all 32 data registers. CIW supplies an 8-bit immediate for the ADDI4SPN instruction.


The RISC-V ABI was changed to make the frequently used registers map to registers 'x8-x15'. This simplifies the decompression
decoder by having a contiguous naturally aligned set of register numbers, and is also compatible with the RV32E and RV64E base
ISAs, which only have 16 integer registers.

Compressed register-based floating-point loads and stores also use the CL and CS formats respectively, with the eight registers mapping to f8 to f15.


The standard RISC-V calling convention maps the most frequently used floating-point registers to registers f8 to f15, which allows the
same register decompression decoding as for integer register numbers.

The formats were designed to keep bits for the two register source specifiers in the same place in all instructions, while the destination register field
can move. When the full 5-bit destination register specifier is present, it is in the same place as in the 32-bit RISC-V encoding. Where immediates are
sign-extended, the sign extension is always from bit 12. Immediate fields have been scrambled, as in the base specification, to reduce the number of
immediate muxes required.


The immediate fields are scrambled in the instruction formats instead of in sequential order so that as many bits as possible are in
the same position in every instruction, thereby simplifying implementations.

For many RVC instructions, zero-valued immediates are disallowed and x0 is not a valid 5-bit register specifier. These restrictions free up encoding
space for other instructions requiring fewer operand bits.

Table 4. Compressed 16-bit RVC instruction formats

12

Format Meaning

CR Register

CI Immediate

CSS Stack-relative Store

CIW Wide Immediate

CL Load

CS Store

CA Arithmetic

CB Branch/Arithmetic

CJ Jump

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

funct4 rd/rs1 rs2 op

funct3 imm rd/rs1 imm op

funct3 imm rs2 op

funct3 imm rd′ op

funct3 imm rs1′ imm rd′ op

funct3 imm rs1′ imm rs2′ op

funct6 rd′/rs1′ funct2 rs2′ op

funct3 offset rd′/rs1′ offset op

funct3 jump target op

Table 5. Registers specified by the three-bit rs1′, rs2′, and rd′ fields of the CIW, CL, CS, CA, and CB formats.

RVC Register Number

Integer Register Number

Integer Register ABI Name

Floating-Point Register Number

Floating-Point Register ABI Name

000 001 010 011 100 101 110 111

x8 x9 x10 x11 x12 x13 x14 x15

s0 s1 a0 a1 a2 a3 a4 a5

f8 f9 f10 f11 f12 f13 f14 f15

fs0 fs1 fa0 fa1 fa2 fa3 fa4 fa5

B.3. Extension D
Long Name: Double-precision floating-point
Version Requirement: ~> 2.2
D Extension Presence

profile v2.2.0

RVI20U32 optional

RVI20U64 optional

B.3.1. Available Versions

Version 2.2.0

State ratified

Ratification date 2019-12

Changes • Define NaN-boxing scheme, changed definition of FMAX and FMIN

B.3.2. Synopsis

The D extension adds double-precision floating-point computational instructions compliant with the IEEE 754-2008 arithmetic standard. The D
extension depends on the base single-precision instruction subset F.

B.3.3. D Register State

The D extension widens the 32 floating-point registers, f0-f31, to 64 bits (FLEN=64 in Table 6. The f registers can now hold either 32-bit or 64-bit
floating-point values as described below in Section B.3.4.


FLEN can be 32, 64, or 128 depending on which of the F, D, and Q extensions are supported. There can be up to four different
floating-point precisions supported, including H, F, D, and Q.

B.3.4. NaN Boxing of Narrower Values

When multiple floating-point precisions are supported, then valid values of narrower n-bit types, n<FLEN, are represented in the lower n bits of an
FLEN-bit NaN value, in a process termed NaN-boxing. The upper bits of a valid NaN-boxed value must be all 1s. Valid NaN-boxed n-bit values
therefore appear as negative quiet NaNs (qNaNs) when viewed as any wider m-bit value, n < m ≤ FLEN. Any operation that writes a narrower result
to an 'f' register must write all 1s to the uppermost FLEN-n bits to yield a legal NaN-boxedvalue.



Software might not know the current type of data stored in a floating-point register but has to be able to save and restore the
register values, hence the result of using wider operations to transfer narrower values has to be defined. A common case is for
callee-saved registers, but a standard convention is also desirable for features including varargs, user-level threading libraries,
virtual machine migration, and debugging.

13

https://ieeexplore.ieee.org/document/4610935

Floating-point n-bit transfer operations move external values held in IEEE standard formats into and out of the f registers, and comprise floating-
point loads and stores (FLn/FSn) and floating-point move instructions (FMV.n.X/FMV.X.n). A narrower n-bit transfer, n<FLEN, into the f registers will
create a valid NaN-boxed value. A narrower n-bit transfer out of the floating-point registers will transfer the lower n bits of the register ignoring the
upper FLEN-n bits.

Apart from transfer operations described in the previous paragraph, all other floating-point operations on narrower n-bit operations, n<FLEN, check
if the input operands are correctly NaN-boxed, i.e., all upper FLEN-n bits are 1. If so, the n least-significant bits of the input are used as the input
value, otherwise the input value is treated as an n-bit canonical NaN.



Earlier versions of this document did not define the behavior of feeding the results of narrower or wider operands into an
operation, except to require that wider saves and restores would preserve the value of a narrower operand. The new definition
removes this implementation-specific behavior, while still accommodating both non-recoded and recoded implementations of the
floating-point unit. The new definition also helps catch software errors by propagating NaNs if values are used incorrectly.

Non-recoded implementations unpack and pack the operands to IEEE standard format on the input and output of every floating-
point operation. The NaN-boxing cost to a non-recoded implementation is primarily in checking if the upper bits of a narrower
operation represent a legal NaN-boxed value, and in writing all 1s to the upper bits of a result.

Recoded implementations use a more convenient internal format to represent floating-point values, with an added exponent bit to
allow all values to be held normalized. The cost to the recoded implementation is primarily the extra tagging needed to track the
internal types and sign bits, but this can be done without adding new state bits by recoding NaNs internally in the exponent field.
Small modifications are needed to the pipelines used to transfer values in and out of the recoded format, but the datapath and
latency costs are minimal. The recoding process has to handle shifting of input subnormal values for wide operands in any case, and
extracting the NaN-boxed value is a similar process to normalization except for skipping over leading-1 bits instead of skipping over
leading-0 bits, allowing the datapath muxing to be shared.

 
The rationale to not include Q as a profile option is that quad-precision floating-point is unlikely to be implemented
in hardware, and so we do not require or expect software to expend effort optimizing use of Q instructions in case
they are present.

B.3.5. Instructions

The following 26 instructions are added by extension version 2.2.0 (the minimum version of this extension that satifies the extension requirement).

fadd.d Floating-Point Add Double-Precision

fclass.d Floating-Point Classify Double-Precision

fcvt.d.s Floating-Point Convert Single-Precision to Double-Precision

fcvt.d.w Floating-Point Convert Word to Double-Precision

fcvt.d.wu Floating-Point Convert Unsigned Word to Double-Precision

fcvt.s.d Floating-Point Convert Double-Precision to Single-Precision

fcvt.w.d Floating-Point Convert Double-Precision to Word

fcvt.wu.d Floating-Point Convert Double-Precision to Unsigned Word

fdiv.d Floating-Point Divide Double-Precision

feq.d Floating-Point Equal Double-Precision

fld Floating-Point Load Double-Precision

fle.d Floating-Point Less Than or Equal Double-Precision

flt.d Floating-Point Less Than Double-Precision

fmadd.d Floating-Point Multiply-Add Double-Precision

fmax.d Floating-Point Maximum-Number Double-Precision

fmin.d Floating-Point Minimum-Number Double-Precision

fmsub.d Floating-Point Multiply-Subtract Double-Precision

fmul.d Floating-Point Multiply Double-Precision

fnmadd.d Floating-Point Negate-Multiply-Add Double-Precision

fnmsub.d Floating-Point Negate-Multiply-Subtract Double-Precision

fsd Floating-Point Store Double-Precision

fsgnj.d Floating-Point Sign-Inject Double-Precision

fsgnjn.d Floating-Point Sign-Inject Negate Double-Precision

fsgnjx.d Floating-Point Sign-Inject XOR Double-Precision

fsqrt.d Floating-Point Square Root Double-Precision

fsub.d Floating-Point Subtract Double-Precision

14

B.4. Extension F
Long Name: Single-precision floating-point
Version Requirement: ~> 2.2
F Extension Presence

profile v2.2.0

RVI20U32 optional

RVI20U64 optional

B.4.1. Available Versions

Version 2.2.0

State ratified

Ratification date 2019-12

Changes • Define NaN-boxing scheme, changed definition of FMAX and FMIN

B.4.2. Synopsis

This chapter describes the standard instruction-set extension for single-precision floating-point, which is named "F" and adds single-precision
floating-point computational instructions compliant with the IEEE 754-2008 arithmetic standard cite:[ieee754-2008]. The F extension depends on the
"Zicsr" extension for control and status register access.

B.4.3. F Register State

The F extension adds 32 floating-point registers, f0-f31, each 32 bits wide, and a floating-point control and status register fcsr, which contains the
operating mode and exception status of the floating-point unit. This additional state is shown in Table 6. We use the term FLEN to describe the width
of the floating-point registers in the RISC-V ISA, and FLEN=32 for the F single-precision floating-point extension. Most floating-point instructions
operate on values in the floating-point register file. Floating-point load and store instructions transfer floating-point values between registers and
memory. Instructions to transfer values to and from the integer register file are also provided.



We considered a unified register file for both integer and floating-point values as this simplifies software register allocation and
calling conventions, and reduces total user state. However, a split organization increases the total number of registers accessible
with a given instruction width, simplifies provision of enough regfile ports for wide superscalar issue, supports decoupled floating-
point-unit architectures, and simplifies use of internal floating-point encoding techniques. Compiler support and calling
conventions for split register file architectures are well understood, and using dirty bits on floating-point register file state can
reduce context-switch overhead.

Table 6. RISC-V standard F extension single-precision floating-point state

FLEN-1 0

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f20

f21

15

FLEN-1 0

f22

f23

f24

f25

f26

f27

f28

f29

f30

f31

FLEN

31 0

fcsr

32

Floating-Point Control and Status Register

The floating-point control and status register, fcsr, is a RISC-V control and status register (CSR). It is a 32-bit read/write register that selects the
dynamic rounding mode for floating-point arithmetic operations and holds the accrued exception flags, as shown in Floating-Point Control and
Status Register.

Floating-point control and status register

Unresolved directive in RVI20ProfileRelease.adoc - include::images/wavedrom/float-csr.adoc[]

The fcsr register can be read and written with the FRCSR and FSCSR instructions, which are assembler pseudoinstructions built on the underlying
CSR access instructions. FRCSR reads fcsr by copying it into integer register rd. FSCSR swaps the value in fcsr by copying the original value into
integer register rd, and then writing a new value obtained from integer register rs1 into fcsr.

The fields within the fcsr can also be accessed individually through different CSR addresses, and separate assembler pseudoinstructions are defined
for these accesses. The FRRM instruction reads the Rounding Mode field frm (fcsr bits 7—5) and copies it into the least-significant three bits of integer
register rd, with zero in all other bits. FSRM swaps the value in frm by copying the original value into integer register rd, and then writing a new
value obtained from the three least-significant bits of integer register rs1 into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued
Exception Flags field fflags (fcsr bits 4—0).

Bits 31—8 of the fcsr are reserved for other standard extensions. If these extensions are not present, implementations shall ignore writes to these bits
and supply a zero value when read. Standard software should preserve the contents of these bits.

Floating-point operations use either a static rounding mode encoded in the instruction, or a dynamic rounding mode held in frm. Rounding modes
are encoded as shown in Table 7. A value of 111 in the instruction’s rm field selects the dynamic rounding mode held in frm. The behavior of
floating-point instructions that depend on rounding mode when executed with a reserved rounding mode is reserved, including both static reserved
rounding modes (101-110) and dynamic reserved rounding modes (101-111). Some instructions, including widening conversions, have the rm field
but are nevertheless mathematically unaffected by the rounding mode; software should set their rm field to RNE (000) but implementations must
treat the rm field as usual (in particular, with regard to decoding legal vs. reserved encodings).

Table 7. Rounding mode encoding.

Rounding Mode Mnemonic Meaning

000 RNE Round to Nearest, ties to Even

001 RTZ Round towards Zero

010 RDN Round Down (towards -\infty)

011 RUP Round Up (towards +\infty)

100 RMM Round to Nearest, ties to Max Magnitude

101 Reserved for future use.

110 Reserved for future use.

111 DYN In instruction’s rm field, selects dynamic rounding mode; In Rounding Mode register, reserved.



The C99 language standard effectively mandates the provision of a dynamic rounding mode register. In typical implementations,
writes to the dynamic rounding mode CSR state will serialize the pipeline. Static rounding modes are used to implement specialized
arithmetic operations that often have to switch frequently between different rounding modes.

The ratified version of the F spec mandated that an illegal-instruction exception was raised when an instruction was executed with
a reserved dynamic rounding mode. This has been weakened to reserved, which matches the behavior of static rounding-mode
instructions. Raising an illegal-instruction exception is still valid behavior when encountering a reserved encoding, so
implementations compatible with the ratified spec are compatible with the weakened spec.

16

The accrued exception flags indicate the exception conditions that have arisen on any floating-point arithmetic instruction since the field was last
reset by software, as shown in Table 8. The base RISC-V ISA does not support generating a trap on the setting of a floating-point exception flag.

Table 8. Accrued exception flag
encoding.

Flag Mnemonic Flag Meaning

NV Invalid Operation

DZ Divide by Zero

OF Overflow

UF Underflow

NX Inexact


As allowed by the standard, we do not support traps on floating-point exceptions in the F extension, but instead require explicit
checks of the flags in software. We considered adding branches controlled directly by the contents of the floating-point accrued
exception flags, but ultimately chose to omit these instructions to keep the ISA simple.

B.4.4. NaN Generation and Propagation

Except when otherwise stated, if the result of a floating-point operation is NaN, it is the canonical NaN. The canonical NaN has a positive sign and all
significand bits clear except the MSB, a.k.a. the quiet bit. For single-precision floating-point, this corresponds to the pattern 0x7fc00000.



We considered propagating NaN payloads, as is recommended by the standard, but this decision would have increased hardware
cost. Moreover, since this feature is optional in the standard, it cannot be used in portable code.

Implementers are free to provide a NaN payload propagation scheme as a nonstandard extension enabled by a nonstandard
operating mode. However, the canonical NaN scheme described above must always be supported and should be the default mode.



We require implementations to return the standard-mandated default values in the case of exceptional conditions, without any
further intervention on the part of user-level software (unlike the Alpha ISA floating-point trap barriers). We believe full hardware
handling of exceptional cases will become more common, and so wish to avoid complicating the user-level ISA to optimize other
approaches. Implementations can always trap to machine-mode software handlers to provide exceptional default values.

B.4.5. Subnormal Arithmetic

Operations on subnormal numbers are handled in accordance with the IEEE 754-2008 standard.

In the parlance of the IEEE standard, tininess is detected after rounding.

 Detecting tininess after rounding results in fewer spurious underflow signals.

B.4.6. Instructions

The following 26 instructions are added by extension version 2.2.0 (the minimum version of this extension that satifies the extension requirement).

fadd.s Floating-Point Add Single-Precision

fclass.s Floating-Point Classify Single-Precision

fcvt.s.w Floating-Point Convert Word to Single-Precision

fcvt.s.wu Floating-Point Convert Unsigned Word to Single-Precision

fcvt.w.s Floating-Point Convert Single-Precision to Word

fcvt.wu.s Floating-Point Convert Single-Precision to Unsigned Word

fdiv.s Floating-Point Divide Single-Precision

feq.s Floating-Point Equal Single-Precision

fle.s Floating-Point Less Than or Equal Single-Precision

flt.s Floating-Point Less Than Single-Precision

flw Floating-Point Load Single-Precision

fmadd.s Floating-Point Multiply-Add Single-Precision

fmax.s Floating-Point Maximum-Number Single-Precision

fmin.s Floating-Point Minimum-Number Single-Precision

fmsub.s Floating-Point Multiply-Subtract Single-Precision

fmul.s Floating-Point Multiply Single-Precision

17

fmv.w.x Floating-Point Move Single-Precision Word from Integer Register

fmv.x.w Floating-Point Move Single-Precision Word to Integer Register

fnmadd.s Floating-Point Negate-Multiply-Add Single-Precision

fnmsub.s Floating-Point Negate-Multiply-Subtract Single-Precision

fsgnj.s Floating-Point Sign-Inject Single-Precision

fsgnjn.s Floating-Point Sign-Inject Negate Single-Precision

fsgnjx.s Floating-Point Sign-Inject XOR Single-Precision

fsqrt.s Floating-Point Square Root Single-Precision

fsub.s Floating-Point Subtract Single-Precision

fsw Floating-Point Store Single-Precision

B.4.7. CSRs

The following 3 CSRs are added by extension version 2.2.0 (the minimum version of this extension that satifies the extension requirement).

Name Long Name Address Mode

fcsr Floating-point control and status register (frm + fflags) 0x3 U

fflags Floating-Point Accrued Exceptions 0x1 U

frm Floating-Point Dynamic Rounding Mode 0x2 U

B.5. Extension I
Long Name: Base integer ISA (RV32I or RV64I)
Version Requirement: ~> 2.1
I Extension Presence

profile v2.1.0

RVI20U32 mandatory

RVI20U64 mandatory

B.5.1. Available Versions

Version 2.1.0

State ratified

Ratification date 2019-06

Changes • ratified RVWMO memory model and exclusion of FENCE.I, counters, and CSR instructions that were in
previous base ISA

B.5.2. Synopsis

Base integer instructions — TODO



RVI is the mandatory base ISA for RVA, and is little-endian.

As per the unprivileged architecture specification, the ecall instruction causes a requested trap to the execution environment.

Misaligned loads and stores might not be supported.

The fence.tso instruction is mandatory.



The fence.tso instruction was incorrectly described as optional in the 2019 ratified specifications. However,
fence.tso is encoded within the standard fence encoding such that implementations must treat it as a simple global
fence if they do not natively support TSO-ordering optimizations. As software can always assume without any
penalty that fence.tso is being exploited by a hardware implementation, there is no advantage to making the
instruction a profile option. Later versions of the unprivileged ISA specifications correctly indicate that fence.tso is
mandatory.

B.5.3. Instructions

The following 43 instructions are added by extension version 2.1.0 (the minimum version of this extension that satifies the extension requirement).

add Integer add

18

addi Add immediate

and And

andi And immediate

auipc Add upper immediate to pc

beq Branch if equal

bge Branch if greater than or equal

bgeu Branch if greater than or equal unsigned

blt Branch if less than

bltu Branch if less than unsigned

bne Branch if not equal

ebreak Breakpoint exception

ecall Environment call

fence.tso Memory ordering fence, total store ordering

fence Memory ordering fence

jal Jump and link

jalr Jump and link register

lb Load byte

lbu Load byte unsigned

ld Load doubleword

lh Load halfword

lhu Load halfword unsigned

lui Load upper immediate

lw Load word

or Or

ori Or immediate

sb Store byte

sd Store doubleword

sh Store halfword

sll Shift left logical

slli Shift left logical immediate

slt Set on less than

slti Set on less than immediate

sltiu Set on less than immediate unsigned

sltu Set on less than unsigned

sra Shift right arithmetic

srai Shift right arithmetic immediate

srl Shift right logical

srli Shift right logical immediate

sub Subtract

sw Store word

xor Exclusive Or

xori Exclusive Or immediate

B.6. Extension M
Long Name: Integer multiply and divide
Version Requirement: ~> 2.0
M Extension Presence

profile v2.0.0

RVI20U32 optional

RVI20U64 optional

19

B.6.1. Available Versions

Version 2.0.0

State ratified

Ratification date 2019-12

B.6.2. Synopsis

This chapter describes the standard integer multiplication and division instruction extension, which is named M and contains instructions that
multiply or divide values held in two integer registers.


We separate integer multiply and divide out from the base to simplify low-end implementations, or for applications where integer
multiply and divide operations are either infrequent or better handled in attached accelerators.

B.6.3. Instructions

The following 8 instructions are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

div Signed division

divu Unsigned division

mul Signed multiply

mulh Signed multiply high

mulhsu Signed/unsigned multiply high

mulhu Unsigned multiply high

rem Signed remainder

remu Unsigned remainder

B.7. Extension Zca
Long Name: C instructions excluding floating-point loads/stores
Version Requirement: ~> 1.0
Zca Extension Presence

profile v1.0.0

RVI20U32 optional

RVI20U64 optional

B.7.1. Available Versions

Version 1.0.0

State ratified

Ratification date 2023-04

B.7.2. Synopsis

The Zca extension is added as way to refer to instructions in the C extension that do not include the floating-point loads and stores.

Therefore it excludes all 16-bit floating point loads and stores: c.flw, c.flwsp, c.fsw, c.fswsp, c.fld, c.fldsp, c.fsd, c.fsdsp.

 The 'C' extension only includes F/D instructions when D and F are also specified.

B.7.3. Instructions

The following 26 instructions are added by extension version 1.0.0 (the minimum version of this extension that satifies the extension requirement).

c.add Add

c.addi Add a sign-extended non-zero immediate

c.addi16sp Add a sign-extended non-zero immediate

c.addi4spn Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer

c.and And

c.andi And immediate

20

c.beqz Branch if Equal Zero

c.bnez Branch if NOT Equal Zero

c.ebreak Breakpoint exception

c.j Jump

c.jalr Jump and Link Register

c.jr Jump Register

c.li Load the sign-extended 6-bit immediate

c.lui Load Upper Immediate

c.lw Load word

c.lwsp Load word from stack pointer

c.mv Move Register

c.nop Non-operation

c.or Or

c.slli Shift left logical immediate

c.srai Shift right arithmetical immediate

c.srli Shift right logical immediate

c.sub Subtract

c.sw Store word

c.swsp Store word to stack

c.xor Exclusive Or

B.8. Extension Zcd
Long Name: Compressed double-precision floating-point loads/stores
Version Requirement: ~> 1.0
Zcd Extension Presence

profile v1.0.0

RVI20U32 optional

RVI20U64 optional

B.8.1. Available Versions

Version 1.0.0

State ratified

Ratification date 2023-04

B.8.2. Synopsis

Zcd is the existing set of compressed double precision floating point loads and stores: c.fld, c.fldsp, c.fsd, c.fsdsp.

B.8.3. Instructions

The following 4 instructions are added by extension version 1.0.0 (the minimum version of this extension that satifies the extension requirement).

c.fld Load double-precision

c.fldsp Load doubleword into floating-point register from stack

c.fsd Store double-precision

c.fsdsp Store double-precision value to stack

B.9. Extension Zcf
Long Name: Compressed single-precision floating-point loads/stores
Version Requirement: ~> 1.0
Zcf Extension Presence

profile v1.0.0

RVI20U32 optional

21

profile v1.0.0

RVI20U64 optional

B.9.1. Available Versions

Version 1.0.0

State ratified

Ratification date 2023-04

B.9.2. Synopsis

Zcf is the existing set of compressed single precision floating point loads and stores (RV32 only): c.flw, c.flwsp, c.fsw, c.fswsp.

B.9.3. Instructions

The following 4 instructions are added by extension version 1.0.0 (the minimum version of this extension that satifies the extension requirement).

c.flw Load single-precision

c.flwsp Load word into floating-point register from stack

c.fsw Store single-precision

c.fswsp Store single-precision value to stack

B.10. Extension Zicntr
Long Name: Base Counters and Timers
Version Requirement: ~> 2.0
Zicntr Extension Presence

profile v2.0.0

RVI20U32 optional

RVI20U64 optional

B.10.1. Available Versions

Version 2.0.0

State ratified

Ratification date 2019-12

B.10.2. Synopsis

The CYCLE, TIME, and INSTRET counters, which have dedicated functions (cycle count, real-time clock, and instructions retired, respectively).

B.10.3. CSRs

The following 3 CSRs are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

Name Long Name Address Mode

cycle Cycle counter for RDCYCLE Instruction 0xc00 U

instret Instructions retired counter for RDINSTRET Instruction 0xc02 U

time Timer for RDTIME Instruction 0xc01 U

B.10.4. Parameters

The following parameters (implementation options) may affect the operation of this extension:

TIME_CSR_IMPLEMENTED

Whether or not a real hardware time CSR exists. Implementations can either provide a real CSR or emulate access at M-mode.

Possible values:

true

time/timeh exists, and accessing it will not cause an IllegalInstruction trap

22

false

time/timeh does not exist. Accessing the CSR will cause an IllegalInstruction trap or enter an unpredictable state, depending on
TRAP_ON_UNIMPLEMENTED_CSR. Privileged software may emulate the time CSR, or may pass the exception to a lower level.

B.11. Extension Zifencei
Long Name: Instruction fence
Version Requirement: ~> 2.0
Zifencei Extension Presence

profile v2.0.0

RVI20U32 optional

RVI20U64 optional

B.11.1. Available Versions

Version 2.0.0

State ratified

Ratification date 2019-04

B.11.2. Synopsis

This chapter defines the "Zifencei" extension, which includes the FENCE.I instruction that provides explicit synchronization between writes to
instruction memory and instruction fetches on the same hart. Currently, this instruction is the only standard mechanism to ensure that stores visible
to a hart will also be visible to its instruction fetches.


We considered but did not include a "store instruction word" instruction as in cite:[majc]. JIT compilers may generate a large trace
of instructions before a single FENCE.I, and amortize any instruction cache snooping/invalidation overhead by writing translated
instructions to memory regions that are known not to reside in the I-cache.



The FENCE.I instruction was designed to support a wide variety of implementations. A simple implementation can flush the local
instruction cache and the instruction pipeline when the FENCE.I is executed. A more complex implementation might snoop the
instruction (data) cache on every data (instruction) cache miss, or use an inclusive unified private L2 cache to invalidate lines from
the primary instruction cache when they are being written by a local store instruction. If instruction and data caches are kept
coherent in this way, or if the memory system consists of only uncached RAMs, then just the fetch pipeline needs to be flushed at a
FENCE.I.

The FENCE.I instruction was previously part of the base I instruction set. Two main issues are driving moving this out of the
mandatory base, although at time of writing it is still the only standard method for maintaining instruction-fetch coherence.

First, it has been recognized that on some systems, FENCE.I will be expensive to implement and alternate mechanisms are being
discussed in the memory model task group. In particular, for designs that have an incoherent instruction cache and an incoherent
data cache, or where the instruction cache refill does not snoop a coherent data cache, both caches must be completely flushed
when a FENCE.I instruction is encountered. This problem is exacerbated when there are multiple levels of I and D cache in front of
a unified cache or outer memory system.

Second, the instruction is not powerful enough to make available at user level in a Unix-like operating system environment. The
FENCE.I only synchronizes the local hart, and the OS can reschedule the user hart to a different physical hart after the FENCE.I. This
would require the OS to execute an additional FENCE.I as part of every context migration. For this reason, the standard Linux ABI
has removed FENCE.I from user-level and now requires a system call to maintain instruction-fetch coherence, which allows the OS
to minimize the number of FENCE.I executions required on current systems and provides forward-compatibility with future
improved instruction-fetch coherence mechanisms.

Future approaches to instruction-fetch coherence under discussion include providing more restricted versions of FENCE.I that only
target a given address specified in rs1, and/or allowing software to use an ABI that relies on machine-mode cache-maintenance
operations.

B.11.3. Instructions

The following 1 instructions are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

fence.i Instruction fence

B.12. Extension Zihpm
Long Name: Hardware Performance Counters

23

Version Requirement: ~> 2.0
Zihpm Extension Presence

profile v2.0.0

RVI20U32 optional

RVI20U64 optional

B.12.1. Available Versions

Version 2.0.0

State ratified

Ratification date 2023-03

B.12.2. Synopsis

Hardware performance counters

 The number of counters is platform-specific.

B.12.3. CSRs

The following 29 CSRs are added by extension version 2.0.0 (the minimum version of this extension that satifies the extension requirement).

Name Long Name Address Mode

hpmcounter10 User-mode Hardware Performance Counter 7 0xc0a U

hpmcounter11 User-mode Hardware Performance Counter 8 0xc0b U

hpmcounter12 User-mode Hardware Performance Counter 9 0xc0c U

hpmcounter13 User-mode Hardware Performance Counter 10 0xc0d U

hpmcounter14 User-mode Hardware Performance Counter 11 0xc0e U

hpmcounter15 User-mode Hardware Performance Counter 12 0xc0f U

hpmcounter16 User-mode Hardware Performance Counter 13 0xc10 U

hpmcounter17 User-mode Hardware Performance Counter 14 0xc11 U

hpmcounter18 User-mode Hardware Performance Counter 15 0xc12 U

hpmcounter19 User-mode Hardware Performance Counter 16 0xc13 U

hpmcounter20 User-mode Hardware Performance Counter 17 0xc14 U

hpmcounter21 User-mode Hardware Performance Counter 18 0xc15 U

hpmcounter22 User-mode Hardware Performance Counter 19 0xc16 U

hpmcounter23 User-mode Hardware Performance Counter 20 0xc17 U

hpmcounter24 User-mode Hardware Performance Counter 21 0xc18 U

hpmcounter25 User-mode Hardware Performance Counter 22 0xc19 U

hpmcounter26 User-mode Hardware Performance Counter 23 0xc1a U

hpmcounter27 User-mode Hardware Performance Counter 24 0xc1b U

hpmcounter28 User-mode Hardware Performance Counter 25 0xc1c U

hpmcounter29 User-mode Hardware Performance Counter 26 0xc1d U

hpmcounter3 User-mode Hardware Performance Counter 0 0xc03 U

hpmcounter30 User-mode Hardware Performance Counter 27 0xc1e U

hpmcounter31 User-mode Hardware Performance Counter 28 0xc1f U

hpmcounter4 User-mode Hardware Performance Counter 1 0xc04 U

hpmcounter5 User-mode Hardware Performance Counter 2 0xc05 U

hpmcounter6 User-mode Hardware Performance Counter 3 0xc06 U

hpmcounter7 User-mode Hardware Performance Counter 4 0xc07 U

hpmcounter8 User-mode Hardware Performance Counter 5 0xc08 U

hpmcounter9 User-mode Hardware Performance Counter 6 0xc09 U

24

Appendix C: Instruction Details

25

C.1. add
Integer add

This instruction is defined by:

I

C.1.1. Encoding

067111214151920242531

0110011xd000xs1xs20000000

C.1.2. Description

Add the value in xs1 to xs2, and store the result in xd. Any overflow is thrown away.

C.1.3. Access

M

Always

C.1.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.1.5. IDL Operation

X[xd] = X[xs1] + X[xs2];

C.1.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let result : xlenbits = match op {
 RISCV_ADD => xs1_val + xs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
 RISCV_AND => xs1_val & xs2_val,
 RISCV_OR => xs1_val | xs2_val,
 RISCV_XOR => xs1_val ^ xs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then xs1_val << (xs2_val[4..0])
 else xs1_val << (xs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then xs1_val >> (xs2_val[4..0])
 else xs1_val >> (xs2_val[5..0]),
 RISCV_SUB => xs1_val - xs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, xs2_val[4..0])
 else shift_right_arith64(xs1_val, xs2_val[5..0])
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.1.7. Exceptions

This instruction does not generate synchronous exceptions.

26

C.2. addi
Add immediate

This instruction is defined by:

I

C.2.1. Encoding

06711121415192031

0010011xd000xs1imm

C.2.2. Description

Adds an immediate value to the value in xs1, and store the result in xd

C.2.3. Access

M

Always

C.2.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.2.5. IDL Operation

X[xd] = X[xs1] + $signed(imm);

C.2.6. Sail Operation

{
 let xs1_val = X(xs1);
 let immext : xlenbits = sign_extend(imm);
 let result : xlenbits = match op {
 RISCV_ADDI => xs1_val + immext,
 RISCV_SLTI => zero_extend(bool_to_bits(xs1_val <_s immext)),
 RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
 RISCV_ANDI => xs1_val & immext,
 RISCV_ORI => xs1_val | immext,
 RISCV_XORI => xs1_val ^ immext
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.2.7. Exceptions

This instruction does not generate synchronous exceptions.

27

C.3. and
And

This instruction is defined by:

I

C.3.1. Encoding

067111214151920242531

0110011xd111xs1xs20000000

C.3.2. Description

And xs1 with xs2, and store the result in xd

C.3.3. Access

M

Always

C.3.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.3.5. IDL Operation

X[xd] = X[xs1] & X[xs2];

C.3.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let result : xlenbits = match op {
 RISCV_ADD => xs1_val + xs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
 RISCV_AND => xs1_val & xs2_val,
 RISCV_OR => xs1_val | xs2_val,
 RISCV_XOR => xs1_val ^ xs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then xs1_val << (xs2_val[4..0])
 else xs1_val << (xs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then xs1_val >> (xs2_val[4..0])
 else xs1_val >> (xs2_val[5..0]),
 RISCV_SUB => xs1_val - xs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, xs2_val[4..0])
 else shift_right_arith64(xs1_val, xs2_val[5..0])
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.3.7. Exceptions

This instruction does not generate synchronous exceptions.

28

C.4. andi
And immediate

This instruction is defined by:

I

C.4.1. Encoding

06711121415192031

0010011xd111xs1imm

C.4.2. Description

And an immediate to the value in xs1, and store the result in xd

C.4.3. Access

M

Always

C.4.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.4.5. IDL Operation

X[xd] = X[xs1] & $signed(imm);

C.4.6. Sail Operation

{
 let xs1_val = X(xs1);
 let immext : xlenbits = sign_extend(imm);
 let result : xlenbits = match op {
 RISCV_ADDI => xs1_val + immext,
 RISCV_SLTI => zero_extend(bool_to_bits(xs1_val <_s immext)),
 RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
 RISCV_ANDI => xs1_val & immext,
 RISCV_ORI => xs1_val | immext,
 RISCV_XORI => xs1_val ^ immext
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.4.7. Exceptions

This instruction does not generate synchronous exceptions.

29

C.5. auipc
Add upper immediate to pc

This instruction is defined by:

I

C.5.1. Encoding

067111231

0010111xdimm[31:12]

C.5.2. Description

Add an immediate to the current PC.

C.5.3. Access

M

Always

C.5.4. Decode Variables

Bits<32> imm = {$encoding[31:12], 12'd0};
Bits<5> xd = $encoding[11:7];

C.5.5. IDL Operation

X[xd] = $pc + $signed(imm);

C.5.6. Sail Operation

{
 let off : xlenbits = sign_extend(imm @ 0x000);
 let ret : xlenbits = match op {
 RISCV_LUI => off,
 RISCV_AUIPC => get_arch_pc() + off
 };
 X(xd) = ret;
 RETIRE_SUCCESS
}

C.5.7. Exceptions

This instruction does not generate synchronous exceptions.

30

C.6. beq
Branch if equal

This instruction is defined by:

I

C.6.1. Encoding

067111214151920242531

1100011imm[4:1|11]000xs1xs2imm[12|10:5]

C.6.2. Description

Branch to PC + imm if the value in register xs1 is equal to the value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

C.6.3. Access

M

Always

C.6.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.6.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if (lhs == rhs) {
 jump_halfword($pc + $signed(imm));
}

C.6.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let taken : bool = match op {
 RISCV_BEQ => xs1_val == xs2_val,
 RISCV_BNE => xs1_val != xs2_val,
 RISCV_BLT => xs1_val <_s xs2_val,
 RISCV_BGE => xs1_val >=_s xs2_val,
 RISCV_BLTU => xs1_val <_u xs2_val,
 RISCV_BGEU => xs1_val >=_u xs2_val
 };
 let t : xlenbits = PC + sign_extend(imm);
 if taken then {
 /* Extensions get the first checks on the prospective target address. */
 match ext_control_check_pc(t) {
 Ext_ControlAddr_Error(e) => {
 ext_handle_control_check_error(e);
 RETIRE_FAIL
 },
 Ext_ControlAddr_OK(target) => {
 if bit_to_bool(target[1]) & not(extension("C")) then {
 handle_mem_exception(target, E_Fetch_Addr_Align());
 RETIRE_FAIL;
 } else {
 set_next_pc(target);
 RETIRE_SUCCESS
 }
 }

31

 }
 } else RETIRE_SUCCESS
}

C.6.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

32

C.7. bge
Branch if greater than or equal

This instruction is defined by:

I

C.7.1. Encoding

067111214151920242531

1100011imm[4:1|11]101xs1xs2imm[12|10:5]

C.7.2. Description

Branch to PC + imm if the signed value in register xs1 is greater than or equal to the signed value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

C.7.3. Access

M

Always

C.7.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.7.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if ($signed(lhs) >= $signed(rhs)) {
 jump_halfword($pc + $signed(imm));
}

C.7.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let taken : bool = match op {
 RISCV_BEQ => xs1_val == xs2_val,
 RISCV_BNE => xs1_val != xs2_val,
 RISCV_BLT => xs1_val <_s xs2_val,
 RISCV_BGE => xs1_val >=_s xs2_val,
 RISCV_BLTU => xs1_val <_u xs2_val,
 RISCV_BGEU => xs1_val >=_u xs2_val
 };
 let t : xlenbits = PC + sign_extend(imm);
 if taken then {
 /* Extensions get the first checks on the prospective target address. */
 match ext_control_check_pc(t) {
 Ext_ControlAddr_Error(e) => {
 ext_handle_control_check_error(e);
 RETIRE_FAIL
 },
 Ext_ControlAddr_OK(target) => {
 if bit_to_bool(target[1]) & not(extension("C")) then {
 handle_mem_exception(target, E_Fetch_Addr_Align());
 RETIRE_FAIL;
 } else {
 set_next_pc(target);
 RETIRE_SUCCESS
 }
 }

33

 }
 } else RETIRE_SUCCESS
}

C.7.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

34

C.8. bgeu
Branch if greater than or equal unsigned

This instruction is defined by:

I

C.8.1. Encoding

067111214151920242531

1100011imm[4:1|11]111xs1xs2imm[12|10:5]

C.8.2. Description

Branch to PC + imm if the unsigned value in register xs1 is greater than or equal to the unsigned value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

C.8.3. Access

M

Always

C.8.4. Decode Variables

Bits<13> imm = {$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.8.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if (lhs >= rhs) {
 jump_halfword($pc + $signed(imm));
}

C.8.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let taken : bool = match op {
 RISCV_BEQ => xs1_val == xs2_val,
 RISCV_BNE => xs1_val != xs2_val,
 RISCV_BLT => xs1_val <_s xs2_val,
 RISCV_BGE => xs1_val >=_s xs2_val,
 RISCV_BLTU => xs1_val <_u xs2_val,
 RISCV_BGEU => xs1_val >=_u xs2_val
 };
 let t : xlenbits = PC + sign_extend(imm);
 if taken then {
 /* Extensions get the first checks on the prospective target address. */
 match ext_control_check_pc(t) {
 Ext_ControlAddr_Error(e) => {
 ext_handle_control_check_error(e);
 RETIRE_FAIL
 },
 Ext_ControlAddr_OK(target) => {
 if bit_to_bool(target[1]) & not(extension("C")) then {
 handle_mem_exception(target, E_Fetch_Addr_Align());
 RETIRE_FAIL;
 } else {
 set_next_pc(target);
 RETIRE_SUCCESS
 }
 }

35

 }
 } else RETIRE_SUCCESS
}

C.8.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

36

C.9. blt
Branch if less than

This instruction is defined by:

I

C.9.1. Encoding

067111214151920242531

1100011imm[4:1|11]100xs1xs2imm[12|10:5]

C.9.2. Description

Branch to PC + imm if the signed value in register xs1 is less than the signed value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

C.9.3. Access

M

Always

C.9.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.9.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if ($signed(lhs) < $signed(rhs)) {
 jump_halfword($pc + $signed(imm));
}

C.9.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let taken : bool = match op {
 RISCV_BEQ => xs1_val == xs2_val,
 RISCV_BNE => xs1_val != xs2_val,
 RISCV_BLT => xs1_val <_s xs2_val,
 RISCV_BGE => xs1_val >=_s xs2_val,
 RISCV_BLTU => xs1_val <_u xs2_val,
 RISCV_BGEU => xs1_val >=_u xs2_val
 };
 let t : xlenbits = PC + sign_extend(imm);
 if taken then {
 /* Extensions get the first checks on the prospective target address. */
 match ext_control_check_pc(t) {
 Ext_ControlAddr_Error(e) => {
 ext_handle_control_check_error(e);
 RETIRE_FAIL
 },
 Ext_ControlAddr_OK(target) => {
 if bit_to_bool(target[1]) & not(extension("C")) then {
 handle_mem_exception(target, E_Fetch_Addr_Align());
 RETIRE_FAIL;
 } else {
 set_next_pc(target);
 RETIRE_SUCCESS
 }
 }

37

 }
 } else RETIRE_SUCCESS
}

C.9.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

38

C.10. bltu
Branch if less than unsigned

This instruction is defined by:

I

C.10.1. Encoding

067111214151920242531

1100011imm[4:1|11]110xs1xs2imm[12|10:5]

C.10.2. Description

Branch to PC + imm if the unsigned value in register xs1 is less than the unsigned value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

C.10.3. Access

M

Always

C.10.4. Decode Variables

Bits<13> imm = {$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.10.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if (lhs < rhs) {
 jump_halfword($pc + $signed(imm));
}

C.10.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let taken : bool = match op {
 RISCV_BEQ => xs1_val == xs2_val,
 RISCV_BNE => xs1_val != xs2_val,
 RISCV_BLT => xs1_val <_s xs2_val,
 RISCV_BGE => xs1_val >=_s xs2_val,
 RISCV_BLTU => xs1_val <_u xs2_val,
 RISCV_BGEU => xs1_val >=_u xs2_val
 };
 let t : xlenbits = PC + sign_extend(imm);
 if taken then {
 /* Extensions get the first checks on the prospective target address. */
 match ext_control_check_pc(t) {
 Ext_ControlAddr_Error(e) => {
 ext_handle_control_check_error(e);
 RETIRE_FAIL
 },
 Ext_ControlAddr_OK(target) => {
 if bit_to_bool(target[1]) & not(extension("C")) then {
 handle_mem_exception(target, E_Fetch_Addr_Align());
 RETIRE_FAIL;
 } else {
 set_next_pc(target);
 RETIRE_SUCCESS
 }
 }

39

 }
 } else RETIRE_SUCCESS
}

C.10.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

40

C.11. bne
Branch if not equal

This instruction is defined by:

I

C.11.1. Encoding

067111214151920242531

1100011imm[4:1|11]001xs1xs2imm[12|10:5]

C.11.2. Description

Branch to PC + imm if the value in register xs1 is not equal to the value in register xs2.

Raise a MisalignedAddress exception if PC + imm is misaligned.

C.11.3. Access

M

Always

C.11.4. Decode Variables

signed Bits<13> imm = sext({$encoding[31], $encoding[7], $encoding[30:25], $encoding[11:8], 1'd0});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.11.5. IDL Operation

XReg lhs = X[xs1];
XReg rhs = X[xs2];
if (lhs != rhs) {
 jump_halfword($pc + $signed(imm));
}

C.11.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let taken : bool = match op {
 RISCV_BEQ => xs1_val == xs2_val,
 RISCV_BNE => xs1_val != xs2_val,
 RISCV_BLT => xs1_val <_s xs2_val,
 RISCV_BGE => xs1_val >=_s xs2_val,
 RISCV_BLTU => xs1_val <_u xs2_val,
 RISCV_BGEU => xs1_val >=_u xs2_val
 };
 let t : xlenbits = PC + sign_extend(imm);
 if taken then {
 /* Extensions get the first checks on the prospective target address. */
 match ext_control_check_pc(t) {
 Ext_ControlAddr_Error(e) => {
 ext_handle_control_check_error(e);
 RETIRE_FAIL
 },
 Ext_ControlAddr_OK(target) => {
 if bit_to_bool(target[1]) & not(extension("C")) then {
 handle_mem_exception(target, E_Fetch_Addr_Align());
 RETIRE_FAIL;
 } else {
 set_next_pc(target);
 RETIRE_SUCCESS
 }
 }

41

 }
 } else RETIRE_SUCCESS
}

C.11.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

42

C.12. c.add
Add

This instruction is defined by:

Zca

C.12.1. Encoding

01267111215

10xs2 != 0xd != 01001

C.12.2. Description

Add the value in xs2 to xd, and store the result in xd. C.ADD expands into add xd, xd, xs2.

C.12.3. Access

M

Always

C.12.4. Decode Variables

Bits<5> xs2 = $encoding[6:2];
Bits<5> xd = $encoding[11:7];

C.12.5. IDL Operation

XReg t0 = X[xd];
XReg t1 = X[xs2];
X[xd] = t0 + t1;

C.12.6. Sail Operation

{
 let rs1_val = X(rd);
 let rs2_val = X(rs2);
 X(rd) = rs1_val + rs2_val;
 RETIRE_SUCCESS
}

C.12.7. Exceptions

This instruction does not generate synchronous exceptions.

43

C.13. c.addi
Add a sign-extended non-zero immediate

This instruction is defined by:

Zca

C.13.1. Encoding

0126711121315

01imm != 0[4:0]xd != 0imm != 0[5]000

C.13.2. Description

C.ADDI adds the non-zero sign-extended 6-bit immediate to the value in register xd then writes the result to xd. C.ADDI expands into <code>addi xd,
xd, imm</code>. C.ADDI is only valid when xd ≠ x0 and imm ≠ 0. The code points with xd=x0 encode the C.NOP instruction; the remaining
code points with imm=0 encode HINTs.

C.13.3. Access

M

Always

C.13.4. Decode Variables

Bits<6> imm = {$encoding[12], $encoding[6:2]};
Bits<5> xd = $encoding[11:7];

C.13.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
X[xd] = X[xd] + $signed(imm);

C.13.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

44

C.14. c.addi16sp
Add a sign-extended non-zero immediate

This instruction is defined by:

Zca

C.14.1. Encoding

0126711121315

01imm != 0[4|6|8:7|5]00010imm != 0[9]011

C.14.2. Description

C.ADDI16SP adds the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where the immediate is scaled to represent
multiples of 16 in the range (-512,496). C.ADDI16SP is used to adjust the stack pointer in procedure prologues and epilogues. It expands into
<code>addi x2, x2, nzimm[9:4]</code>. C.ADDI16SP is only valid when nzimm ≠ 0; the code point with nzimm=0 is reserved.

C.14.3. Access

M

Always

C.14.4. Decode Variables

Bits<10> imm = {$encoding[12], $encoding[4:3], $encoding[5], $encoding[2], $encoding[6], 4'd0};

C.14.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
X[2] = X[2] + $signed(imm);

C.14.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

45

C.15. c.addi4spn
Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer

This instruction is defined by:

Zca

C.15.1. Encoding

01245121315

00xdimm != 0[5:4|9:6|2|3]000

C.15.2. Description

Adds a zero-extended non-zero immediate, scaled by 4, to the stack pointer, x2, and writes the result to rd'. This instruction is used to generate
pointers to stack-allocated variables. It expands to <code>addi rd', x2, nzuimm[9:2]</code>. C.ADDI4SPN is only valid when nzuimm ≠ 0; the code
points with nzuimm=0 are reserved.

C.15.3. Access

M

Always

C.15.4. Decode Variables

Bits<10> imm = {$encoding[10:7], $encoding[12:11], $encoding[5], $encoding[6], 2'd0};
Bits<3> xd = $encoding[4:2];

C.15.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
X[creg2reg(xd)] = X[2] + imm;

C.15.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

46

C.16. c.and
And

This instruction is defined by:

Zca

C.16.1. Encoding

012456791015

01xs211xd100011

C.16.2. Description

And xd with xs2, and store the result in xd The xd and xs2 register indexes should be used as xd+8 and xs2+8 (registers x8-x15). C.AND expands into
and xd, xd, xs2.

C.16.3. Access

M

Always

C.16.4. Decode Variables

Bits<3> xs2 = $encoding[4:2];
Bits<3> xd = $encoding[9:7];

C.16.5. IDL Operation

XReg t0 = X[creg2reg(xd)];
XReg t1 = X[creg2reg(xs2)];
X[creg2reg(xd)] = t0 & t1;

C.16.6. Sail Operation

{
 let rs1_val = X(rd+8);
 let rs2_val = X(rs2+8);
 let result : xlenbits = match op {
 RISCV_ADD => rs1_val + rs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(rs1_val <_s rs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(rs1_val <_u rs2_val)),
 RISCV_AND => rs1_val & rs2_val,
 RISCV_OR => rs1_val | rs2_val,
 RISCV_XOR => rs1_val ^ rs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then rs1_val << (rs2_val[4..0])
 else rs1_val << (rs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then rs1_val >> (rs2_val[4..0])
 else rs1_val >> (rs2_val[5..0]),
 RISCV_SUB => rs1_val - rs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(rs1_val, rs2_val[4..0])
 else shift_right_arith64(rs1_val, rs2_val[5..0])
 };
 X(rd+8) = result;
 RETIRE_SUCCESS
}

C.16.7. Exceptions

This instruction does not generate synchronous exceptions.

47

C.17. c.andi
And immediate

This instruction is defined by:

Zca

C.17.1. Encoding

0126791011121315

01imm[4:0]xd10imm[5]100

C.17.2. Description

And an immediate to the value in xd, and store the result in xd. The xd register index should be used as xd+8 (registers x8-x15). C.ANDI expands into
andi xd, xd, imm.

C.17.3. Access

M

Always

C.17.4. Decode Variables

Bits<6> imm = {$encoding[12], $encoding[6:2]};
Bits<3> xd = $encoding[9:7];

C.17.5. IDL Operation

X[creg2reg(xd)] = X[creg2reg(xd)] & $signed(imm);

C.17.6. Sail Operation

{
 let rd_val = X(rd+8);
 let immext : xlenbits = sign_extend(imm);
 let result : xlenbits = match op {
 RISCV_ADDI => rd_val + immext,
 RISCV_SLTI => zero_extend(bool_to_bits(rd_val <_s immext)),
 RISCV_SLTIU => zero_extend(bool_to_bits(rd_val <_u immext)),
 RISCV_ANDI => rd_val & immext,
 RISCV_ORI => rd_val | immext,
 RISCV_XORI => rd_val ^ immext
 };
 X(rd+8) = result;
 RETIRE_SUCCESS
}

C.17.7. Exceptions

This instruction does not generate synchronous exceptions.

48

C.18. c.beqz
Branch if Equal Zero

This instruction is defined by:

Zca

C.18.1. Encoding

01267910121315

01imm[7:6|2:1|5]xs1imm[8|4:3]110

C.18.2. Description

C.BEQZ performs conditional control transfers. The offset is sign-extended and added to the pc to form the branch target address. It can therefore
target a ±256 B range. C.BEQZ takes the branch if the value in register xs1' is zero. It expands to beq
<code>xs1, x0, offset</code>.

C.18.3. Access

M

Always

C.18.4. Decode Variables

signed Bits<9> imm = sext({$encoding[12], $encoding[6:5], $encoding[2], $encoding[11:10], $encoding[4:3], 1'd0});
Bits<3> xs1 = $encoding[9:7];

C.18.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
if (X[creg2reg(xs1)] == 0) {
 jump($pc + $signed(imm));
}

C.18.6. Sail Operation

{
 let rs1_val = X(rs1);
 let rs2_val = X(0);
 let taken : bool = match op {
 RISCV_BEQ => rs1_val == rs2_val,
 RISCV_BNE => rs1_val != rs2_val,
 RISCV_BLT => rs1_val <_s rs2_val,
 RISCV_BGE => rs1_val >=_s rs2_val,
 RISCV_BLTU => rs1_val <_u rs2_val,
 RISCV_BGEU => rs1_val >=_u rs2_val
 };
 let t : xlenbits = PC + sign_extend(imm);
 if taken then {
 /* Extensions get the first checks on the prospective target address. */
 match ext_control_check_pc(t) {
 Ext_ControlAddr_Error(e) => {
 ext_handle_control_check_error(e);
 RETIRE_FAIL
 },
 Ext_ControlAddr_OK(target) => {
 if bit_to_bool(target[1]) & not(extension("C")) then {
 handle_mem_exception(target, E_Fetch_Addr_Align());
 RETIRE_FAIL;
 } else {
 set_next_pc(target);
 RETIRE_SUCCESS
 }
 }

49

 }
 } else RETIRE_SUCCESS
}

C.18.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• InstructionAddressMisaligned

50

C.19. c.bnez
Branch if NOT Equal Zero

This instruction is defined by:

Zca

C.19.1. Encoding

01267910121315

01imm[7:6|2:1|5]xs1imm[8|4:3]111

C.19.2. Description

C.BEQZ performs conditional control transfers. The offset is sign-extended and added to the pc to form the branch target address. It can therefore
target a ±256 B range. C.BEQZ takes the branch if the value in register xs1' is NOT zero. It expands to beq
<code>xs1, x0, offset</code>.

C.19.3. Access

M

Always

C.19.4. Decode Variables

signed Bits<9> imm = sext({$encoding[12], $encoding[6:5], $encoding[2], $encoding[11:10], $encoding[4:3], 1'd0});
Bits<3> xs1 = $encoding[9:7];

C.19.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
if (X[creg2reg(xs1)] != 0) {
 jump($pc + $signed(imm));
}

C.19.6. Sail Operation

{
 let rs1_val = X(rs1);
 let rs2_val = X(0);
 let taken : bool = match op {
 RISCV_BEQ => rs1_val == rs2_val,
 RISCV_BNE => rs1_val != rs2_val,
 RISCV_BLT => rs1_val <_s rs2_val,
 RISCV_BGE => rs1_val >=_s rs2_val,
 RISCV_BLTU => rs1_val <_u rs2_val,
 RISCV_BGEU => rs1_val >=_u rs2_val
 };
 let t : xlenbits = PC + sign_extend(imm);
 if taken then {
 /* Extensions get the first checks on the prospective target address. */
 match ext_control_check_pc(t) {
 Ext_ControlAddr_Error(e) => {
 ext_handle_control_check_error(e);
 RETIRE_FAIL
 },
 Ext_ControlAddr_OK(target) => {
 if bit_to_bool(target[1]) & not(extension("C")) then {
 handle_mem_exception(target, E_Fetch_Addr_Align());
 RETIRE_FAIL;
 } else {
 set_next_pc(target);
 RETIRE_SUCCESS
 }
 }

51

 }
 } else RETIRE_SUCCESS
}

C.19.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• InstructionAddressMisaligned

52

C.20. c.ebreak
Breakpoint exception

This instruction is defined by:

Zca

C.20.1. Encoding

015

1001000000000010

C.20.2. Description

The C.EBREAK instruction is used by debuggers to cause control to be transferred back to a debugging environment. Unless overridden by an
external debug environment, C.EBREAK raises a breakpoint exception and performs no other operation.


As described in the C Standard Extension for Compressed Instructions, the c.ebreak instruction performs the same operation as the
EBREAK instruction.

EBREAK causes the receiving privilege mode’s epc register to be set to the address of the EBREAK instruction itself, not the address of the following
instruction. As EBREAK causes a synchronous exception, it is not considered to retire, and should not increment the minstret CSR.

C.20.3. Access

M

Always

C.20.4. Decode Variables

C.20.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
if (TRAP_ON_EBREAK) {
 raise_precise(ExceptionCode::Breakpoint, mode(), $pc);
} else {
 eei_ebreak();
}

C.20.6. Sail Operation

{
 handle_mem_exception(PC, E_Breakpoint());
 RETIRE_FAIL
}

C.20.7. Exceptions

This instruction may result in the following synchronous exceptions:

• Breakpoint

• IllegalInstruction

53

C.21. c.fld
Load double-precision

This instruction is defined by:

Zcd

C.21.1. Encoding

0124567910121315

00fdimm[7:6]xs1imm[5:3]001

C.21.2. Description

Loads a double precision floating-point value from memory into register fd. It computes an effective address by adding the zero-extended offset,
scaled by 8, to the base address in register xs1. It expands to fld fd, offset(xs1).

C.21.3. Access

M

Always

C.21.4. Decode Variables

Bits<8> imm = {$encoding[6:5], $encoding[12:10], 3'd0};
Bits<3> fd = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.21.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[creg2reg(xs1)] + imm;
f[fd] = sext(read_memory<64>(virtual_address, $encoding), 64);

C.21.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• LoadAddressMisaligned

• LoadPageFault

• StoreAmoAccessFault

54

C.22. c.fldsp
Load doubleword into floating-point register from stack

This instruction is defined by:

Zcd

C.22.1. Encoding

0126711121315

10imm[4:3|8:6]fdimm[5]001

C.22.2. Description

Loads a double-precision floating-point value from memory into floating-point register fd. It computes its effective address by adding the zero-
extended offset, scaled by 8, to the stack pointer, x2. It expands to fld fd, offset(x2).

C.22.3. Access

M

Always

C.22.4. Decode Variables

Bits<9> imm = {$encoding[4:2], $encoding[12], $encoding[6:5], 3'd0};
Bits<5> fd = $encoding[11:7];

C.22.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
if (implemented?(ExtensionName::D) && (CSR[misa].D == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[2] + imm;
f[fd] = read_memory<64>(virtual_address, $encoding);

C.22.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• LoadAddressMisaligned

• LoadPageFault

55

C.23. c.flw
Load single-precision

This instruction is defined by:

Zcf

C.23.1. Encoding

0124567910121315

00fdimm[2|6]xs1imm[5:3]011

C.23.2. Description

Loads a single precision floating-point value from memory into register fd. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the base address in register xs1. It expands to flw fd, offset(xs1).

C.23.3. Access

M

Always

C.23.4. Decode Variables

Bits<7> imm = {$encoding[5], $encoding[12:10], $encoding[6], 2'd0};
Bits<3> fd = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.23.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[creg2reg(xs1)] + imm;
X[creg2reg(fd)] = sext(read_memory<32>(virtual_address, $encoding), 32);

C.23.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• LoadAddressMisaligned

• LoadPageFault

56

C.24. c.flwsp
Load word into floating-point register from stack

This instruction is defined by:

Zcf

C.24.1. Encoding

0126711121315

10imm[4:2|7:6]fdimm[5]011

C.24.2. Description

Loads a single-precision floating-point value from memory into floating-point register fd. It computes its effective address by adding the zero-
extended offset, scaled by 4, to the stack pointer, x2. It expands to flw fd, offset(x2).

C.24.3. Access

M

Always

C.24.4. Decode Variables

Bits<8> imm = {$encoding[3:2], $encoding[12], $encoding[6:4], 2'd0};
Bits<5> fd = $encoding[11:7];

C.24.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
if (implemented?(ExtensionName::F) && (CSR[misa].F == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[2] + imm;
f[fd] = read_memory<32>(virtual_address, $encoding);

C.24.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• LoadAddressMisaligned

• LoadPageFault

57

C.25. c.fsd
Store double-precision

This instruction is defined by:

Zcd

C.25.1. Encoding

0124567910121315

00fs2imm[7:6]xs1imm[5:3]101

C.25.2. Description

Stores a double precision floating-point value in register fs2 to memory. It computes an effective address by adding the zero-extended offset, scaled
by 8, to the base address in register xs1. It expands to fsd fs2, offset(xs1).

C.25.3. Access

M

Always

C.25.4. Decode Variables

Bits<8> imm = {$encoding[6:5], $encoding[12:10], 3'd0};
Bits<3> fs2 = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.25.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[creg2reg(xs1)] + imm;
write_memory<64>(virtual_address, X[creg2reg(fs2)], $encoding);

C.25.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

58

C.26. c.fsdsp
Store double-precision value to stack

This instruction is defined by:

Zcd

C.26.1. Encoding

01267121315

10fs2imm[5:3|8:6]101

C.26.2. Description

Stores a double-precision floating-point value in floating-point register fs2 to memory. It computes an effective address by adding the zero-extended
offset, scaled by 8, to the stack pointer, x2. It expands to fsd fs2, offset(x2).

C.26.3. Access

M

Always

C.26.4. Decode Variables

Bits<9> imm = {$encoding[9:7], $encoding[12:10], 3'd0};
Bits<5> fs2 = $encoding[6:2];

C.26.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
if (implemented?(ExtensionName::D) && (CSR[misa].D == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[2] + imm;
write_memory<64>(virtual_address, f[fs2][63:0], $encoding);

C.26.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

59

C.27. c.fsw
Store single-precision

This instruction is defined by:

Zcf

C.27.1. Encoding

0124567910121315

00fs2imm[2|6]xs1imm[5:3]111

C.27.2. Description

Stores a single precision floating-point value in register fs2 to memory. It computes an effective address by adding the zero-extended offset, scaled by
4, to the base address in register xs1. It expands to fsw fs2, offset(xs1).

C.27.3. Access

M

Always

C.27.4. Decode Variables

Bits<7> imm = {$encoding[5], $encoding[12:10], $encoding[6], 2'd0};
Bits<3> fs2 = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.27.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[creg2reg(xs1)] + imm;
write_memory<32>(virtual_address, X[creg2reg(fs2)][31:0], $encoding);

C.27.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

60

C.28. c.fswsp
Store single-precision value to stack

This instruction is defined by:

Zcf

C.28.1. Encoding

01267121315

10fs2imm[5:2|7:6]111

C.28.2. Description

Stores a single-precision floating-point value in floating-point register fs2 to memory. It computes an effective address by adding the zero-extended
offset, scaled by 4, to the stack pointer, x2. It expands to fsw fs2, offset(x2).

C.28.3. Access

M

Always

C.28.4. Decode Variables

Bits<8> imm = {$encoding[8:7], $encoding[12:9], 2'd0};
Bits<5> fs2 = $encoding[6:2];

C.28.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
if (implemented?(ExtensionName::F) && (CSR[misa].F == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[2] + imm;
write_memory<32>(virtual_address, f[fs2][31:0], $encoding);

C.28.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

61

C.29. c.j
Jump

This instruction is defined by:

Zca

C.29.1. Encoding

012121315

01imm[11|4|9:8|10|6|7|3:1|5]101

C.29.2. Description

C.J performs an unconditional control transfer. The offset is sign-extended and added to the pc to form the jump target address. C.J can therefore
target a ±2 KiB range. It expands to jal <code>x0, offset</code>.

C.29.3. Access

M

Always

C.29.4. Decode Variables

signed Bits<12> imm = sext({$encoding[12], $encoding[8], $encoding[10:9], $encoding[6], $encoding[7], $encoding[2], $encoding[11],
$encoding[5:3], 1'd0});

C.29.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
jump($pc + $signed(imm));

C.29.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• InstructionAddressMisaligned

62

C.30. c.jalr
Jump and Link Register

This instruction is defined by:

Zca

C.30.1. Encoding

067111215

0000010xs1 != 01001

C.30.2. Description

C.JALR (jump and link register) performs the same operation as C.JR, but additionally writes the address of the instruction following the jump (pc+2)
to the link register, x1. C.JALR expands to jalr x1, 0(xs1).

C.30.3. Access

M

Always

C.30.4. Decode Variables

Bits<5> xs1 = $encoding[11:7];

C.30.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg addr = X[xs1];
XReg returnaddr;
returnaddr = $pc + 2;
X[1] = returnaddr;
jump(addr);

C.30.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• InstructionAddressMisaligned

63

C.31. c.jr
Jump Register

This instruction is defined by:

Zca

C.31.1. Encoding

067111215

0000010xs1 != 01000

C.31.2. Description

C.JR (jump register) performs an unconditional control transfer to the address in register xs1. C.JR expands to jalr x0, 0(xs1).

C.31.3. Access

M

Always

C.31.4. Decode Variables

Bits<5> xs1 = $encoding[11:7];

C.31.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
jump(X[xs1]);

C.31.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• InstructionAddressMisaligned

64

C.32. c.li
Load the sign-extended 6-bit immediate

This instruction is defined by:

Zca

C.32.1. Encoding

0126711121315

01imm[4:0]xd != 0imm[5]010

C.32.2. Description

C.LI loads the sign-extended 6-bit immediate, imm, into register xd. C.LI expands into <code>addi xd, x0, imm</code>. C.LI is only valid when xd ≠
x0; the code points with xd=x0 encode HINTs.

C.32.3. Access

M

Always

C.32.4. Decode Variables

Bits<6> imm = {$encoding[12], $encoding[6:2]};
Bits<5> xd = $encoding[11:7];

C.32.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
X[xd] = $signed(imm);

C.32.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

65

C.33. c.lui
Load Upper Immediate

This instruction is defined by:

Zca

C.33.1. Encoding

0126711121315

01imm[16:12]xd != {0,2}imm[17]011

C.33.2. Description

C.LUI loads the non-zero 6-bit immediate field into bits 17-12 of the destination register, clears the bottom 12 bits, and sign-extends bit 17 into all
higher bits of the destination. C.LUI expands into <code>lui xd, imm</code>. C.LUI is only valid when xd≠x0 and xd≠x2, and when the
immediate is not equal to zero. The code points with imm=0 are reserved; the remaining code points with xd=x0 are HINTs; and the remaining code
points with xd=x2 correspond to the C.ADDI16SP instruction

C.33.3. Access

M

Always

C.33.4. Decode Variables

Bits<18> imm = {$encoding[12], $encoding[6:2], 12'd0};
Bits<5> xd = $encoding[11:7];

C.33.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
X[xd] = $signed(imm);

C.33.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

66

C.34. c.lw
Load word

This instruction is defined by:

Zca

C.34.1. Encoding

0124567910121315

00xdimm[2|6]xs1imm[5:3]010

C.34.2. Description

Loads a 32-bit value from memory into register xd. It computes an effective address by adding the zero-extended offset, scaled by 4, to the base
address in register xs1. It expands to lw xd, offset(xs1).

C.34.3. Access

M

Always

C.34.4. Decode Variables

Bits<7> imm = {$encoding[5], $encoding[12:10], $encoding[6], 2'd0};
Bits<3> xd = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.34.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[creg2reg(xs1)] + imm;
X[creg2reg(xd)] = sext(read_memory<32>(virtual_address, $encoding), 32);

C.34.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 /* Get the address, X(rs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(rs1, offset, Read(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Read(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(paddr, _) =>
 match (width) {
 BYTE =>
 process_load(rd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
 HALF =>
 process_load(rd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
 WORD =>
 process_load(rd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
 DOUBLE if sizeof(xlen) >= 64 =>
 process_load(rd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
 _ => report_invalid_width(__FILE__, __LINE__, width, "load")
 }
 }
 }
}

67

C.34.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• LoadAddressMisaligned

• LoadPageFault

68

C.35. c.lwsp
Load word from stack pointer

This instruction is defined by:

Zca

C.35.1. Encoding

0126711121315

10imm[4:2|7:6]xd != 0imm[5]010

C.35.2. Description

Loads a 32-bit value from memory into register xd. It computes an effective address by adding the zero-extended offset, scaled by 4, to the stack
pointer, x2. It expands to lw <code>xd, offset(x2)</code>. C.LWSP is only valid when xd ≠ x0. The code points
with xd=x0 are reserved.

C.35.3. Access

M

Always

C.35.4. Decode Variables

Bits<8> imm = {$encoding[3:2], $encoding[12], $encoding[6:4], 2'd0};
Bits<5> xd = $encoding[11:7];

C.35.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[2] + imm;
X[xd] = sext(read_memory<32>(virtual_address, $encoding), 32);

C.35.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• LoadAddressMisaligned

• LoadPageFault

69

C.36. c.mv
Move Register

This instruction is defined by:

Zca

C.36.1. Encoding

01267111215

10xs2 != 0xd != 01000

C.36.2. Description

C.MV (move register) performs copy of the data in register xs2 to register xd C.MV expands to addi xd, x0, xs2.

C.36.3. Access

M

Always

C.36.4. Decode Variables

Bits<5> xd = $encoding[11:7];
Bits<5> xs2 = $encoding[6:2];

C.36.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
X[xd] = X[xs2];

C.36.6. Sail Operation

{
 let xs2_val = X(xs2);
 X(rs) = xs2_val
 RETIRE_SUCCESS
}

C.36.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

70

C.37. c.nop
Non-operation

This instruction is defined by:

Zca

C.37.1. Encoding

015

0000000000000001

C.37.2. Description

C.NOP expands into addi x0, x0, 0.

C.37.3. Access

M

Always

C.37.4. Decode Variables

C.37.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}

C.37.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

71

C.38. c.or
Or

This instruction is defined by:

Zca

C.38.1. Encoding

012456791015

01xs210xd100011

C.38.2. Description

Or xd with xs2, and store the result in xd The xd and xs2 register indexes should be used as xd+8 and xs2+8 (registers x8-x15). C.OR expands into or
xd, xd, xs2.

C.38.3. Access

M

Always

C.38.4. Decode Variables

Bits<3> xs2 = $encoding[4:2];
Bits<3> xd = $encoding[9:7];

C.38.5. IDL Operation

XReg t0 = X[creg2reg(xd)];
XReg t1 = X[creg2reg(xs2)];
X[creg2reg(xd)] = t0 | t1;

C.38.6. Sail Operation

{
 let rs1_val = X(rd+8);
 let rs2_val = X(rs2+8);
 let result : xlenbits = match op {
 RISCV_ADD => rs1_val + rs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(rs1_val <_s rs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(rs1_val <_u rs2_val)),
 RISCV_AND => rs1_val & rs2_val,
 RISCV_OR => rs1_val | rs2_val,
 RISCV_XOR => rs1_val ^ rs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then rs1_val << (rs2_val[4..0])
 else rs1_val << (rs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then rs1_val >> (rs2_val[4..0])
 else rs1_val >> (rs2_val[5..0]),
 RISCV_SUB => rs1_val - rs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(rs1_val, rs2_val[4..0])
 else shift_right_arith64(rs1_val, rs2_val[5..0])
 };
 X(rd+8) = result;
 RETIRE_SUCCESS
}

C.38.7. Exceptions

This instruction does not generate synchronous exceptions.

72

C.39. c.slli
Shift left logical immediate

This instruction is defined by:

Zca

C.39.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

01267111215

10shamt != 0xd0000

RV64

0126711121315

10shamt != 0[4:0]xdshamt != 0[5]000

C.39.2. Description

Shift the value in xd left by shamt, and store the result back in xd. C.SLLI expands into slli xd, xd, shamt.

C.39.3. Access

M

Always

C.39.4. Decode Variables

RV32

Bits<5> shamt = $encoding[6:2];
Bits<5> xd = $encoding[11:7];

RV64

Bits<6> shamt = {$encoding[12], $encoding[6:2]};
Bits<5> xd = $encoding[11:7];

C.39.5. IDL Operation

X[xd] = X[xd] << shamt;

C.39.6. Sail Operation

{
 let rd_val = X(rd);
 /* the decoder guard should ensure that shamt[5] = 0 for RV32 */
 let result : xlenbits = match op {
 RISCV_SLLI => if sizeof(xlen) == 32
 then rd_val << shamt[4..0]
 else rd_val << shamt,
 RISCV_SRLI => if sizeof(xlen) == 32
 then rd_val >> shamt[4..0]
 else rd_val >> shamt,
 RISCV_SRAI => if sizeof(xlen) == 32
 then shift_right_arith32(rd_val, shamt[4..0])
 else shift_right_arith64(rd_val, shamt)
 };
 X(rd) = result;
 RETIRE_SUCCESS

73

}

C.39.7. Exceptions

This instruction does not generate synchronous exceptions.

74

C.40. c.srai
Shift right arithmetical immediate

This instruction is defined by:

Zca

C.40.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

0126791015

01shamt != 0xd100001

RV64

0126791011121315

01shamt != 0[4:0]xd01shamt != 0[5]100

C.40.2. Description

Arithmetic shift (the original sign bit is copied into the vacated upper bits) the value in xd right by shamt, and store the result in xd. The xd register
index should be used as xd+8 (registers x8-x15). C.SRAI expands into srai xd, xd, shamt.

C.40.3. Access

M

Always

C.40.4. Decode Variables

RV32

Bits<5> shamt = $encoding[6:2];
Bits<3> xd = $encoding[9:7];

RV64

Bits<6> shamt = {$encoding[12], $encoding[6:2]};
Bits<3> xd = $encoding[9:7];

C.40.5. IDL Operation

X[creg2reg(xd)] = X[creg2reg(xd)] >>> shamt;

C.40.6. Sail Operation

{
 let rd_val = X(rd+8);
 /* the decoder guard should ensure that shamt[5] = 0 for RV32 */
 let result : xlenbits = match op {
 RISCV_SLLI => if sizeof(xlen) == 32
 then rd_val << shamt[4..0]
 else rd_val << shamt,
 RISCV_SRLI => if sizeof(xlen) == 32
 then rd_val >> shamt[4..0]
 else rd_val >> shamt,
 RISCV_SRAI => if sizeof(xlen) == 32
 then shift_right_arith32(rd_val, shamt[4..0])
 else shift_right_arith64(rd_val, shamt)
 };
 X(rd+8) = result;

75

 RETIRE_SUCCESS
}

C.40.7. Exceptions

This instruction does not generate synchronous exceptions.

76

C.41. c.srli
Shift right logical immediate

This instruction is defined by:

Zca

C.41.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

0126791015

01shamt != 0xd100000

RV64

0126791011121315

01shamt != 0[4:0]xd00shamt != 0[5]100

C.41.2. Description

Shift the value in xd right by shamt, and store the result back in xd. The xd register index should be used as xd+8 (registers x8-x15). C.SRLI expands
into srli xd, xd, shamt.

C.41.3. Access

M

Always

C.41.4. Decode Variables

RV32

Bits<5> shamt = $encoding[6:2];
Bits<3> xd = $encoding[9:7];

RV64

Bits<6> shamt = {$encoding[12], $encoding[6:2]};
Bits<3> xd = $encoding[9:7];

C.41.5. IDL Operation

X[creg2reg(xd)] = X[creg2reg(xd)] >> shamt;

C.41.6. Sail Operation

{
 let rd_val = X(rd+8);
 /* the decoder guard should ensure that shamt[5] = 0 for RV32 */
 let result : xlenbits = match op {
 RISCV_SLLI => if sizeof(xlen) == 32
 then rd_val << shamt[4..0]
 else rd_val << shamt,
 RISCV_SRLI => if sizeof(xlen) == 32
 then rd_val >> shamt[4..0]
 else rd_val >> shamt,
 RISCV_SRAI => if sizeof(xlen) == 32
 then shift_right_arith32(rd_val, shamt[4..0])
 else shift_right_arith64(rd_val, shamt)
 };
 X(rd+8) = result;

77

 RETIRE_SUCCESS
}

C.41.7. Exceptions

This instruction does not generate synchronous exceptions.

78

C.42. c.sub
Subtract

This instruction is defined by:

Zca

C.42.1. Encoding

012456791015

01xs200xd100011

C.42.2. Description

Subtract the value in xs2 from xd, and store the result in xd. The xd and xs2 register indexes should be used as xd+8 and xs2+8 (registers x8-x15).
C.SUB expands into sub xd, xd, xs2.

C.42.3. Access

M

Always

C.42.4. Decode Variables

Bits<3> xs2 = $encoding[4:2];
Bits<3> xd = $encoding[9:7];

C.42.5. IDL Operation

XReg t0 = X[creg2reg(xd)];
XReg t1 = X[creg2reg(xs2)];
X[creg2reg(xd)] = t0 - t1;

C.42.6. Sail Operation

{
 let rs1_val = X(rd+8);
 let rs2_val = X(rs2+8);
 let result : xlenbits = match op {
 RISCV_ADD => rs1_val + rs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(rs1_val <_s rs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(rs1_val <_u rs2_val)),
 RISCV_AND => rs1_val & rs2_val,
 RISCV_OR => rs1_val | rs2_val,
 RISCV_XOR => rs1_val ^ rs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then rs1_val << (rs2_val[4..0])
 else rs1_val << (rs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then rs1_val >> (rs2_val[4..0])
 else rs1_val >> (rs2_val[5..0]),
 RISCV_SUB => rs1_val - rs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(rs1_val, rs2_val[4..0])
 else shift_right_arith64(rs1_val, rs2_val[5..0])
 };
 X(rd+8) = result;
 RETIRE_SUCCESS
}

C.42.7. Exceptions

This instruction does not generate synchronous exceptions.

79

C.43. c.sw
Store word

This instruction is defined by:

Zca

C.43.1. Encoding

0124567910121315

00xs2imm[2|6]xs1imm[5:3]110

C.43.2. Description

Stores a 32-bit value in register xs2 to memory. It computes an effective address by adding the zero-extended offset, scaled by 4, to the base address
in register xs1. It expands to sw rs2, offset(xs1).

C.43.3. Access

M

Always

C.43.4. Decode Variables

Bits<7> imm = {$encoding[5], $encoding[12:10], $encoding[6], 2'd0};
Bits<3> xs2 = $encoding[4:2];
Bits<3> xs1 = $encoding[9:7];

C.43.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[creg2reg(xs1)] + imm;
write_memory<32>(virtual_address, X[creg2reg(xs2)][31:0], $encoding);

C.43.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

80

C.44. c.swsp
Store word to stack

This instruction is defined by:

Zca

C.44.1. Encoding

01267121315

10xs2imm[5:2|7:6]110

C.44.2. Description

Stores a 32-bit value in register xs2 to memory. It computes an effective address by adding the zero-extended offset, scaled by 4, to the stack pointer,
x2. It expands to sw xs2, offset(x2).

C.44.3. Access

M

Always

C.44.4. Decode Variables

Bits<8> imm = {$encoding[8:7], $encoding[12:9], 2'd0};
Bits<5> xs2 = $encoding[6:2];

C.44.5. IDL Operation

if (implemented?(ExtensionName::C) && (CSR[misa].C == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg virtual_address = X[2] + imm;
write_memory<32>(virtual_address, X[xs2][31:0], $encoding);

C.44.6. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

81

C.45. c.xor
Exclusive Or

This instruction is defined by:

Zca

C.45.1. Encoding

012456791015

01xs201xd100011

C.45.2. Description

Exclusive or xd with xs2, and store the result in xd The xd and xs2 register indexes should be used as xd+8 and xs2+8 (registers x8-x15). C.XOR
expands into xor xd, xd, xs2.

C.45.3. Access

M

Always

C.45.4. Decode Variables

Bits<3> xs2 = $encoding[4:2];
Bits<3> xd = $encoding[9:7];

C.45.5. IDL Operation

XReg t0 = X[creg2reg(xd)];
XReg t1 = X[creg2reg(xs2)];
X[creg2reg(xd)] = t0 ^ t1;

C.45.6. Sail Operation

{
 let rs1_val = X(rd+8);
 let rs2_val = X(rs2+8);
 let result : xlenbits = match op {
 RISCV_ADD => rs1_val + rs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(rs1_val <_s rs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(rs1_val <_u rs2_val)),
 RISCV_AND => rs1_val & rs2_val,
 RISCV_OR => rs1_val | rs2_val,
 RISCV_XOR => rs1_val ^ rs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then rs1_val << (rs2_val[4..0])
 else rs1_val << (rs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then rs1_val >> (rs2_val[4..0])
 else rs1_val >> (rs2_val[5..0]),
 RISCV_SUB => rs1_val - rs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(rs1_val, rs2_val[4..0])
 else shift_right_arith64(rs1_val, rs2_val[5..0])
 };
 X(rd+8) = result;
 RETIRE_SUCCESS
}

C.45.7. Exceptions

This instruction does not generate synchronous exceptions.

82

C.46. div
Signed division

This instruction is defined by:

M

C.46.1. Encoding

067111214151920242531

0110011xd100xs1xs20000001

C.46.2. Description

Divide xs1 by xs2, and store the result in xd. The remainder is discarded.

Division by zero will put -1 into xd.

Division resulting in signed overflow (when most negative number is divided by -1) will put the most negative number into xd;

C.46.3. Access

M

Always

C.46.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.46.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
XReg signed_min = (xlen() == 32) ? $signed({1'b1, {31{1'b0}}}) : {1'b1, {63{1'b0}}};
if (src2 == 0) {
 X[xd] = {MXLEN{1'b1}};
} else if ((src1 == signed_min) && (src2 == {MXLEN{1'b1}})) {
 X[xd] = signed_min;
} else {
 X[xd] = $signed(src1) / $signed(src2);
}

C.46.6. Sail Operation

{
 if extension("M") then {
 let rs1_val = X(rs1);
 let rs2_val = X(rs2);
 let rs1_int : int = if s then signed(rs1_val) else unsigned(rs1_val);
 let rs2_int : int = if s then signed(rs2_val) else unsigned(rs2_val);
 let q : int = if rs2_int == 0 then -1 else quot_round_zero(rs1_int, rs2_int);
 /* check for signed overflow */
 let q': int = if s & q > xlen_max_signed then xlen_min_signed else q;
 X(rd) = to_bits(sizeof(xlen), q');
 RETIRE_SUCCESS
 } else {
 handle_illegal();
 RETIRE_FAIL
 }
}

83

C.46.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

84

C.47. divu
Unsigned division

This instruction is defined by:

M

C.47.1. Encoding

067111214151920242531

0110011xd101xs1xs20000001

C.47.2. Description

Divide unsigned values in xs1 by xs2, and store the result in xd.

The remainder is discarded.

If the value in xs2 is zero, xd gets the largest unsigned value.

C.47.3. Access

M

Always

C.47.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.47.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
if (src2 == 0) {
 X[xd] = {MXLEN{1'b1}};
} else {
 X[xd] = src1 / src2;
}

C.47.6. Sail Operation

{
 if extension("M") then {
 let rs1_val = X(rs1);
 let rs2_val = X(rs2);
 let rs1_int : int = if s then signed(rs1_val) else unsigned(rs1_val);
 let rs2_int : int = if s then signed(rs2_val) else unsigned(rs2_val);
 let q : int = if rs2_int == 0 then -1 else quot_round_zero(rs1_int, rs2_int);
 /* check for signed overflow */
 let q': int = if s & q > xlen_max_signed then xlen_min_signed else q;
 X(rd) = to_bits(sizeof(xlen), q');
 RETIRE_SUCCESS
 } else {
 handle_illegal();
 RETIRE_FAIL
 }
}

C.47.7. Exceptions

This instruction may result in the following synchronous exceptions:

85

• IllegalInstruction

86

C.48. ebreak
Breakpoint exception

This instruction is defined by:

I

C.48.1. Encoding

031

00000000000100000000000001110011

C.48.2. Description

The EBREAK instruction is used by debuggers to cause control to be transferred back to a debugging environment. Unless overridden by an external
debug environment, EBREAK raises a breakpoint exception and performs no other operation.


As described in the C Standaxd Extension for Compressed Instructions, the c.ebreak instruction performs the same operation as the
EBREAK instruction.

EBREAK causes the receiving privilege mode’s epc register to be set to the address of the EBREAK instruction itself, not the address of the following
instruction. As EBREAK causes a synchronous exception, it is not considered to retire, and should not increment the minstret CSR.

C.48.3. Access

M

Always

C.48.4. Decode Variables

C.48.5. IDL Operation

if (TRAP_ON_EBREAK) {
 raise_precise(ExceptionCode::Breakpoint, mode(), $pc);
} else {
 eei_ebreak();
}

C.48.6. Sail Operation

{
 handle_mem_exception(PC, E_Breakpoint());
 RETIRE_FAIL
}

C.48.7. Exceptions

This instruction may result in the following synchronous exceptions:

• Breakpoint

87

C.49. ecall
Environment call

This instruction is defined by:

I

C.49.1. Encoding

031

00000000000000000000000001110011

C.49.2. Description

Makes a request to the supporting execution environment. When executed in U-mode, S-mode, or M-mode, it generates an environment-call-from-U-
mode exception, environment-call-from-S-mode exception, or environment-call-from-M-mode exception, respectively, and performs no other
operation.


ECALL generates a different exception for each originating privilege mode so that environment call exceptions can be selectively
delegated. A typical use case for Unix-like operating systems is to delegate to S-mode the environment-call-from-U-mode exception
but not the others.

ECALL causes the receiving privilege mode’s epc register to be set to the address of the ECALL instruction itself, not the address of the following
instruction. As ECALL causes a synchronous exception, it is not considered to retire, and should not increment the minstret CSR.

C.49.3. Access

M

Always

C.49.4. Decode Variables

C.49.5. IDL Operation

if (mode() == PrivilegeMode::M) {
 if (TRAP_ON_ECALL_FROM_M) {
 raise_precise(ExceptionCode::Mcall, PrivilegeMode::M, 0);
 } else {
 eei_ecall_from_m();
 }
} else if (mode() == PrivilegeMode::S) {
 if (TRAP_ON_ECALL_FROM_S) {
 raise_precise(ExceptionCode::Scall, PrivilegeMode::S, 0);
 } else {
 eei_ecall_from_s();
 }
} else if (mode() == PrivilegeMode::U || mode() == PrivilegeMode::VU) {
 if (TRAP_ON_ECALL_FROM_U) {
 raise_precise(ExceptionCode::Ucall, mode(), 0);
 } else {
 eei_ecall_from_u();
 }
} else if (mode() == PrivilegeMode::VS) {
 if (TRAP_ON_ECALL_FROM_VS) {
 raise_precise(ExceptionCode::VScall, PrivilegeMode::VS, 0);
 } else {
 eei_ecall_from_vs();
 }
}

C.49.6. Sail Operation

{
 let t : sync_exception =
 struct { trap = match (cur_privilege) {

88

 User => E_U_EnvCall(),
 Supervisor => E_S_EnvCall(),
 Machine => E_M_EnvCall()
 },
 excinfo = (None() : option(xlenbits)),
 ext = None() };
 set_next_pc(exception_handler(cur_privilege, CTL_TRAP(t), PC));
 RETIRE_FAIL
}

C.49.7. Exceptions

This instruction may result in the following synchronous exceptions:

• Mcall

• Scall

• Ucall

• VScall

89

C.50. fadd.d
Floating-Point Add Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.50.1. Encoding

067111214151920242531

1010011fdrmfs1fs20000001

C.50.2. Description

The fadd.d instruction is analogous to fadd.s and performs double-precision floating-point addition of fs1 and fs2 and writes the final result to fd.

C.50.3. Access

M

Always

C.50.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.50.5. IDL Operation

C.50.6. Exceptions

This instruction does not generate synchronous exceptions.

90

C.51. fadd.s
Floating-Point Add Single-Precision

This instruction is defined by:

F

C.51.1. Encoding

067111214151920242531

1010011fdrmfs1fs20000000

C.51.2. Description

The fadd.s instruction performs single-precision floating-point addition of fs1 and fs2 and writes the final result to fd.

C.51.3. Access

M

Always

C.51.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.51.5. IDL Operation

check_f_ok($encoding);
RoundingMode mode = rm_to_mode(rm, $encoding);
f[fd] = f32_add(f[fs1], f[fs2], mode);

C.51.6. Sail Operation

{
 let rs1_val_32b = F_or_X_S(rs1);
 let rs2_val_32b = F_or_X_S(rs2);
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_32b) : (bits(5), bits(32)) = match op {
 FADD_S => riscv_f32Add (rm_3b, rs1_val_32b, rs2_val_32b),
 FSUB_S => riscv_f32Sub (rm_3b, rs1_val_32b, rs2_val_32b),
 FMUL_S => riscv_f32Mul (rm_3b, rs1_val_32b, rs2_val_32b),
 FDIV_S => riscv_f32Div (rm_3b, rs1_val_32b, rs2_val_32b)
 };
 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_32b;
 RETIRE_SUCCESS
 }
 }
}

C.51.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

91

C.52. fclass.d
Floating-Point Classify Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.52.1. Encoding

06711121415192031

1010011xd001fs1111000100000

C.52.2. Description

The fclass.d instruction is defined analogously to its single-precision counterpart, but operates on double-precision operands. It examines the value
in floating-point register fs1 and writes to integer register xd a 10-bit mask that indicates the class of the floating point number.

The format of the mask is described in the table below. The corresponding bit in xd will be set if the property is true and clear otherwise. All other
bits in xd are cleared. Note that exactly one bit in xd will be set.

Table 9. Format of result of fclass instruction.

xd bit Meaning

0 fs1 is -\infty.

1 fs1 is a negative normal number.

2 fs1 is a negative subnormal number.

3 fs1 is -0.

4 fs1 is +0.

5 fs1 is a positive subnormal number.

6 fs1 is a positive normal number.

7 fs1 is +\infty.

8 fs1 is a signaling NaN.

9 fs1 is a quiet NaN.

C.52.3. Access

M

Always

C.52.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.52.5. IDL Operation

C.52.6. Exceptions

This instruction does not generate synchronous exceptions.

92

C.53. fclass.s
Floating-Point Classify Single-Precision

This instruction is defined by:

F

C.53.1. Encoding

06711121415192031

1010011xd001fs1111000000000

C.53.2. Description

The fclass.s instruction examines the value in floating-point register fs1 and writes to integer register xd a 10-bit mask that indicates the class of the
floating-point number.

The format of the mask is described in the table below. The corresponding bit in xd will be set if the property is true and clear otherwise. All other
bits in xd are cleared. Note that exactly one bit in xd will be set. fclass.s does not set the floating-point exception flags.

Table 10. Format of result of fclass instruction.

xd bit Meaning

0 fs1 is -\infty.

1 fs1 is a negative normal number.

2 fs1 is a negative subnormal number.

3 fs1 is -0.

4 fs1 is +0.

5 fs1 is a positive subnormal number.

6 fs1 is a positive normal number.

7 fs1 is +\infty.

8 fs1 is a signaling NaN.

9 fs1 is a quiet NaN.

C.53.3. Access

M

Always

C.53.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.53.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value = f[fs1][31:0];
if (is_sp_neg_inf?(sp_value)) {
 X[xd] = 1 << 0;
} else if (is_sp_neg_norm?(sp_value)) {
 X[xd] = 1 `<< 1;
} else if (is_sp_neg_subnorm?(sp_value)) {
 X[xd] = 1 `<< 2;
} else if (is_sp_neg_zero?(sp_value)) {
 X[xd] = 1 `<< 3;
} else if (is_sp_pos_zero?(sp_value)) {
 X[xd] = 1 `<< 4;
} else if (is_sp_pos_subnorm?(sp_value)) {
 X[xd] = 1 `<< 5;
} else if (is_sp_pos_norm?(sp_value)) {
 X[xd] = 1 `<< 6;
} else if (is_sp_pos_inf?(sp_value)) {
 X[xd] = 1 `<< 7;

93

} else if (is_sp_signaling_nan?(sp_value)) {
 X[xd] = 1 `<< 8;
} else {
 assert(is_sp_quiet_nan?(sp_value), "Unexpected SP value");
 X[xd] = 1 `<< 9;
}

C.53.6. Sail Operation

{
 let rs1_val_X = X(rs1);
 let rd_val_S = rs1_val_X [31..0];
 F(rd) = nan_box (rd_val_S);
 RETIRE_SUCCESS
}

C.53.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

94

C.54. fcvt.d.s
Floating-Point Convert Single-Precision to Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.54.1. Encoding

06711121415192031

1010011fdrmfs1010000100000

C.54.2. Description

The single-precision to double-precision conversion instruction, fcvt.d.s is encoded in the OP-FP major opcode space and both the source and
destination are floating-point registers. The xs2 field encodes the datatype of the source, and the fmt field encodes the datatype of the destination.
fcvt.d.s will never round.

C.54.3. Access

M

Always

C.54.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.54.5. IDL Operation

C.54.6. Exceptions

This instruction does not generate synchronous exceptions.

95

C.55. fcvt.d.w
Floating-Point Convert Word to Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.55.1. Encoding

06711121415192031

1010011fdrmxs1110100100000

C.55.2. Description

The fcvt.d.w instruction converts a 32-bit signed integer, in integer register xs1 into a double-precision floating-point number in floating-point
register fd. Note fcvt.d.w always produces an exact result and is unaffected by rounding mode.

C.55.3. Access

M

Always

C.55.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.55.5. IDL Operation

C.55.6. Exceptions

This instruction does not generate synchronous exceptions.

96

C.56. fcvt.d.wu
Floating-Point Convert Unsigned Word to Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.56.1. Encoding

06711121415192031

1010011fdrmxs1110100100001

C.56.2. Description

The fcvt.d.wu instruction converts a 32-bit unsigned integer in integer register xs1 into a double-precision floating-point number in floating-point
register fd. Note fcvt.d.wu always produces an exact result and is unaffected by rounding mode.

C.56.3. Access

M

Always

C.56.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.56.5. IDL Operation

C.56.6. Exceptions

This instruction does not generate synchronous exceptions.

97

C.57. fcvt.s.d
Floating-Point Convert Double-Precision to Single-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.57.1. Encoding

06711121415192031

1010011fdrmfs1010000000001

C.57.2. Description

The fcvt.s.d instruction converts a double-precision floating-point number to a single-precision floating-point number. This is encoded in the OP-FP
major opcode space and both the source and destination are floating-point registers. The xs2 field encodes the datatype of the source, and the fmt
field encodes the datatype of the destination. fcvt.s.d rounds according to the rm field.

C.57.3. Access

M

Always

C.57.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.57.5. IDL Operation

C.57.6. Exceptions

This instruction does not generate synchronous exceptions.

98

C.58. fcvt.s.w
Floating-Point Convert Word to Single-Precision

This instruction is defined by:

F

C.58.1. Encoding

06711121415192031

1010011fdrmxs1110100000000

C.58.2. Description

The fcvt.s.w instruction converts a 32-bit signed integer in integer register xs1 into a floating-point number in floating-point register fd.

All floating-point to integer and integer to floating-point conversion instructions round according to the rm field.

A floating-point register can be initialized to floating-point positive zero using fcvt.s.w fd, x0, which will never set any exception flags.

All floating-point conversion instructions set the Inexact exception flag if the rounded result differs from the operand value and the Invalid
exception flag is not set.

C.58.3. Access

M

Always

C.58.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.58.5. IDL Operation

check_f_ok($encoding);
RoundingMode rounding_mode = rm_to_mode(rm, $encoding);
f[fd] = i32_to_f32(X[xs1], rounding_mode);
mark_f_state_dirty();

C.58.6. Sail Operation

{
 assert(sizeof(xlen) >= 64);
 let rs1_val_LU = X(rs1)[63..0];
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_S) = riscv_ui64ToF32 (rm_3b, rs1_val_LU);

 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_S;
 RETIRE_SUCCESS
 }
 }
}

C.58.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

99

C.59. fcvt.s.wu
Floating-Point Convert Unsigned Word to Single-Precision

This instruction is defined by:

F

C.59.1. Encoding

06711121415192031

1010011fdrmxs1110100000001

C.59.2. Description

The fcvt.s.wu instruction converts a 32-bit unsigned integer in integer register xs1 into a floating-point number in floating-point register fd.

All floating-point to integer and integer to floating-point conversion instructions round according to the rm field.

A floating-point register can be initialized to floating-point positive zero using fcvt.s.w rd, x0, which will never set any exception flags.

All floating-point conversion instructions set the Inexact exception flag if the rounded result differs from the operand value and the Invalid
exception flag is not set.

C.59.3. Access

M

Always

C.59.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.59.5. IDL Operation

check_f_ok($encoding);
RoundingMode rounding_mode = rm_to_mode(rm, $encoding);
f[fd] = ui32_to_f32(X[xs1], rounding_mode);
mark_f_state_dirty();

C.59.6. Sail Operation

{
 assert(sizeof(xlen) >= 64);
 let rs1_val_LU = X(rs1)[63..0];
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_S) = riscv_ui64ToF32 (rm_3b, rs1_val_LU);

 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_S;
 RETIRE_SUCCESS
 }
 }
}

C.59.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

100

C.60. fcvt.w.d
Floating-Point Convert Double-Precision to Word

This instruction is defined by:

(D ࣷ Zdinx)

C.60.1. Encoding

06711121415192031

1010011xdrmfs1110000100000

C.60.2. Description

The fcvt.w.d instruction converts a double-precision floating-point number in floating-point register fs1 to a signed 32-bit integer, in integer register
xd.

C.60.3. Access

M

Always

C.60.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> xd = $encoding[11:7];

C.60.5. IDL Operation

C.60.6. Exceptions

This instruction does not generate synchronous exceptions.

101

C.61. fcvt.w.s
Floating-Point Convert Single-Precision to Word

This instruction is defined by:

F

C.61.1. Encoding

06711121415192031

1010011xdrmfs1110000000000

C.61.2. Description

The fcvt.w.s instruction converts a floating-point number in floating-point register fs1 to a signed 32-bit integer in integer register xd. For XLEN >32,
fcvt.w.s sign-extends the 32-bit result to the destination register width.

If the rounded result is not representable as a 32-bit signed integer, it is clipped to the nearest value and the invalid flag is set.

The range of valid inputs and behavior for invalid inputs are:

Value

Minimum valid input (after rounding) -2^31

Maximum valid input (after rounding) 2^31 - 1

Output for out-of-range negative input -2^31

Output for <code>-∞</code> -2^31

Output for out-of-range positive input 2^31 - 1

Output for <code>+∞</code> for <code>NaN</code> 2^31 - 1

All floating-point to integer and integer to floating-point conversion instructions round according to the rm field.

A floating-point register can be initialized to floating-point positive zero using fcvt.s.w xd, x0, which will never set any exception flags.

All floating-point conversion instructions set the Inexact exception flag if the rounded result differs from the operand value and the Invalid
exception flag is not set.

C.61.3. Access

M

Always

C.61.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> xd = $encoding[11:7];

C.61.5. IDL Operation

check_f_ok($encoding);
RoundingMode rounding_mode = rm_to_mode(rm, $encoding);
X[xd] = f32_to_i32(f[fs1], rounding_mode);

C.61.6. Sail Operation

{
 assert(sizeof(xlen) >= 64);
 let rs1_val_LU = X(rs1)[63..0];
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_S) = riscv_ui64ToF32 (rm_3b, rs1_val_LU);

102

 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_S;
 RETIRE_SUCCESS
 }
 }
}

C.61.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

103

C.62. fcvt.wu.d
Floating-Point Convert Double-Precision to Unsigned Word

This instruction is defined by:

(D ࣷ Zdinx)

C.62.1. Encoding

06711121415192031

1010011xdrmfs1110000100001

C.62.2. Description

The fcvt.wu.d instruction converts a double-precision floating-point number in floating-point register fs1 to an unsigned 32-bit integer, in integer
register xd.

C.62.3. Access

M

Always

C.62.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> xd = $encoding[11:7];

C.62.5. IDL Operation

C.62.6. Exceptions

This instruction does not generate synchronous exceptions.

104

C.63. fcvt.wu.s
Floating-Point Convert Single-Precision to Unsigned Word

This instruction is defined by:

F

C.63.1. Encoding

06711121415192031

1010011xdrmfs1110000000001

C.63.2. Description

Converts a floating-point number in floating-point register fs1 to an unsigned 32-bit integer in integer register xd. For XLEN >32, fcvt.wu.s sign-
extends the 32-bit result to the destination register width.

If the rounded result is not representable as a 32-bit unsigned integer, it is clipped to the nearest value and the invalid flag is set.

The range of valid inputs and behavior for invalid inputs are:

Value

Minimum valid input (after rounding) 0

Maximum valid input (after rounding) 2^32 - 1

Output for out-of-range negative input 0

Output for <code>-∞</code> 0

Output for out-of-range positive input 2^32 - 1

Output for <code>+∞</code> for <code>NaN</code> 2^32 - 1

All floating-point to integer and integer to floating-point conversion instructions round according to the rm field.

A floating-point register can be initialized to floating-point positive zero using fcvt.s.w xd, x0, which will never set any exception flags.

All floating-point conversion instructions set the Inexact exception flag if the rounded result differs from the operand value and the Invalid
exception flag is not set.

C.63.3. Access

M

Always

C.63.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> xd = $encoding[11:7];

C.63.5. IDL Operation

check_f_ok($encoding);
RoundingMode rounding_mode = rm_to_mode(rm, $encoding);
X[xd] = f32_to_ui32(f[fs1], rounding_mode);

C.63.6. Sail Operation

{
 assert(sizeof(xlen) >= 64);
 let rs1_val_LU = X(rs1)[63..0];
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_S) = riscv_ui64ToF32 (rm_3b, rs1_val_LU);

105

 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_S;
 RETIRE_SUCCESS
 }
 }
}

C.63.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

106

C.64. fdiv.d
Floating-Point Divide Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.64.1. Encoding

067111214151920242531

1010011fdrmfs1fs20001101

C.64.2. Description

The fdiv.d instruction performs the double-precision floating-point division of fs1 by fs2. It is defined analogously to its single-precision counterpart,
but operates on double-precision operands and produces double-precision results.

C.64.3. Access

M

Always

C.64.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.64.5. IDL Operation

C.64.6. Exceptions

This instruction does not generate synchronous exceptions.

107

C.65. fdiv.s
Floating-Point Divide Single-Precision

This instruction is defined by:

F

C.65.1. Encoding

067111214151920242531

1010011fdrmfs1fs20001100

C.65.2. Description

The fdiv.s instruction performs the single-precision floating-point division of fs1 by fs2, and writes the final result to fd.

C.65.3. Access

M

Always

C.65.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.65.5. IDL Operation

C.65.6. Sail Operation

{
 let rs1_val_32b = F_or_X_S(rs1);
 let rs2_val_32b = F_or_X_S(rs2);
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_32b) : (bits(5), bits(32)) = match op {
 FADD_S => riscv_f32Add (rm_3b, rs1_val_32b, rs2_val_32b),
 FSUB_S => riscv_f32Sub (rm_3b, rs1_val_32b, rs2_val_32b),
 FMUL_S => riscv_f32Mul (rm_3b, rs1_val_32b, rs2_val_32b),
 FDIV_S => riscv_f32Div (rm_3b, rs1_val_32b, rs2_val_32b)
 };
 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_32b;
 RETIRE_SUCCESS
 }
 }
}

C.65.7. Exceptions

This instruction does not generate synchronous exceptions.

108

C.66. fence
Memory ordering fence

This instruction is defined by:

I

C.66.1. Encoding

0671112141519202324272831

0001111xd000xs1succpredfm

C.66.2. Description

Orders memory operations.

The fence instruction is used to order device I/O and memory accesses as viewed by other RISC-V harts and external devices or coprocessors. Any
combination of device input (I), device output (O), memory reads (R), and memory writes (W) may be ordered with respect to any combination of the
same. Informally, no other RISC-V hart or external device can observe any operation in the successor set following a fence before any operation in
the predecessor set preceding the fence.

The predecessor and successor fields have the same format to specify operation types:

pred succ

27 26 25 24 23 22 21 20

PI PO PR PW SI SO SR SW

Table 11. Fence mode encoding

fm field Mnemonic Meaning

0000 none Normal Fence

1000 TSO With FENCE RW,RW: exclude write-to-read ordering; otherwise: Reserved for future use.

other Reserved for future use.

When the mode field fm is 0001 and both the predecessor and successor sets are 'RW', then the instruction acts as a special-case fence.tso. fence.tso
orders all load operations in its predecessor set before all memory operations in its successor set, and all store operations in its predecessor set
before all store operations in its successor set. This leaves non-AMO store operations in the 'fence.tso’s predecessor set unordered with non-AMO
loads in its successor set.

When mode field fm is not 0001, or when mode field fm is 0001 but the pred and succ fields are not both 'RW' (0x3), then the fence acts as a baseline
fence (e.g., fm is effectively 0000). This is unaffected by the FIOM bits, described below (implicit promotion does not change how fence.tso is decoded).

The xs1 and xd fields are unused and ignored.

In modes other than M-mode, fence is further affected by menvcfg.FIOM, senvcfg.FIOM<% if ext?(:H) %>, and/or henvcfg.FIOM<% end %> as follows:

Table 12. Effective PR/PW/SR/SW in (H)S-mode

menvcfg.FIOM pred.PI
pred.PO
succ.SI
succ.SO

→
→
→
→

effective PR
effective PW
effective SR
effective SW

0 - from encoding

1 0 from encoding

1 1 1

Table 13. Effective PR/PW/SR/SW in U-mode

menvcfg.FIOM senvcfg.FIOM pred.PI
pred.PO
succ.SI
succ.SO

→
→
→
→

effective PR
effective PW
effective SR
effective SW

0 0 - from encoding

0 1 0 from encoding

0 1 1 1

1 - 0 from encoding

109

menvcfg.FIOM senvcfg.FIOM pred.PI
pred.PO
succ.SI
succ.SO

→
→
→
→

effective PR
effective PW
effective SR
effective SW

1 - 1 1

<%- if ext?(:H) -%> .Effective PR/PW/SR/SW in VS-mode and VU-mode

menvcfg.FIOM henvcfg.FIOM pred.PI
pred.PO
succ.SI
succ.SO

→
→
→
→

effective PR
effective PW
effective SR
effective SW

0 0 - from encoding

0 1 0 from encoding

0 1 1 1

1 - 0 from encoding

1 - 1 1

<%- end -%>

C.66.3. Access

M

Always

C.66.4. Decode Variables

Bits<4> fm = $encoding[31:28];
Bits<4> pred = $encoding[27:24];
Bits<4> succ = $encoding[23:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.66.5. IDL Operation

Boolean pred_i = pred[3] == 1;
Boolean pred_o = pred[2] == 1;
Boolean pred_r = pred[1] == 1;
Boolean pred_w = pred[0] == 1;
Boolean succ_i = succ[3] == 1;
Boolean succ_o = succ[2] == 1;
Boolean succ_r = succ[1] == 1;
Boolean succ_w = succ[0] == 1;
if (mode() == PrivilegeMode::S) {
 if (CSR[menvcfg].FIOM == 1) {
 if (pred_i) {
 pred_r = true;
 }
 if (pred_o) {
 pred_w = true;
 }
 if (succ_i) {
 succ_r = true;
 }
 if (succ_o) {
 succ_w = true;
 }
 }
} else if (mode() == PrivilegeMode::U) {
 if ((CSR[menvcfg].FIOM | CSR[senvcfg].FIOM) == 1) {
 if (pred_i) {
 pred_r = true;
 }
 if (pred_o) {
 pred_w = true;
 }
 if (succ_i) {

110

 succ_r = true;
 }
 if (succ_o) {
 succ_w = true;
 }
 }
} else if (mode() == PrivilegeMode::VS || mode() == PrivilegeMode::VU) {
 if ((CSR[menvcfg].FIOM | CSR[henvcfg].FIOM) == 1) {
 if (pred_i) {
 pred_r = true;
 }
 if (pred_o) {
 pred_w = true;
 }
 if (succ_i) {
 succ_r = true;
 }
 if (succ_o) {
 succ_w = true;
 }
 }
}
fence(pred_i, pred_o, pred_r, pred_w, succ_i, succ_o, succ_r, succ_w);

C.66.6. Sail Operation

{
 // If the FIOM bit in menvcfg/senvcfg is set then the I/O bits can imply R/W.
 let fiom = is_fiom_active();
 let pred = effective_fence_set(pred, fiom);
 let succ = effective_fence_set(succ, fiom);

 match (pred, succ) {
 (_ : bits(2) @ 0b11, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_rw_rw()),
 (_ : bits(2) @ 0b10, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_r_rw()),
 (_ : bits(2) @ 0b10, _ : bits(2) @ 0b10) => __barrier(Barrier_RISCV_r_r()),
 (_ : bits(2) @ 0b11, _ : bits(2) @ 0b01) => __barrier(Barrier_RISCV_rw_w()),
 (_ : bits(2) @ 0b01, _ : bits(2) @ 0b01) => __barrier(Barrier_RISCV_w_w()),
 (_ : bits(2) @ 0b01, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_w_rw()),
 (_ : bits(2) @ 0b11, _ : bits(2) @ 0b10) => __barrier(Barrier_RISCV_rw_r()),
 (_ : bits(2) @ 0b10, _ : bits(2) @ 0b01) => __barrier(Barrier_RISCV_r_w()),
 (_ : bits(2) @ 0b01, _ : bits(2) @ 0b10) => __barrier(Barrier_RISCV_w_r()),

 (_ : bits(4) , _ : bits(2) @ 0b00) => (),
 (_ : bits(2) @ 0b00, _ : bits(4)) => (),

 _ => { print("FIXME: unsupported fence");
 () }
 };
 RETIRE_SUCCESS
}

C.66.7. Exceptions

This instruction does not generate synchronous exceptions.

111

C.67. fence.i
Instruction fence

This instruction is defined by:

Zifencei

C.67.1. Encoding

06711121415192031

0001111xd001xs1imm

C.67.2. Description

The FENCE.I instruction is used to synchronize the instruction and data streams. RISC-V does not guarantee that stores to instruction memory will be
made visible to instruction fetches on a RISC-V hart until that hart executes a FENCE.I instruction. A FENCE.I instruction ensures that a subsequent
instruction fetch on a RISC-V hart will see any previous data stores already visible to the same RISC-V hart. FENCE.I does not ensure that other RISC-V
harts' instruction fetches will observe the local hart’s stores in a multiprocessor system. To make a store to instruction memory visible to all RISC-V
harts, the writing hart also has to execute a data FENCE before requesting that all remote RISC-V harts execute a FENCE.I.

The unused fields in the FENCE.I instruction, imm[11:0], xs1, and xd, are reserved for finer-grain fences in future extensions. For forward
compatibility, base implementations shall ignore these fields, and standard software shall zero these fields.


Because FENCE.I only orders stores with a hart’s own instruction fetches, application code should only rely upon FENCE.I if the
application thread will not be migrated to a different hart. The EEI can provide mechanisms for efficient multiprocessor instruction-
stream synchronization.

C.67.3. Access

M

Always

C.67.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.67.5. IDL Operation

ifence();

C.67.6. Sail Operation

{ /* __barrier(Barrier_RISCV_i); */ RETIRE_SUCCESS }

C.67.7. Exceptions

This instruction does not generate synchronous exceptions.

112

C.68. fence.tso
Memory ordering fence, total store ordering

This instruction is defined by:

I

C.68.1. Encoding

06711121415192031

0001111xd000xs1100000110011

C.68.2. Description

Orders memory operations.

fence.tso orders all load operations in its predecessor set before all memory operations in its successor set, and all store operations in its predecessor
set before all store operations in its successor set. This leaves non-AMO store operations in the 'fence.tso’s predecessor set unordered with non-AMO
loads in its successor set.

The xs1 and xd fields are unused and ignored.

In modes other than M-mode, fence.tso is further affected by menvcfg.FIOM, senvcfg.FIOM<% if ext?(:H) %>, and/or henvcfg.FIOM<% end %>.

C.68.3. Access

M

Always

C.68.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.68.5. IDL Operation

fence_tso();

C.68.6. Sail Operation

{
 match (pred, succ) {
 (_ : bits(2) @ 0b11, _ : bits(2) @ 0b11) => sail_barrier(Barrier_RISCV_tso),
 (_ : bits(2) @ 0b00, _ : bits(2) @ 0b00) => (),

 _ => { print("FIXME: unsupported fence");
 () }
 };
 RETIRE_SUCCESS
}

C.68.7. Exceptions

This instruction does not generate synchronous exceptions.

113

C.69. feq.d
Floating-Point Equal Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.69.1. Encoding

067111214151920242531

1010011xd010fs1fs21010001

C.69.2. Description

The feq.d instruction writes 1 to xd if fs1 and fs2 are equal, and 0 otherwise. It is defined analogously to its single-precision counterpart, but operates
on double-precision operands.

C.69.3. Access

M

Always

C.69.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.69.5. IDL Operation

C.69.6. Exceptions

This instruction does not generate synchronous exceptions.

114

C.70. feq.s
Floating-Point Equal Single-Precision

This instruction is defined by:

F

C.70.1. Encoding

067111214151920242531

1010011xd010fs1fs21010000

C.70.2. Description

The feq.s instruction writes 1 to xd if fs1 and fs2 are equal, and 0 otherwise. If either operand is NaN, the result is 0 (not equal). If either operand is a
signaling NaN, the invalid flag is set. Positive zero is considered equal to negative zero.

C.70.3. Access

M

Always

C.70.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.70.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value_a = f[fs1][31:0];
Bits<32> sp_value_b = f[fs1][31:0];
if (is_sp_nan?(sp_value_a) || is_sp_nan?(sp_value_b)) {
 if (is_sp_signaling_nan?(sp_value_a) || is_sp_signaling_nan?(sp_value_b)) {
 set_fp_flag(FpFlag::NV);
 }
 X[xd] = 0;
} else {
 X[xd] = sp_value_a == sp_value_b) || ((sp_value_a | sp_value_b)[30:0] == 0 ? 1 : 0;
}

C.70.6. Sail Operation

{
 let rs1_val_S = F_or_X_S(rs1);
 let rs2_val_S = F_or_X_S(rs2);

 let (fflags, rd_val) : (bits_fflags, bool) =
 riscv_f32Le (rs1_val_S, rs2_val_S);

 accrue_fflags(fflags);
 X(rd) = zero_extend(bool_to_bits(rd_val));
 RETIRE_SUCCESS
}

C.70.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

115

C.71. fld
Floating-Point Load Double-Precision

This instruction is defined by:

D

C.71.1. Encoding

06711121415192031

0000111fd011xs1imm

C.71.2. Description

The fld instruction loads a double-precision floating-point value from memory into floating-point register fd. It is guaranteed to execute atomically if
the effective address is naturally aligned and XLEN≥64. It doesn’t modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.

C.71.3. Access

M

Always

C.71.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.71.5. IDL Operation

C.71.6. Exceptions

This instruction does not generate synchronous exceptions.

116

C.72. fle.d
Floating-Point Less Than or Equal Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.72.1. Encoding

067111214151920242531

1010011xd000fs1fs21010001

C.72.2. Description

The fle.d instruction writes 1 to xd if fs1 is less than or equal to fs2, and 0 otherwise. It is defined analogously to its single-precision counterpart, but
operates on double-precision operands.

C.72.3. Access

M

Always

C.72.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.72.5. IDL Operation

C.72.6. Exceptions

This instruction does not generate synchronous exceptions.

117

C.73. fle.s
Floating-Point Less Than or Equal Single-Precision

This instruction is defined by:

F

C.73.1. Encoding

067111214151920242531

1010011xd000fs1fs21010000

C.73.2. Description

The fle.s instruction writes 1 to xd if fs1 is less than or equal to fs2, and 0 otherwise. If either operand is NaN, the result is 0 (not equal). If either
operand is a NaN (signaling or quiet), the invalid flag is set. Positive zero and negative zero are considered equal.

C.73.3. Access

M

Always

C.73.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.73.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value_a = f[fs1][31:0];
Bits<32> sp_value_b = f[fs2][31:0];
if (is_sp_nan?(sp_value_a) || is_sp_nan?(sp_value_b)) {
 if (is_sp_signaling_nan?(sp_value_a) || is_sp_signaling_nan?(sp_value_b)) {
 set_fp_flag(FpFlag::NV);
 }
 X[xd] = 0;
} else {
 X[xd] = sp_value_a == sp_value_b) || ((sp_value_a | sp_value_b)[30:0] == 0 ? 1 : 0;
}

C.73.6. Sail Operation

{
 let rs1_val_S = F_or_X_S(rs1);
 let rs2_val_S = F_or_X_S(rs2);

 let (fflags, rd_val) : (bits_fflags, bool) =
 riscv_f32Le (rs1_val_S, rs2_val_S);

 accrue_fflags(fflags);
 X(rd) = zero_extend(bool_to_bits(rd_val));
 RETIRE_SUCCESS
}

C.73.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

118

C.74. flt.d
Floating-Point Less Than Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.74.1. Encoding

067111214151920242531

1010011xd001fs1fs21010001

C.74.2. Description

The flt.d instruction writes 1 to xd if fs1 is less than fs2, and 0 otherwise. It is defined analogously to its single-precision counterpart, but operates on
double-precision operands.

C.74.3. Access

M

Always

C.74.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.74.5. IDL Operation

C.74.6. Exceptions

This instruction does not generate synchronous exceptions.

119

C.75. flt.s
Floating-Point Less Than Single-Precision

This instruction is defined by:

F

C.75.1. Encoding

067111214151920242531

1010011xd001fs1fs21010000

C.75.2. Description

The flt.s instruction writes 1 to xd if fs1 is less than fs2, and 0 otherwise. If either operand is NaN, the result is 0 (not equal). If either operand is a
NaN (signaling or quiet), the invalid flag is set.

C.75.3. Access

M

Always

C.75.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.75.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value_a = f[fs1][31:0];
Bits<32> sp_value_b = f[fs2][31:0];
if (is_sp_nan?(sp_value_a) || is_sp_nan?(sp_value_b)) {
 set_fp_flag(FpFlag::NV);
 X[xd] = 0;
} else {
 Boolean sign_a = sp_value_a[31] == 1;
 Boolean sign_b = sp_value_b[31] == 1;
 Boolean a_lt_b = (sign_a != sign_b) ? (sign_a && sp_value_a[30:0] | sp_value_b[30:0]) != 0 : sp_value_a != sp_value_b) && (sign_a
!= (sp_value_a < sp_value_b);
 X[xd] = a_lt_b ? 1 : 0;
}

C.75.6. Sail Operation

{
 let rs1_val_S = F_or_X_S(rs1);
 let rs2_val_S = F_or_X_S(rs2);

 let (fflags, rd_val) : (bits_fflags, bool) =
 riscv_f32Le (rs1_val_S, rs2_val_S);

 accrue_fflags(fflags);
 X(rd) = zero_extend(bool_to_bits(rd_val));
 RETIRE_SUCCESS
}

C.75.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

120

C.76. flw
Floating-Point Load Single-Precision

This instruction is defined by:

F

C.76.1. Encoding

06711121415192031

0000111fd010xs1imm

C.76.2. Description

The flw instruction loads a single-precision floating-point value from memory at address xs1 + imm into floating-point register fd. It does not modify
the bits being transferred; in particular, the payloads of non-canonical NaNs are preserved.

C.76.3. Access

M

Always

C.76.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.76.5. IDL Operation

check_f_ok($encoding);
XReg virtual_address = X[xs1] + $signed(imm);
Bits<32> sp_value = read_memory<32>(virtual_address, $encoding);
if (implemented?(ExtensionName::D)) {
 f[fd] = nan_box<32, 64>(sp_value);
} else {
 f[fd] = sp_value;
}
mark_f_state_dirty();

C.76.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 /* Get the address, X(rs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(rs1, offset, Read(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Read(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(addr, _) => {
 let (aq, rl, res) = (false, false, false);
 match (width) {
 BYTE => { handle_illegal(); RETIRE_FAIL },
 HALF =>
 process_fload16(rd, vaddr, mem_read(Read(Data), addr, 2, aq, rl, res)),
 WORD =>
 process_fload32(rd, vaddr, mem_read(Read(Data), addr, 4, aq, rl, res)),
 DOUBLE if sizeof(flen) >= 64 =>
 process_fload64(rd, vaddr, mem_read(Read(Data), addr, 8, aq, rl, res)),
 _ => report_invalid_width(__FILE__, __LINE__, width, "floating point load"),
 }
 }
 }

121

 }
}

C.76.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• LoadAddressMisaligned

• LoadPageFault

122

C.77. fmadd.d
Floating-Point Multiply-Add Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.77.1. Encoding

0671112141519202425262731

1000011fdrmfs1fs201fs3

C.77.2. Description

The fmadd.d instruction multiplies the values in fs1 and fs2, adds the value in fs3, and writes the final result to fd.

C.77.3. Access

M

Always

C.77.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.77.5. IDL Operation

C.77.6. Exceptions

This instruction does not generate synchronous exceptions.

123

C.78. fmadd.s
Floating-Point Multiply-Add Single-Precision

This instruction is defined by:

F

C.78.1. Encoding

0671112141519202425262731

1000011fdrmfs1fs200fs3

C.78.2. Description

The fmadd.s multiplies the values in fs1 and fs2, adds the value in fs3, and writes the final result to fd.

C.78.3. Access

M

Always

C.78.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.78.5. IDL Operation

C.78.6. Sail Operation

{
 let rs1_val_32b = F_or_X_S(rs1);
 let rs2_val_32b = F_or_X_S(rs2);
 let rs3_val_32b = F_or_X_S(rs3);
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_32b) : (bits(5), bits(32)) =
 match op {
 FMADD_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2_val_32b, rs3_val_32b),
 FMSUB_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2_val_32b, negate_S (rs3_val_32b)),
 FNMSUB_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, rs3_val_32b),
 FNMADD_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, negate_S (rs3_val_32b))
 };
 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_32b;
 RETIRE_SUCCESS
 }
 }
}

C.78.7. Exceptions

This instruction does not generate synchronous exceptions.

124

C.79. fmax.d
Floating-Point Maximum-Number Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.79.1. Encoding

067111214151920242531

1010011fd001fs1fs20010101

C.79.2. Description

The fmax.d instruction writes larger of fs1 and fs2 to fd. For the purposes of this instruction, the value -0.0 is considered to be less than the value
+0.0. If both inputs are NaNs, the result is the canonical NaN. If only one operand is a NaN, the result is the non-NaN operand. Signaling NaN inputs
set the invalid operation exception flag, even when the result is not NaN.

C.79.3. Access

M

Always

C.79.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.79.5. IDL Operation

C.79.6. Exceptions

This instruction does not generate synchronous exceptions.

125

C.80. fmax.s
Floating-Point Maximum-Number Single-Precision

This instruction is defined by:

F

C.80.1. Encoding

067111214151920242531

1010011fd001fs1fs20010100

C.80.2. Description

The fmax.s instruction writes larger of fs1 and fs2 to fd. For the purposes of this instruction, the value -0.0 is considered to be less than the value
+0.0. If both inputs are NaNs, the result is the canonical NaN. If only one operand is a NaN, the result is the non-NaN operand. Signaling NaN inputs
set the invalid operation exception flag, even when the result is not NaN.


Note that in version 2.2 of the F extension, the fmin.s and fmax.s instructions were amended to implement the proposed IEEE 754-
201x minimumNumber and maximumNumber operations, rather than the IEEE 754-2008 minNum and maxNum operations. These operations
differ in their handling of signaling NaNs.

C.80.3. Access

M

Always

C.80.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.80.5. IDL Operation

C.80.6. Sail Operation

{
 let rs1_val_S = F_or_X_S(rs1);
 let rs2_val_S = F_or_X_S(rs2);

 let (fflags, rd_val) : (bits_fflags, bool) =
 riscv_f32Le (rs1_val_S, rs2_val_S);

 accrue_fflags(fflags);
 X(rd) = zero_extend(bool_to_bits(rd_val));
 RETIRE_SUCCESS
}

C.80.7. Exceptions

This instruction does not generate synchronous exceptions.

126

C.81. fmin.d
Floating-Point Minimum-Number Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.81.1. Encoding

067111214151920242531

1010011fd000fs1fs20010101

C.81.2. Description

The fmin.d instruction writes smaller of fs1 and fs2 to fd. For the purposes of this instruction, the value -0.0 is considered to be less than the value
+0.0. If both inputs are NaNs, the result is the canonical NaN. If only one operand is a NaN, the result is the non-NaN operand. Signaling NaN inputs
set the invalid operation exception flag, even when the result is not NaN.

C.81.3. Access

M

Always

C.81.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.81.5. IDL Operation

C.81.6. Exceptions

This instruction does not generate synchronous exceptions.

127

C.82. fmin.s
Floating-Point Minimum-Number Single-Precision

This instruction is defined by:

F

C.82.1. Encoding

067111214151920242531

1010011fd000fs1fs20010100

C.82.2. Description

The fmin.s instruction writes smaller of fs1 and fs2 to fd. For the purposes of this instruction, the value -0.0 is considered to be less than the value
+0.0. If both inputs are NaNs, the result is the canonical NaN. If only one operand is a NaN, the result is the non-NaN operand. Signaling NaN inputs
set the invalid operation exception flag, even when the result is not NaN.


Note that in version 2.2 of the F extension, the fmin.s and fmax.s instructions were amended to implement the proposed IEEE 754-
201x minimumNumber and maximumNumber operations, rather than the IEEE 754-2008 minNum and maxNum operations. These operations
differ in their handling of signaling NaNs.

C.82.3. Access

M

Always

C.82.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.82.5. IDL Operation

C.82.6. Sail Operation

{
 let rs1_val_S = F_or_X_S(rs1);
 let rs2_val_S = F_or_X_S(rs2);

 let (fflags, rd_val) : (bits_fflags, bool) =
 riscv_f32Le (rs1_val_S, rs2_val_S);

 accrue_fflags(fflags);
 X(rd) = zero_extend(bool_to_bits(rd_val));
 RETIRE_SUCCESS
}

C.82.7. Exceptions

This instruction does not generate synchronous exceptions.

128

C.83. fmsub.d
Floating-Point Multiply-Subtract Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.83.1. Encoding

0671112141519202425262731

1000111fdrmfs1fs201fs3

C.83.2. Description

The fmsub.d instruction multiplies the values in fs1 and fs2, subtracts the value in fs3, and writes the final result to fd.

C.83.3. Access

M

Always

C.83.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.83.5. IDL Operation

C.83.6. Exceptions

This instruction does not generate synchronous exceptions.

129

C.84. fmsub.s
Floating-Point Multiply-Subtract Single-Precision

This instruction is defined by:

F

C.84.1. Encoding

0671112141519202425262731

1000111fdrmfs1fs200fs3

C.84.2. Description

The fmsub.s multiplies the values in fs1 and fs2, subtracts the value in fs3, and writes the final result to fd.

C.84.3. Access

M

Always

C.84.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.84.5. IDL Operation

C.84.6. Sail Operation

{
 let rs1_val_32b = F_or_X_S(rs1);
 let rs2_val_32b = F_or_X_S(rs2);
 let rs3_val_32b = F_or_X_S(rs3);
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_32b) : (bits(5), bits(32)) =
 match op {
 FMADD_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2_val_32b, rs3_val_32b),
 FMSUB_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2_val_32b, negate_S (rs3_val_32b)),
 FNMSUB_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, rs3_val_32b),
 FNMADD_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, negate_S (rs3_val_32b))
 };
 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_32b;
 RETIRE_SUCCESS
 }
 }
}

C.84.7. Exceptions

This instruction does not generate synchronous exceptions.

130

C.85. fmul.d
Floating-Point Multiply Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.85.1. Encoding

067111214151920242531

1010011fdrmfs1fs20001001

C.85.2. Description

The fmul.d instruction performs the double-precision floating-point multiplication between fs1 and fs2. It is defined analogously to its single-
precision counterpart, but operates on double-precision operands and produces double-precision results.

C.85.3. Access

M

Always

C.85.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.85.5. IDL Operation

C.85.6. Exceptions

This instruction does not generate synchronous exceptions.

131

C.86. fmul.s
Floating-Point Multiply Single-Precision

This instruction is defined by:

F

C.86.1. Encoding

067111214151920242531

1010011fdrmfs1fs20001000

C.86.2. Description

The fmul.s instruction performs the single-precision floating-point multiplication between fs1 and fs2, and writes the result in fd.

C.86.3. Access

M

Always

C.86.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.86.5. IDL Operation

C.86.6. Sail Operation

{
 let rs1_val_32b = F_or_X_S(rs1);
 let rs2_val_32b = F_or_X_S(rs2);
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_32b) : (bits(5), bits(32)) = match op {
 FADD_S => riscv_f32Add (rm_3b, rs1_val_32b, rs2_val_32b),
 FSUB_S => riscv_f32Sub (rm_3b, rs1_val_32b, rs2_val_32b),
 FMUL_S => riscv_f32Mul (rm_3b, rs1_val_32b, rs2_val_32b),
 FDIV_S => riscv_f32Div (rm_3b, rs1_val_32b, rs2_val_32b)
 };
 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_32b;
 RETIRE_SUCCESS
 }
 }
}

C.86.7. Exceptions

This instruction does not generate synchronous exceptions.

132

C.87. fmv.w.x
Floating-Point Move Single-Precision Word from Integer Register

This instruction is defined by:

F

C.87.1. Encoding

06711121415192031

1010011fd000xs1111100000000

C.87.2. Description

The fmv.w.x instruction moves the single-precision value encoded in IEEE 754-2008 standard encoding from the lower 32 bits of integer register xs1 to
the floating-point register fd. The bits are not modified in the transfer, and in particular, the payloads of non-canonical NaNs are preserved.

C.87.3. Access

M

Always

C.87.4. Decode Variables

Bits<5> xs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.87.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value = X[xs1][31:0];
if (implemented?(ExtensionName::D)) {
 f[fd] = nan_box<32, 64>(sp_value);
} else {
 f[fd] = sp_value;
}
mark_f_state_dirty();

C.87.6. Sail Operation

{
 let rs1_val_X = X(rs1);
 let rd_val_S = rs1_val_X [31..0];
 F(rd) = nan_box (rd_val_S);
 RETIRE_SUCCESS
}

C.87.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

133

C.88. fmv.x.w
Floating-Point Move Single-Precision Word to Integer Register

This instruction is defined by:

F

C.88.1. Encoding

06711121415192031

1010011xd000fs1111000000000

C.88.2. Description

The fmv.x.w instruction moves the single-precision value in floating-point register fs1` represented in IEEE 754-2008 encoding to the lower 32 bits of
integer register xd. The bits are not modified in the transfer, and in particular, the payloads of non-canonical NaNs are preserved. For RV64, the
higher 32 bits of the destination register are filled with copies of the floating-point number’s sign bit.

C.88.3. Access

M

Always

C.88.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.88.5. IDL Operation

check_f_ok($encoding);
X[xd] = sext(f[fs1][31:0], 32);

C.88.6. Sail Operation

{
 let rs1_val_X = X(rs1);
 let rd_val_S = rs1_val_X [31..0];
 F(rd) = nan_box (rd_val_S);
 RETIRE_SUCCESS
}

C.88.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

134

C.89. fnmadd.d
Floating-Point Negate-Multiply-Add Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.89.1. Encoding

0671112141519202425262731

1001111fdrmfs1fs201fs3

C.89.2. Description

The fnmadd.d instruction multiplies the values in fs1 and fs2, negates the product, subtracts the value in fs3, and writes the final result to fd.

C.89.3. Access

M

Always

C.89.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.89.5. IDL Operation

C.89.6. Exceptions

This instruction does not generate synchronous exceptions.

135

C.90. fnmadd.s
Floating-Point Negate-Multiply-Add Single-Precision

This instruction is defined by:

F

C.90.1. Encoding

0671112141519202425262731

1001111fdrmfs1fs200fs3

C.90.2. Description

The fnmadd.s multiplies the values in fs1 and fs2, negates the product, subtracts the value in fs3, and writes the final result to fd.

C.90.3. Access

M

Always

C.90.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.90.5. IDL Operation

C.90.6. Sail Operation

{
 let rs1_val_32b = F_or_X_S(rs1);
 let rs2_val_32b = F_or_X_S(rs2);
 let rs3_val_32b = F_or_X_S(rs3);
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_32b) : (bits(5), bits(32)) =
 match op {
 FMADD_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2_val_32b, rs3_val_32b),
 FMSUB_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2_val_32b, negate_S (rs3_val_32b)),
 FNMSUB_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, rs3_val_32b),
 FNMADD_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, negate_S (rs3_val_32b))
 };
 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_32b;
 RETIRE_SUCCESS
 }
 }
}

C.90.7. Exceptions

This instruction does not generate synchronous exceptions.

136

C.91. fnmsub.d
Floating-Point Negate-Multiply-Subtract Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.91.1. Encoding

0671112141519202425262731

1001011fdrmfs1fs201fs3

C.91.2. Description

The fnmsub.d instruction multiplies the values in fs1 and fs2, negates the product, adds the value in fs3, and writes the final result to fd.

C.91.3. Access

M

Always

C.91.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.91.5. IDL Operation

C.91.6. Exceptions

This instruction does not generate synchronous exceptions.

137

C.92. fnmsub.s
Floating-Point Negate-Multiply-Subtract Single-Precision

This instruction is defined by:

F

C.92.1. Encoding

0671112141519202425262731

1001011fdrmfs1fs200fs3

C.92.2. Description

The fnmsub.s instruction multiplies the values in fs1 and fs2, negates the product, adds the value in fs3, and writes the final result to fd.

C.92.3. Access

M

Always

C.92.4. Decode Variables

Bits<5> fs3 = $encoding[31:27];
Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.92.5. IDL Operation

C.92.6. Sail Operation

{
 let rs1_val_32b = F_or_X_S(rs1);
 let rs2_val_32b = F_or_X_S(rs2);
 let rs3_val_32b = F_or_X_S(rs3);
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_32b) : (bits(5), bits(32)) =
 match op {
 FMADD_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2_val_32b, rs3_val_32b),
 FMSUB_S => riscv_f32MulAdd (rm_3b, rs1_val_32b, rs2_val_32b, negate_S (rs3_val_32b)),
 FNMSUB_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, rs3_val_32b),
 FNMADD_S => riscv_f32MulAdd (rm_3b, negate_S (rs1_val_32b), rs2_val_32b, negate_S (rs3_val_32b))
 };
 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_32b;
 RETIRE_SUCCESS
 }
 }
}

C.92.7. Exceptions

This instruction does not generate synchronous exceptions.

138

C.93. fsd
Floating-Point Store Double-Precision

This instruction is defined by:

D

C.93.1. Encoding

067111214151920242531

0100111imm[4:0]011xs1fs2imm[11:5]

C.93.2. Description

The fsd instruction stores a double-precision value from the floating-point registers to memory. It is guaranteed to execute atomically if the effective
address is naturally aligned and XLEN≥64. It doesn’t modify the bits being transferred; in particular, the payloads of non-canonical NaNs are
preserved.

C.93.3. Access

M

Always

C.93.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:7]};
Bits<5> fs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.93.5. IDL Operation

C.93.6. Exceptions

This instruction does not generate synchronous exceptions.

139

C.94. fsgnj.d
Floating-Point Sign-Inject Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.94.1. Encoding

067111214151920242531

1010011fd000fs1fs20010001

C.94.2. Description

The fsgnj.d instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is taken from fs2’s sign bit, and the
result is written to the destination register `fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize
NaNs.

C.94.3. Access

M

Always

C.94.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.94.5. IDL Operation

C.94.6. Exceptions

This instruction does not generate synchronous exceptions.

140

C.95. fsgnj.s
Floating-Point Sign-Inject Single-Precision

This instruction is defined by:

F

C.95.1. Encoding

067111214151920242531

1010011fd000fs1fs20010000

C.95.2. Description

The fsgnj.s instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is taken from fs2’s sign bit, and the
result is written to the destination register `fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize
NaNs.

C.95.3. Access

M

Always

C.95.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.95.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value = {f[fs2][31], f[fs1][30:0]};
if (implemented?(ExtensionName::D)) {
 f[fd] = nan_box<32, 64>(sp_value);
} else {
 f[fd] = sp_value;
}
mark_f_state_dirty();

C.95.6. Sail Operation

{
 let rs1_val_S = F_or_X_S(rs1);
 let rs2_val_S = F_or_X_S(rs2);

 let (fflags, rd_val) : (bits_fflags, bool) =
 riscv_f32Le (rs1_val_S, rs2_val_S);

 accrue_fflags(fflags);
 X(rd) = zero_extend(bool_to_bits(rd_val));
 RETIRE_SUCCESS
}

C.95.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

141

C.96. fsgnjn.d
Floating-Point Sign-Inject Negate Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.96.1. Encoding

067111214151920242531

1010011fd001fs1fs20010001

C.96.2. Description

The fsgnjn.d instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is opposite of fs2’s sign bit, and the
result is written to the destination register `fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize
NaNs.

C.96.3. Access

M

Always

C.96.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.96.5. IDL Operation

C.96.6. Exceptions

This instruction does not generate synchronous exceptions.

142

C.97. fsgnjn.s
Floating-Point Sign-Inject Negate Single-Precision

This instruction is defined by:

F

C.97.1. Encoding

067111214151920242531

1010011fd001fs1fs20010000

C.97.2. Description

The fsgnjn.s instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is opposite of fs2’s sign bit, and the
result is written to the destination register `fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize
NaNs.

C.97.3. Access

M

Always

C.97.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.97.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value = {~f[fs2][31], f[fs1][30:0]};
if (implemented?(ExtensionName::D)) {
 f[fd] = nan_box<32, 64>(sp_value);
} else {
 f[fd] = sp_value;
}
mark_f_state_dirty();

C.97.6. Sail Operation

{
 let rs1_val_S = F_or_X_S(rs1);
 let rs2_val_S = F_or_X_S(rs2);

 let (fflags, rd_val) : (bits_fflags, bool) =
 riscv_f32Le (rs1_val_S, rs2_val_S);

 accrue_fflags(fflags);
 X(rd) = zero_extend(bool_to_bits(rd_val));
 RETIRE_SUCCESS
}

C.97.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

143

C.98. fsgnjx.d
Floating-Point Sign-Inject XOR Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.98.1. Encoding

067111214151920242531

1010011fd010fs1fs20010001

C.98.2. Description

The fsgnjx.d instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is the XOR of sign bits of fs1 and fs2, and
the result is written to the destination register fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize NaNs.

C.98.3. Access

M

Always

C.98.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.98.5. IDL Operation

C.98.6. Exceptions

This instruction does not generate synchronous exceptions.

144

C.99. fsgnjx.s
Floating-Point Sign-Inject XOR Single-Precision

This instruction is defined by:

F

C.99.1. Encoding

067111214151920242531

1010011fd010fs1fs20010000

C.99.2. Description

The fsgnjx.s instruction produces a result that takes all bits except the sign bit from fs1. The result’s sign bit is the XOR of sign bits of fs1 and fs2, and
the result is written to the destination register fd. Sign-injection instructions do not set floating-point exception flags, nor do they canonicalize NaNs.

C.99.3. Access

M

Always

C.99.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<5> fd = $encoding[11:7];

C.99.5. IDL Operation

check_f_ok($encoding);
Bits<32> sp_value = {f[fs1][31] ^ f[fs2][31], f[fs1][30:0]};
if (implemented?(ExtensionName::D)) {
 f[fd] = nan_box<32, 64>(sp_value);
} else {
 f[fd] = sp_value;
}
mark_f_state_dirty();

C.99.6. Sail Operation

{
 let rs1_val_S = F_or_X_S(rs1);
 let rs2_val_S = F_or_X_S(rs2);

 let (fflags, rd_val) : (bits_fflags, bool) =
 riscv_f32Le (rs1_val_S, rs2_val_S);

 accrue_fflags(fflags);
 X(rd) = zero_extend(bool_to_bits(rd_val));
 RETIRE_SUCCESS
}

C.99.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

145

C.100. fsqrt.d
Floating-Point Square Root Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.100.1. Encoding

06711121415192031

1010011fdrmfs1010110100000

C.100.2. Description

The fsqrt.d instruction computes the square root of fs1 and result is written in fd. It is defined analogously to its single-precision counterpart, but
operates on double-precision operands and produces double-precision results.

C.100.3. Access

M

Always

C.100.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.100.5. IDL Operation

C.100.6. Exceptions

This instruction does not generate synchronous exceptions.

146

C.101. fsqrt.s
Floating-Point Square Root Single-Precision

This instruction is defined by:

F

C.101.1. Encoding

06711121415192031

1010011fdrmfs1010110000000

C.101.2. Description

The fsqrt.s instruction computes the square root of fs1 and writes the result is written to fd.

C.101.3. Access

M

Always

C.101.4. Decode Variables

Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.101.5. IDL Operation

C.101.6. Sail Operation

{
 assert(sizeof(xlen) >= 64);
 let rs1_val_LU = X(rs1)[63..0];
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_S) = riscv_ui64ToF32 (rm_3b, rs1_val_LU);

 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_S;
 RETIRE_SUCCESS
 }
 }
}

C.101.7. Exceptions

This instruction does not generate synchronous exceptions.

147

C.102. fsub.d
Floating-Point Subtract Double-Precision

This instruction is defined by:

(D ࣷ Zdinx)

C.102.1. Encoding

067111214151920242531

1010011fdrmfs1fs20000101

C.102.2. Description

The fsub.d instruction is analogous to fsub.s and performs double-precision floating-point subtraction between fs1 and fs2 and writes the final result
to fd.

C.102.3. Access

M

Always

C.102.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.102.5. IDL Operation

C.102.6. Exceptions

This instruction does not generate synchronous exceptions.

148

C.103. fsub.s
Floating-Point Subtract Single-Precision

This instruction is defined by:

F

C.103.1. Encoding

067111214151920242531

1010011fdrmfs1fs20000100

C.103.2. Description

The fsub.s instruction performs the single-precision floating-point subtraction of fs2 from fs1 and writes the result in fd.

C.103.3. Access

M

Always

C.103.4. Decode Variables

Bits<5> fs2 = $encoding[24:20];
Bits<5> fs1 = $encoding[19:15];
Bits<3> rm = $encoding[14:12];
Bits<5> fd = $encoding[11:7];

C.103.5. IDL Operation

check_f_ok($encoding);
RoundingMode mode = rm_to_mode(rm, $encoding);
f[fd] = f32_sub(f[fs1], f[fs2], mode);

C.103.6. Sail Operation

{
 let rs1_val_32b = F_or_X_S(rs1);
 let rs2_val_32b = F_or_X_S(rs2);
 match (select_instr_or_fcsr_rm (rm)) {
 None() => { handle_illegal(); RETIRE_FAIL },
 Some(rm') => {
 let rm_3b = encdec_rounding_mode(rm');
 let (fflags, rd_val_32b) : (bits(5), bits(32)) = match op {
 FADD_S => riscv_f32Add (rm_3b, rs1_val_32b, rs2_val_32b),
 FSUB_S => riscv_f32Sub (rm_3b, rs1_val_32b, rs2_val_32b),
 FMUL_S => riscv_f32Mul (rm_3b, rs1_val_32b, rs2_val_32b),
 FDIV_S => riscv_f32Div (rm_3b, rs1_val_32b, rs2_val_32b)
 };
 accrue_fflags(fflags);
 F_or_X_S(rd) = rd_val_32b;
 RETIRE_SUCCESS
 }
 }
}

C.103.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

149

C.104. fsw
Floating-Point Store Single-Precision

This instruction is defined by:

F

C.104.1. Encoding

067111214151920242531

0100111imm[4:0]010xs1fs2imm[11:5]

C.104.2. Description

The fsw instruction stores a single-precision floating-point value in fs2 to memory at address xs1 + imm. It does not modify the bits being transferred;
in particular, the payloads of non-canonical NaNs are preserved.

C.104.3. Access

M

Always

C.104.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:7]};
Bits<5> fs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.104.5. IDL Operation

check_f_ok($encoding);
XReg virtual_address = X[xs1] + $signed(imm);
write_memory<32>(virtual_address, f[fs2][31:0], $encoding);

C.104.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 let (aq, rl, con) = (false, false, false);
 /* Get the address, X(rs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(rs1, offset, Write(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Write(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(addr, _) => {
 let eares : MemoryOpResult(unit) = match width {
 BYTE => MemValue () /* bogus placeholder for illegal size */,
 HALF => mem_write_ea(addr, 2, aq, rl, false),
 WORD => mem_write_ea(addr, 4, aq, rl, false),
 DOUBLE => mem_write_ea(addr, 8, aq, rl, false)
 };
 match (eares) {
 MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 MemValue(_) => {
 let rs2_val = F(rs2);
 match (width) {
 BYTE => { handle_illegal(); RETIRE_FAIL },
 HALF => process_fstore (vaddr, mem_write_value(addr, 2, rs2_val[15..0], aq, rl, con)),
 WORD => process_fstore (vaddr, mem_write_value(addr, 4, rs2_val[31..0], aq, rl, con)),
 DOUBLE if sizeof(flen) >= 64 =>
 process_fstore (vaddr, mem_write_value(addr, 8, rs2_val, aq, rl, con)),
 _ => report_invalid_width(__FILE__, __LINE__, width, "floating point store"),
 };

150

 }
 }
 }
 }
 }
}

C.104.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

151

C.105. jal
Jump and link

This instruction is defined by:

I

C.105.1. Encoding

067111231

1101111xdimm[20|10:1|11|19:12]

C.105.2. Description

Jump to a PC-relative offset and store the return address in xd.

C.105.3. Access

M

Always

C.105.4. Decode Variables

signed Bits<21> imm = sext({$encoding[31], $encoding[19:12], $encoding[20], $encoding[30:21], 1'd0});
Bits<5> xd = $encoding[11:7];

C.105.5. IDL Operation

XReg return_addr = $pc + 4;
X[xd] = return_addr;
jump_halfword($pc + $signed(imm));

C.105.6. Sail Operation

{
 let t : xlenbits = PC + sign_extend(imm);
 /* Extensions get the first checks on the prospective target address. */
 match ext_control_check_pc(t) {
 Ext_ControlAddr_Error(e) => {
 ext_handle_control_check_error(e);
 RETIRE_FAIL
 },
 Ext_ControlAddr_OK(target) => {
 /* Perform standaxd alignment check */
 if bit_to_bool(target[1]) & not(extension("C"))
 then {
 handle_mem_exception(target, E_Fetch_Addr_Align());
 RETIRE_FAIL
 } else {
 X(xd) = get_next_pc();
 set_next_pc(target);
 RETIRE_SUCCESS
 }
 }
 }
}

C.105.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

152

C.106. jalr
Jump and link register

This instruction is defined by:

I

C.106.1. Encoding

06711121415192031

1100111xd000xs1imm

C.106.2. Description

Jump to an address formed by adding xs1 to a signed offset then clearing the least significant bit, and store the return address in xd.

C.106.3. Access

M

Always

C.106.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.106.5. IDL Operation

XReg addr = (X[xs1] + $signed(imm)) & ~MXLEN'1;
XReg returnaddr;
returnaddr = $pc + 4;
X[xd] = returnaddr;
jump(addr);

C.106.6. Sail Operation

{
/* For the sequential model, the memory-model definition doesn't work directly
 * if xs1 = xd. We would effectively have to keep a regfile for reads and another for
 * writes, and swap on instruction completion. This could perhaps be optimized in
 * some manner, but for now, we just keep a reoxdered definition to improve simulator
 * performance.
 */
 let t : xlenbits = X(xs1) + sign_extend(imm);
 /* Extensions get the first checks on the prospective target address. */
 match ext_control_check_addr(t) {
 Ext_ControlAddr_Error(e) => {
 ext_handle_control_check_error(e);
 RETIRE_FAIL
 },
 Ext_ControlAddr_OK(addr) => {
 let target = [addr with 0 = bitzero]; /* clear addr[0] */
 if bit_to_bool(target[1]) & not(extension("C")) then {
 handle_mem_exception(target, E_Fetch_Addr_Align());
 RETIRE_FAIL
 } else {
 X(xd) = get_next_pc();
 set_next_pc(target);
 RETIRE_SUCCESS
 }
 }
 }
}

153

C.106.7. Exceptions

This instruction may result in the following synchronous exceptions:

• InstructionAddressMisaligned

154

C.107. lb
Load byte

This instruction is defined by:

I

C.107.1. Encoding

06711121415192031

0000011xd000xs1imm

C.107.2. Description

Load 8 bits of data into register xd from an address formed by adding xs1 to a signed offset. Sign extend the result.

C.107.3. Access

M

Always

C.107.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.107.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = sext(read_memory<8>(virtual_address, $encoding), 8);

C.107.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 /* Get the address, X(xs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(xs1, offset, Read(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Read(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(paddr, _) =>
 match (width) {
 BYTE =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
 HALF =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
 WORD =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
 DOUBLE if sizeof(xlen) >= 64 =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
 _ => report_invalid_width(__FILE__, __LINE__, width, "load")
 }
 }
 }
}

C.107.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

155

• LoadAddressMisaligned

• LoadPageFault

156

C.108. lbu
Load byte unsigned

This instruction is defined by:

I

C.108.1. Encoding

06711121415192031

0000011xd100xs1imm

C.108.2. Description

Load 8 bits of data into register xd from an address formed by adding xs1 to a signed offset. Zero extend the result.

C.108.3. Access

M

Always

C.108.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.108.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = read_memory<8>(virtual_address, $encoding);

C.108.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 /* Get the address, X(xs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(xs1, offset, Read(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Read(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(paddr, _) =>
 match (width) {
 BYTE =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
 HALF =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
 WORD =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
 DOUBLE if sizeof(xlen) >= 64 =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
 _ => report_invalid_width(__FILE__, __LINE__, width, "load")
 }
 }
 }
}

C.108.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

157

• LoadAddressMisaligned

• LoadPageFault

158

C.109. ld
Load doubleword

This instruction is defined by:

(I || Zilsd)

C.109.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

06711121415192031

0000011xd != {1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31}011xs1imm

RV64

06711121415192031

0000011xd011xs1imm

C.109.2. Description

For RV64, load 64 bits of data into register xd from an address formed by adding xs1 to a signed offset.

<% if ext?(:Zilsd) %> For RV32, Loads a 64-bit value into registers xd and xd+1. The effective address is obtained by adding register xs1 to the sign-
extended 12-bit offset. <% end %>

C.109.3. Access

M

Always

C.109.4. Decode Variables

RV32

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

RV64

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.109.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
if (xlen() == 32) {
 if (implemented?(ExtensionName::Zilsd)) {
 Bits<64> data = read_memory<64>(virtual_address, $encoding);
 X[xd] = data[31:0];
 X[xd + 1] = data[63:32];
 } else {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else {
 X[xd] = read_memory<64>(virtual_address, $encoding);
}

159

C.109.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 /* Get the address, X(xs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(xs1, offset, Read(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Read(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(paddr, _) =>
 match (width) {
 BYTE =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
 HALF =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
 WORD =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
 DOUBLE if sizeof(xlen) >= 64 =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
 _ => report_invalid_width(__FILE__, __LINE__, width, "load")
 }
 }
 }
}

C.109.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• LoadAddressMisaligned

• LoadPageFault

160

C.110. lh
Load halfword

This instruction is defined by:

I

C.110.1. Encoding

06711121415192031

0000011xd001xs1imm

C.110.2. Description

Load 16 bits of data into register xd from an address formed by adding xs1 to a signed offset. Sign extend the result.

C.110.3. Access

M

Always

C.110.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.110.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = sext(read_memory<16>(virtual_address, $encoding), 16);

C.110.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 /* Get the address, X(xs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(xs1, offset, Read(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Read(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(paddr, _) =>
 match (width) {
 BYTE =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
 HALF =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
 WORD =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
 DOUBLE if sizeof(xlen) >= 64 =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
 _ => report_invalid_width(__FILE__, __LINE__, width, "load")
 }
 }
 }
}

C.110.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

161

• LoadAddressMisaligned

• LoadPageFault

162

C.111. lhu
Load halfword unsigned

This instruction is defined by:

I

C.111.1. Encoding

06711121415192031

0000011xd101xs1imm

C.111.2. Description

Load 16 bits of data into register xd from an address formed by adding xs1 to a signed offset. Zero extend the result.

C.111.3. Access

M

Always

C.111.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.111.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = read_memory<16>(virtual_address, $encoding);

C.111.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 /* Get the address, X(xs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(xs1, offset, Read(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Read(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(paddr, _) =>
 match (width) {
 BYTE =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
 HALF =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
 WORD =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
 DOUBLE if sizeof(xlen) >= 64 =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
 _ => report_invalid_width(__FILE__, __LINE__, width, "load")
 }
 }
 }
}

C.111.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

163

• LoadAddressMisaligned

• LoadPageFault

164

C.112. lui
Load upper immediate

This instruction is defined by:

I

C.112.1. Encoding

067111231

0110111xdimm[31:12]

C.112.2. Description

Load the zero-extended imm into xd.

C.112.3. Access

M

Always

C.112.4. Decode Variables

Bits<32> imm = {$encoding[31:12], 12'd0};
Bits<5> xd = $encoding[11:7];

C.112.5. IDL Operation

X[xd] = $signed(imm);

C.112.6. Sail Operation

{
 let off : xlenbits = sign_extend(imm @ 0x000);
 let ret : xlenbits = match op {
 RISCV_LUI => off,
 RISCV_AUIPC => get_arch_pc() + off
 };
 X(xd) = ret;
 RETIRE_SUCCESS
}

C.112.7. Exceptions

This instruction does not generate synchronous exceptions.

165

C.113. lw
Load word

This instruction is defined by:

I

C.113.1. Encoding

06711121415192031

0000011xd010xs1imm

C.113.2. Description

Load 32 bits of data into register xd from an address formed by adding xs1 to a signed offset. Sign extend the result.

C.113.3. Access

M

Always

C.113.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.113.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
X[xd] = sext(read_memory<32>(virtual_address, $encoding), 32);

C.113.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 /* Get the address, X(xs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(xs1, offset, Read(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Read(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(paddr, _) =>
 match (width) {
 BYTE =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 1, aq, rl, false), is_unsigned),
 HALF =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 2, aq, rl, false), is_unsigned),
 WORD =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 4, aq, rl, false), is_unsigned),
 DOUBLE if sizeof(xlen) >= 64 =>
 process_load(xd, vaddr, mem_read(Read(Data), paddr, 8, aq, rl, false), is_unsigned),
 _ => report_invalid_width(__FILE__, __LINE__, width, "load")
 }
 }
 }
}

C.113.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

166

• LoadAddressMisaligned

• LoadPageFault

167

C.114. mul
Signed multiply

This instruction is defined by:

(M || Zmmul)

C.114.1. Encoding

067111214151920242531

0110011xd000xs1xs20000001

C.114.2. Description

MUL performs an XLEN-bitxXLEN-bit multiplication of xs1 by xs2 and places the lower XLEN bits in the destination register. Any overflow is thrown
away.


If both the high and low bits of the same product are required, then the recommended code sequence is: MULH[[S]U] xdh, xs1, xs2;
MUL xdl, xs1, xs2 (source register specifiers must be in same order and xdh cannot be the same as xs1 or xs2). Microarchitectures
can then fuse these into a single multiply operation instead of performing two separate multiplies.

C.114.3. Access

M

Always

C.114.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.114.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
X[xd] = (src1 * src2)[MXLEN - 1:0];

C.114.6. Sail Operation

{
 if extension("M") | haveZmmul() then {
 let rs1_val = X(rs1);
 let rs2_val = X(rs2);
 let rs1_int : int = if signed1 then signed(rs1_val) else unsigned(rs1_val);
 let rs2_int : int = if signed2 then signed(rs2_val) else unsigned(rs2_val);
 let result_wide = to_bits(2 * sizeof(xlen), rs1_int * rs2_int);
 let result = if high
 then result_wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
 else result_wide[(sizeof(xlen) - 1) .. 0];
 X(rd) = result;
 RETIRE_SUCCESS
 } else {
 handle_illegal();
 RETIRE_FAIL
 }
}

C.114.7. Exceptions

This instruction may result in the following synchronous exceptions:

168

• IllegalInstruction

169

C.115. mulh
Signed multiply high

This instruction is defined by:

(M || Zmmul)

C.115.1. Encoding

067111214151920242531

0110011xd001xs1xs20000001

C.115.2. Description

Multiply the signed values in xs1 to xs2, and store the upper half of the result in xd. The lower half is thrown away.

If both the upper and lower halves are needed, it suggested to use the sequence:

 mulh xdh, xs1, xs2
 mul xdl, xs1, xs2

Microarchitectures may look for that sequence and fuse the operations.

C.115.3. Access

M

Always

C.115.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.115.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
Bits<1> xs1_sign_bit = X[xs1][xlen() - 1];
Bits<MXLEN `* 2> src1 = {{xlen(){xs1_sign_bit}}, X[xs1]};
Bits<1> xs2_sign_bit = X[xs2][xlen() - 1];
Bits<MXLEN `* 2> src2 = {{xlen(){xs2_sign_bit}}, X[xs2]};
X[xd] = (src1 * src2)[(xlen() * 8'd2) - 1:xlen()];

C.115.6. Sail Operation

{
 if extension("M") | haveZmmul() then {
 let rs1_val = X(rs1);
 let rs2_val = X(rs2);
 let rs1_int : int = if signed1 then signed(rs1_val) else unsigned(rs1_val);
 let rs2_int : int = if signed2 then signed(rs2_val) else unsigned(rs2_val);
 let result_wide = to_bits(2 * sizeof(xlen), rs1_int * rs2_int);
 let result = if high
 then result_wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
 else result_wide[(sizeof(xlen) - 1) .. 0];
 X(rd) = result;
 RETIRE_SUCCESS
 } else {
 handle_illegal();
 RETIRE_FAIL
 }

170

}

C.115.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

171

C.116. mulhsu
Signed/unsigned multiply high

This instruction is defined by:

(M || Zmmul)

C.116.1. Encoding

067111214151920242531

0110011xd010xs1xs20000001

C.116.2. Description

Multiply the signed value in xs1 by the unsigned value in xs2, and store the upper half of the result in xd. The lower half is thrown away.

If both the upper and lower halves are needed, it suggested to use the sequence:

 mulhsu xdh, xs1, xs2
 mul xdl, xs1, xs2

Microarchitectures may look for that sequence and fuse the operations.

C.116.3. Access

M

Always

C.116.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.116.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
Bits<1> xs1_sign_bit = X[xs1][MXLEN - 1];
Bits<MXLEN * 8'd2> src1 = {{MXLEN{xs1_sign_bit}}, X[xs1]};
Bits<MXLEN * 8'd2> src2 = {{MXLEN{1'b0}}, X[xs2]};
X[xd] = (src1 * src2)[(MXLEN * 8'd2) - 1:MXLEN];

C.116.6. Sail Operation

{
 if extension("M") | haveZmmul() then {
 let rs1_val = X(rs1);
 let rs2_val = X(rs2);
 let rs1_int : int = if signed1 then signed(rs1_val) else unsigned(rs1_val);
 let rs2_int : int = if signed2 then signed(rs2_val) else unsigned(rs2_val);
 let result_wide = to_bits(2 * sizeof(xlen), rs1_int * rs2_int);
 let result = if high
 then result_wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
 else result_wide[(sizeof(xlen) - 1) .. 0];
 X(rd) = result;
 RETIRE_SUCCESS
 } else {
 handle_illegal();
 RETIRE_FAIL
 }

172

}

C.116.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

173

C.117. mulhu
Unsigned multiply high

This instruction is defined by:

(M || Zmmul)

C.117.1. Encoding

067111214151920242531

0110011xd011xs1xs20000001

C.117.2. Description

Multiply the unsigned values in xs1 to xs2, and store the upper half of the result in xd. The lower half is thrown away.

If both the upper and lower halves are needed, it suggested to use the sequence:

 mulhu xdh, xs1, xs2
 mul xdl, xs1, xs2

Microarchitectures may look for that sequence and fuse the operations.

C.117.3. Access

M

Always

C.117.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.117.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
Bits<MXLEN * 8'd2> src1 = {{MXLEN{1'b0}}, X[xs1]};
Bits<MXLEN * 8'd2> src2 = {{MXLEN{1'b0}}, X[xs2]};
X[xd] = (src1 * src2)[(MXLEN * 8'd2) - 1:MXLEN];

C.117.6. Sail Operation

{
 if extension("M") | haveZmmul() then {
 let rs1_val = X(rs1);
 let rs2_val = X(rs2);
 let rs1_int : int = if signed1 then signed(rs1_val) else unsigned(rs1_val);
 let rs2_int : int = if signed2 then signed(rs2_val) else unsigned(rs2_val);
 let result_wide = to_bits(2 * sizeof(xlen), rs1_int * rs2_int);
 let result = if high
 then result_wide[(2 * sizeof(xlen) - 1) .. sizeof(xlen)]
 else result_wide[(sizeof(xlen) - 1) .. 0];
 X(rd) = result;
 RETIRE_SUCCESS
 } else {
 handle_illegal();
 RETIRE_FAIL
 }
}

174

C.117.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

175

C.118. or
Or

This instruction is defined by:

I

C.118.1. Encoding

067111214151920242531

0110011xd110xs1xs20000000

C.118.2. Description

Or xs1 with xs2, and store the result in xd

C.118.3. Access

M

Always

C.118.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.118.5. IDL Operation

X[xd] = X[xs1] | X[xs2];

C.118.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let result : xlenbits = match op {
 RISCV_ADD => xs1_val + xs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
 RISCV_AND => xs1_val & xs2_val,
 RISCV_OR => xs1_val | xs2_val,
 RISCV_XOR => xs1_val ^ xs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then xs1_val << (xs2_val[4..0])
 else xs1_val << (xs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then xs1_val >> (xs2_val[4..0])
 else xs1_val >> (xs2_val[5..0]),
 RISCV_SUB => xs1_val - xs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, xs2_val[4..0])
 else shift_right_arith64(xs1_val, xs2_val[5..0])
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.118.7. Exceptions

This instruction does not generate synchronous exceptions.

176

C.119. ori
Or immediate

This instruction is defined by:

I

C.119.1. Encoding

06711121415192031

0010011xd110xs1imm

C.119.2. Description

Or an immediate to the value in xs1, and store the result in xd

C.119.3. Access

M

Always

C.119.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.119.5. IDL Operation

X[xd] = X[xs1] | $signed(imm);

C.119.6. Sail Operation

{
 let xs1_val = X(xs1);
 let immext : xlenbits = sign_extend(imm);
 let result : xlenbits = match op {
 RISCV_ADDI => xs1_val + immext,
 RISCV_SLTI => zero_extend(bool_to_bits(xs1_val <_s immext)),
 RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
 RISCV_ANDI => xs1_val & immext,
 RISCV_ORI => xs1_val | immext,
 RISCV_XORI => xs1_val ^ immext
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.119.7. Exceptions

This instruction does not generate synchronous exceptions.

177

C.120. rem
Signed remainder

This instruction is defined by:

M

C.120.1. Encoding

067111214151920242531

0110011xd110xs1xs20000001

C.120.2. Description

Calculate the remainder of signed division of xs1 by xs2, and store the result in xd.

If the value in register xs2 is zero, write the value in xs1 into xd;

If the result of the division overflows, write zero into xd;

C.120.3. Access

M

Always

C.120.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.120.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
if (src2 == 0) {
 X[xd] = src1;
} else if ((src1 == {1'b1, {MXLEN - 1{1'b0}}}) && (src2 == {MXLEN{1'b1}})) {
 X[xd] = 0;
} else {
 X[xd] = $signed(src1) % $signed(src2);
}

C.120.6. Sail Operation

{
 if extension("M") then {
 let rs1_val = X(rs1);
 let rs2_val = X(rs2);
 let rs1_int : int = if s then signed(rs1_val) else unsigned(rs1_val);
 let rs2_int : int = if s then signed(rs2_val) else unsigned(rs2_val);
 let r : int = if rs2_int == 0 then rs1_int else rem_round_zero(rs1_int, rs2_int);
 /* signed overflow case returns zero naturally as required due to -1 divisor */
 X(rd) = to_bits(sizeof(xlen), r);
 RETIRE_SUCCESS
 } else {
 handle_illegal();
 RETIRE_FAIL
 }
}

178

C.120.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

179

C.121. remu
Unsigned remainder

This instruction is defined by:

M

C.121.1. Encoding

067111214151920242531

0110011xd111xs1xs20000001

C.121.2. Description

Calculate the remainder of unsigned division of xs1 by xs2, and store the result in xd.

C.121.3. Access

M

Always

C.121.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.121.5. IDL Operation

if (implemented?(ExtensionName::M) && (CSR[misa].M == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
}
XReg src1 = X[xs1];
XReg src2 = X[xs2];
if (src2 == 0) {
 X[xd] = src1;
} else {
 X[xd] = src1 % src2;
}

C.121.6. Sail Operation

{
 if extension("M") then {
 let rs1_val = X(rs1);
 let rs2_val = X(rs2);
 let rs1_int : int = if s then signed(rs1_val) else unsigned(rs1_val);
 let rs2_int : int = if s then signed(rs2_val) else unsigned(rs2_val);
 let r : int = if rs2_int == 0 then rs1_int else rem_round_zero(rs1_int, rs2_int);
 /* signed overflow case returns zero naturally as required due to -1 divisor */
 X(rd) = to_bits(sizeof(xlen), r);
 RETIRE_SUCCESS
 } else {
 handle_illegal();
 RETIRE_FAIL
 }
}

C.121.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

180

C.122. sb
Store byte

This instruction is defined by:

I

C.122.1. Encoding

067111214151920242531

0100011imm[4:0]000xs1xs2imm[11:5]

C.122.2. Description

Store 8 bits of data from register xs2 to an address formed by adding xs1 to a signed offset.

C.122.3. Access

M

Always

C.122.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:7]};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.122.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
write_memory<8>(virtual_address, X[xs2][7:0], $encoding);

C.122.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 /* Get the address, X(xs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(xs1, offset, Write(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Write(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(paddr, _) => {
 let eares : MemoryOpResult(unit) = match width {
 BYTE => mem_write_ea(paddr, 1, aq, rl, false),
 HALF => mem_write_ea(paddr, 2, aq, rl, false),
 WORD => mem_write_ea(paddr, 4, aq, rl, false),
 DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
 };
 match (eares) {
 MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 MemValue(_) => {
 let xs2_val = X(xs2);
 let res : MemoryOpResult(bool) = match (width) {
 BYTE => mem_write_value(paddr, 1, xs2_val[7..0], aq, rl, false),
 HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
 WORD => mem_write_value(paddr, 4, xs2_val[31..0], aq, rl, false),
 DOUBLE if sizeof(xlen) >= 64
 => mem_write_value(paddr, 8, xs2_val, aq, rl, false),
 _ => report_invalid_width(__FILE__, __LINE__, width, "store"),
 };
 match (res) {
 MemValue(true) => RETIRE_SUCCESS,
 MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),

181

 MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }
 }
 }
 }
 }
 }
 }
}

C.122.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

182

C.123. sd
Store doubleword

This instruction is defined by:

(I || Zilsd)

C.123.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

067111214151920242531

0100011imm[4:0]011xs1xs2 != {1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31}imm[11:5]

RV64

067111214151920242531

0100011imm[4:0]011xs1xs2imm[11:5]

C.123.2. Description

For RV64, store 64 bits of data from register xs2 to an address formed by adding xs1 to a signed offset. <% if ext?(:Zilsd) %> For RV32, store
doubleword from even/odd register pair. <% end %>

C.123.3. Access

M

Always

C.123.4. Decode Variables

RV32

Bits<12> imm = {$encoding[31:25], $encoding[11:7]};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

RV64

signed Bits<12> imm = sext({$encoding[31:25], $encoding[11:7]});
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.123.5. IDL Operation

Bits<64> data;
XReg virtual_address = X[xs1] + $signed(imm);
if (xlen() == 32) {
 if (implemented?(ExtensionName::Zclsd)) {
 data = {X[xs2 + 1], X[xs2]};
 } else {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else {
 data = X[xs2];
}
write_memory<64>(virtual_address, data, $encoding);

C.123.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);

183

 /* Get the address, X(xs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(xs1, offset, Write(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Write(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(paddr, _) => {
 let eares : MemoryOpResult(unit) = match width {
 BYTE => mem_write_ea(paddr, 1, aq, rl, false),
 HALF => mem_write_ea(paddr, 2, aq, rl, false),
 WORD => mem_write_ea(paddr, 4, aq, rl, false),
 DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
 };
 match (eares) {
 MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 MemValue(_) => {
 let xs2_val = X(xs2);
 let res : MemoryOpResult(bool) = match (width) {
 BYTE => mem_write_value(paddr, 1, xs2_val[7..0], aq, rl, false),
 HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
 WORD => mem_write_value(paddr, 4, xs2_val[31..0], aq, rl, false),
 DOUBLE if sizeof(xlen) >= 64
 => mem_write_value(paddr, 8, xs2_val, aq, rl, false),
 _ => report_invalid_width(__FILE__, __LINE__, width, "store"),
 };
 match (res) {
 MemValue(true) => RETIRE_SUCCESS,
 MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),
 MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }
 }
 }
 }
 }
 }
 }
}

C.123.7. Exceptions

This instruction may result in the following synchronous exceptions:

• IllegalInstruction

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

184

C.124. sh
Store halfword

This instruction is defined by:

I

C.124.1. Encoding

067111214151920242531

0100011imm[4:0]001xs1xs2imm[11:5]

C.124.2. Description

Store 16 bits of data from register xs2 to an address formed by adding xs1 to a signed offset.

C.124.3. Access

M

Always

C.124.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:7]};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.124.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
write_memory<16>(virtual_address, X[xs2][15:0], $encoding);

C.124.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 /* Get the address, X(xs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(xs1, offset, Write(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Write(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(paddr, _) => {
 let eares : MemoryOpResult(unit) = match width {
 BYTE => mem_write_ea(paddr, 1, aq, rl, false),
 HALF => mem_write_ea(paddr, 2, aq, rl, false),
 WORD => mem_write_ea(paddr, 4, aq, rl, false),
 DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
 };
 match (eares) {
 MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 MemValue(_) => {
 let xs2_val = X(xs2);
 let res : MemoryOpResult(bool) = match (width) {
 BYTE => mem_write_value(paddr, 1, xs2_val[7..0], aq, rl, false),
 HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
 WORD => mem_write_value(paddr, 4, xs2_val[31..0], aq, rl, false),
 DOUBLE if sizeof(xlen) >= 64
 => mem_write_value(paddr, 8, xs2_val, aq, rl, false),
 _ => report_invalid_width(__FILE__, __LINE__, width, "store"),
 };
 match (res) {
 MemValue(true) => RETIRE_SUCCESS,
 MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),

185

 MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }
 }
 }
 }
 }
 }
 }
}

C.124.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

186

C.125. sll
Shift left logical

This instruction is defined by:

I

C.125.1. Encoding

067111214151920242531

0110011xd001xs1xs20000000

C.125.2. Description

Shift the value in xs1 left by the value in the lower 6 bits of xs2, and store the result in xd.

C.125.3. Access

M

Always

C.125.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.125.5. IDL Operation

if (xlen() == 64) {
 X[xd] = X[xs1] << X[xs2][5:0];
} else {
 X[xd] = X[xs1] << X[xs2][4:0];
}

C.125.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let result : xlenbits = match op {
 RISCV_ADD => xs1_val + xs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
 RISCV_AND => xs1_val & xs2_val,
 RISCV_OR => xs1_val | xs2_val,
 RISCV_XOR => xs1_val ^ xs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then xs1_val << (xs2_val[4..0])
 else xs1_val << (xs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then xs1_val >> (xs2_val[4..0])
 else xs1_val >> (xs2_val[5..0]),
 RISCV_SUB => xs1_val - xs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, xs2_val[4..0])
 else shift_right_arith64(xs1_val, xs2_val[5..0])
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.125.7. Exceptions

This instruction does not generate synchronous exceptions.

187

C.126. slli
Shift left logical immediate

This instruction is defined by:

I

C.126.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

067111214151920242531

0010011xd001xs1shamt0000000

RV64

067111214151920252631

0010011xd001xs1shamt000000

C.126.2. Description

Shift the value in xs1 left by shamt, and store the result in xd

C.126.3. Access

M

Always

C.126.4. Decode Variables

RV32

Bits<5> shamt = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

RV64

Bits<6> shamt = $encoding[25:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.126.5. IDL Operation

X[xd] = X[xs1] << shamt;

C.126.6. Sail Operation

{
 let xs1_val = X(xs1);
 /* the decoder guaxd should ensure that shamt[5] = 0 for RV32 */
 let result : xlenbits = match op {
 RISCV_SLLI => if sizeof(xlen) == 32
 then xs1_val << shamt[4..0]
 else xs1_val << shamt,
 RISCV_SRLI => if sizeof(xlen) == 32
 then xs1_val >> shamt[4..0]
 else xs1_val >> shamt,
 RISCV_SRAI => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, shamt[4..0])
 else shift_right_arith64(xs1_val, shamt)
 };

188

 X(xd) = result;
 RETIRE_SUCCESS
}

C.126.7. Exceptions

This instruction does not generate synchronous exceptions.

189

C.127. slt
Set on less than

This instruction is defined by:

I

C.127.1. Encoding

067111214151920242531

0110011xd010xs1xs20000000

C.127.2. Description

Places the value 1 in register xd if register xs1 is less than the value in register xs2, where both sources are treated as signed numbers, else 0 is
written to xd.

C.127.3. Access

M

Always

C.127.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.127.5. IDL Operation

XReg src1 = X[xs1];
XReg src2 = X[xs2];
X[xd] = ($signed(src1) < $signed(src2)) ? '1 : '0;

C.127.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let result : xlenbits = match op {
 RISCV_ADD => xs1_val + xs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
 RISCV_AND => xs1_val & xs2_val,
 RISCV_OR => xs1_val | xs2_val,
 RISCV_XOR => xs1_val ^ xs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then xs1_val << (xs2_val[4..0])
 else xs1_val << (xs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then xs1_val >> (xs2_val[4..0])
 else xs1_val >> (xs2_val[5..0]),
 RISCV_SUB => xs1_val - xs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, xs2_val[4..0])
 else shift_right_arith64(xs1_val, xs2_val[5..0])
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.127.7. Exceptions

This instruction does not generate synchronous exceptions.

190

C.128. slti
Set on less than immediate

This instruction is defined by:

I

C.128.1. Encoding

06711121415192031

0010011xd010xs1imm

C.128.2. Description

Places the value 1 in register xd if register xs1 is less than the sign-extended immediate when both are treated as signed numbers, else 0 is written to
xd.

C.128.3. Access

M

Always

C.128.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.128.5. IDL Operation

X[xd] = ($signed(X[xs1]) < $signed(imm)) ? '1 : '0;

C.128.6. Sail Operation

{
 let xs1_val = X(xs1);
 let immext : xlenbits = sign_extend(imm);
 let result : xlenbits = match op {
 RISCV_ADDI => xs1_val + immext,
 RISCV_SLTI => zero_extend(bool_to_bits(xs1_val <_s immext)),
 RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
 RISCV_ANDI => xs1_val & immext,
 RISCV_ORI => xs1_val | immext,
 RISCV_XORI => xs1_val ^ immext
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.128.7. Exceptions

This instruction does not generate synchronous exceptions.

191

C.129. sltiu
Set on less than immediate unsigned

This instruction is defined by:

I

C.129.1. Encoding

06711121415192031

0010011xd011xs1imm

C.129.2. Description

Places the value 1 in register xd if register xs1 is less than the sign-extended immediate when both are treated as unsigned numbers (i.e., the
immediate is first sign-extended to XLEN bits then treated as an unsigned number), else 0 is written to xd.

 sltiu xd, xs1, 1 sets xd to 1 if xs1 equals zero, otherwise sets xd to 0 (assembler pseudoinstruction SEQZ xd, rs).

C.129.3. Access

M

Always

C.129.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.129.5. IDL Operation

Bits<MXLEN> sign_extend_imm = $signed(imm);
X[xd] = (X[xs1] < sign_extend_imm) ? 1 : 0;

C.129.6. Sail Operation

{
 let xs1_val = X(xs1);
 let immext : xlenbits = sign_extend(imm);
 let result : xlenbits = match op {
 RISCV_ADDI => xs1_val + immext,
 RISCV_SLTI => zero_extend(bool_to_bits(xs1_val <_s immext)),
 RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
 RISCV_ANDI => xs1_val & immext,
 RISCV_ORI => xs1_val | immext,
 RISCV_XORI => xs1_val ^ immext
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.129.7. Exceptions

This instruction does not generate synchronous exceptions.

192

C.130. sltu
Set on less than unsigned

This instruction is defined by:

I

C.130.1. Encoding

067111214151920242531

0110011xd011xs1xs20000000

C.130.2. Description

Places the value 1 in register xd if register xs1 is less than the value in register xs2, where both sources are treated as unsigned numbers, else 0 is
written to xd.

C.130.3. Access

M

Always

C.130.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.130.5. IDL Operation

X[xd] = (X[xs1] < X[xs2]) ? 1 : 0;

C.130.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let result : xlenbits = match op {
 RISCV_ADD => xs1_val + xs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
 RISCV_AND => xs1_val & xs2_val,
 RISCV_OR => xs1_val | xs2_val,
 RISCV_XOR => xs1_val ^ xs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then xs1_val << (xs2_val[4..0])
 else xs1_val << (xs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then xs1_val >> (xs2_val[4..0])
 else xs1_val >> (xs2_val[5..0]),
 RISCV_SUB => xs1_val - xs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, xs2_val[4..0])
 else shift_right_arith64(xs1_val, xs2_val[5..0])
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.130.7. Exceptions

This instruction does not generate synchronous exceptions.

193

C.131. sra
Shift right arithmetic

This instruction is defined by:

I

C.131.1. Encoding

067111214151920242531

0110011xd101xs1xs20100000

C.131.2. Description

Arithmetic shift the value in xs1 right by the value in the lower 5 bits of xs2, and store the result in xd.

C.131.3. Access

M

Always

C.131.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.131.5. IDL Operation

if (xlen() == 64) {
 X[xd] = X[xs1] >>> X[xs2][5:0];
} else {
 X[xd] = X[xs1] >>> X[xs2][4:0];
}

C.131.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let result : xlenbits = match op {
 RISCV_ADD => xs1_val + xs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
 RISCV_AND => xs1_val & xs2_val,
 RISCV_OR => xs1_val | xs2_val,
 RISCV_XOR => xs1_val ^ xs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then xs1_val << (xs2_val[4..0])
 else xs1_val << (xs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then xs1_val >> (xs2_val[4..0])
 else xs1_val >> (xs2_val[5..0]),
 RISCV_SUB => xs1_val - xs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, xs2_val[4..0])
 else shift_right_arith64(xs1_val, xs2_val[5..0])
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.131.7. Exceptions

This instruction does not generate synchronous exceptions.

194

C.132. srai
Shift right arithmetic immediate

This instruction is defined by:

I

C.132.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

067111214151920242531

0010011xd101xs1shamt0100000

RV64

067111214151920252631

0010011xd101xs1shamt010000

C.132.2. Description

Arithmetic shift (the original sign bit is copied into the vacated upper bits) the value in xs1 right by shamt, and store the result in xd.

C.132.3. Access

M

Always

C.132.4. Decode Variables

RV32

Bits<5> shamt = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

RV64

Bits<6> shamt = $encoding[25:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.132.5. IDL Operation

X[xd] = X[xs1] >>> shamt;

C.132.6. Sail Operation

{
 let xs1_val = X(xs1);
 /* the decoder guaxd should ensure that shamt[5] = 0 for RV32 */
 let result : xlenbits = match op {
 RISCV_SLLI => if sizeof(xlen) == 32
 then xs1_val << shamt[4..0]
 else xs1_val << shamt,
 RISCV_SRLI => if sizeof(xlen) == 32
 then xs1_val >> shamt[4..0]
 else xs1_val >> shamt,
 RISCV_SRAI => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, shamt[4..0])
 else shift_right_arith64(xs1_val, shamt)
 };

195

 X(xd) = result;
 RETIRE_SUCCESS
}

C.132.7. Exceptions

This instruction does not generate synchronous exceptions.

196

C.133. srl
Shift right logical

This instruction is defined by:

I

C.133.1. Encoding

067111214151920242531

0110011xd101xs1xs20000000

C.133.2. Description

Logical shift the value in xs1 right by the value in the lower bits of xs2, and store the result in xd.

C.133.3. Access

M

Always

C.133.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.133.5. IDL Operation

if (xlen() == 64) {
 X[xd] = X[xs1] >> X[xs2][5:0];
} else {
 X[xd] = X[xs1] >> X[xs2][4:0];
}

C.133.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let result : xlenbits = match op {
 RISCV_ADD => xs1_val + xs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
 RISCV_AND => xs1_val & xs2_val,
 RISCV_OR => xs1_val | xs2_val,
 RISCV_XOR => xs1_val ^ xs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then xs1_val << (xs2_val[4..0])
 else xs1_val << (xs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then xs1_val >> (xs2_val[4..0])
 else xs1_val >> (xs2_val[5..0]),
 RISCV_SUB => xs1_val - xs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, xs2_val[4..0])
 else shift_right_arith64(xs1_val, xs2_val[5..0])
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.133.7. Exceptions

This instruction does not generate synchronous exceptions.

197

C.134. srli
Shift right logical immediate

This instruction is defined by:

I

C.134.1. Encoding

 This instruction has different encodings in RV32 and RV64.

RV32

067111214151920242531

0010011xd101xs1shamt0000000

RV64

067111214151920252631

0010011xd101xs1shamt000000

C.134.2. Description

Shift the value in xs1 right by shamt, and store the result in xd

C.134.3. Access

M

Always

C.134.4. Decode Variables

RV32

Bits<5> shamt = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

RV64

Bits<6> shamt = $encoding[25:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.134.5. IDL Operation

X[xd] = X[xs1] >> shamt;

C.134.6. Sail Operation

{
 let xs1_val = X(xs1);
 /* the decoder guaxd should ensure that shamt[5] = 0 for RV32 */
 let result : xlenbits = match op {
 RISCV_SLLI => if sizeof(xlen) == 32
 then xs1_val << shamt[4..0]
 else xs1_val << shamt,
 RISCV_SRLI => if sizeof(xlen) == 32
 then xs1_val >> shamt[4..0]
 else xs1_val >> shamt,
 RISCV_SRAI => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, shamt[4..0])
 else shift_right_arith64(xs1_val, shamt)
 };

198

 X(xd) = result;
 RETIRE_SUCCESS
}

C.134.7. Exceptions

This instruction does not generate synchronous exceptions.

199

C.135. sub
Subtract

This instruction is defined by:

I

C.135.1. Encoding

067111214151920242531

0110011xd000xs1xs20100000

C.135.2. Description

Subtract the value in xs2 from xs1, and store the result in xd

C.135.3. Access

M

Always

C.135.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.135.5. IDL Operation

XReg t0 = X[xs1];
XReg t1 = X[xs2];
X[xd] = t0 - t1;

C.135.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let result : xlenbits = match op {
 RISCV_ADD => xs1_val + xs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
 RISCV_AND => xs1_val & xs2_val,
 RISCV_OR => xs1_val | xs2_val,
 RISCV_XOR => xs1_val ^ xs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then xs1_val << (xs2_val[4..0])
 else xs1_val << (xs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then xs1_val >> (xs2_val[4..0])
 else xs1_val >> (xs2_val[5..0]),
 RISCV_SUB => xs1_val - xs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, xs2_val[4..0])
 else shift_right_arith64(xs1_val, xs2_val[5..0])
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.135.7. Exceptions

This instruction does not generate synchronous exceptions.

200

C.136. sw
Store word

This instruction is defined by:

I

C.136.1. Encoding

067111214151920242531

0100011imm[4:0]010xs1xs2imm[11:5]

C.136.2. Description

Store 32 bits of data from register xs2 to an address formed by adding xs1 to a signed offset.

C.136.3. Access

M

Always

C.136.4. Decode Variables

Bits<12> imm = {$encoding[31:25], $encoding[11:7]};
Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];

C.136.5. IDL Operation

XReg virtual_address = X[xs1] + $signed(imm);
write_memory<32>(virtual_address, X[xs2][31:0], $encoding);

C.136.6. Sail Operation

{
 let offset : xlenbits = sign_extend(imm);
 /* Get the address, X(xs1) + offset.
 Some extensions perform additional checks on address validity. */
 match ext_data_get_addr(xs1, offset, Write(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_SAMO_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Write(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(paddr, _) => {
 let eares : MemoryOpResult(unit) = match width {
 BYTE => mem_write_ea(paddr, 1, aq, rl, false),
 HALF => mem_write_ea(paddr, 2, aq, rl, false),
 WORD => mem_write_ea(paddr, 4, aq, rl, false),
 DOUBLE => mem_write_ea(paddr, 8, aq, rl, false)
 };
 match (eares) {
 MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 MemValue(_) => {
 let xs2_val = X(xs2);
 let res : MemoryOpResult(bool) = match (width) {
 BYTE => mem_write_value(paddr, 1, xs2_val[7..0], aq, rl, false),
 HALF => mem_write_value(paddr, 2, xs2_val[15..0], aq, rl, false),
 WORD => mem_write_value(paddr, 4, xs2_val[31..0], aq, rl, false),
 DOUBLE if sizeof(xlen) >= 64
 => mem_write_value(paddr, 8, xs2_val, aq, rl, false),
 _ => report_invalid_width(__FILE__, __LINE__, width, "store"),
 };
 match (res) {
 MemValue(true) => RETIRE_SUCCESS,
 MemValue(false) => internal_error(__FILE__, __LINE__, "store got false from mem_write_value"),

201

 MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL }
 }
 }
 }
 }
 }
 }
}

C.136.7. Exceptions

This instruction may result in the following synchronous exceptions:

• LoadAccessFault

• StoreAmoAccessFault

• StoreAmoAddressMisaligned

• StoreAmoPageFault

202

C.137. xor
Exclusive Or

This instruction is defined by:

I

C.137.1. Encoding

067111214151920242531

0110011xd100xs1xs20000000

C.137.2. Description

Exclusive or xs1 with xs2, and store the result in xd

C.137.3. Access

M

Always

C.137.4. Decode Variables

Bits<5> xs2 = $encoding[24:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.137.5. IDL Operation

X[xd] = X[xs1] ^ X[xs2];

C.137.6. Sail Operation

{
 let xs1_val = X(xs1);
 let xs2_val = X(xs2);
 let result : xlenbits = match op {
 RISCV_ADD => xs1_val + xs2_val,
 RISCV_SLT => zero_extend(bool_to_bits(xs1_val <_s xs2_val)),
 RISCV_SLTU => zero_extend(bool_to_bits(xs1_val <_u xs2_val)),
 RISCV_AND => xs1_val & xs2_val,
 RISCV_OR => xs1_val | xs2_val,
 RISCV_XOR => xs1_val ^ xs2_val,
 RISCV_SLL => if sizeof(xlen) == 32
 then xs1_val << (xs2_val[4..0])
 else xs1_val << (xs2_val[5..0]),
 RISCV_SRL => if sizeof(xlen) == 32
 then xs1_val >> (xs2_val[4..0])
 else xs1_val >> (xs2_val[5..0]),
 RISCV_SUB => xs1_val - xs2_val,
 RISCV_SRA => if sizeof(xlen) == 32
 then shift_right_arith32(xs1_val, xs2_val[4..0])
 else shift_right_arith64(xs1_val, xs2_val[5..0])
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.137.7. Exceptions

This instruction does not generate synchronous exceptions.

203

C.138. xori
Exclusive Or immediate

This instruction is defined by:

I

C.138.1. Encoding

06711121415192031

0010011xd100xs1imm

C.138.2. Description

Exclusive or an immediate to the value in xs1, and store the result in xd

C.138.3. Access

M

Always

C.138.4. Decode Variables

Bits<12> imm = $encoding[31:20];
Bits<5> xs1 = $encoding[19:15];
Bits<5> xd = $encoding[11:7];

C.138.5. IDL Operation

X[xd] = X[xs1] ^ $signed(imm);

C.138.6. Sail Operation

{
 let xs1_val = X(xs1);
 let immext : xlenbits = sign_extend(imm);
 let result : xlenbits = match op {
 RISCV_ADDI => xs1_val + immext,
 RISCV_SLTI => zero_extend(bool_to_bits(xs1_val <_s immext)),
 RISCV_SLTIU => zero_extend(bool_to_bits(xs1_val <_u immext)),
 RISCV_ANDI => xs1_val & immext,
 RISCV_ORI => xs1_val | immext,
 RISCV_XORI => xs1_val ^ immext
 };
 X(xd) = result;
 RETIRE_SUCCESS
}

C.138.7. Exceptions

This instruction does not generate synchronous exceptions.

204

Appendix D: CSR Details

205

D.1. cycle
Cycle counter for RDCYCLE Instruction

Alias for M-mode CSR mcycle.

Privilege mode access is controlled with mcounteren.CY, scounteren.CY, and hcounteren.CY as follows:

mcounteren.CY scounteren.CY hcounteren.CY cycle behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

D.1.1. Attributes

CSR Address 0xc00

Defining
extension

Zicntr

Length 64-bit

Privilege Mode U

D.1.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 1. cycle format

D.1.3. Field Summary

Nam
e

Location Type Reset Value

cycle
.COU
NT

63:0 RO-H UNDEFINED_LEGAL

D.1.4. Fields

cycle.COUNT Field

Location:

63:0

Description:

Alias of mcycle.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

206

D.1.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].CY == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].CY & CSR[scounteren].CY) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].CY == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].CY == 1'b0 && CSR[mcounteren].CY == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].CY == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].CY & CSR[scounteren].CY) == 1'b0) && (CSR[mcounteren].CY == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].CY == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_mcycle();

207

D.2. fcsr
Floating-point control and status register (frm + fflags)

The floating-point control and status register, fcsr, is a RISC-V control and status register (CSR). It is a 32-bit read/write register that selects the
dynamic rounding mode for floating-point arithmetic operations and holds the accrued exception flags, as shown in Floating-Point Control and
Status Register.

Floating-point control and status register

Unresolved directive in RVI20ProfileRelease.adoc - include::images/wavedrom/float-csr.adoc[]

The fcsr register can be read and written with the FRCSR and FSCSR instructions, which are assembler pseudoinstructions built on the underlying
CSR access instructions. FRCSR reads fcsr by copying it into integer register rd. FSCSR swaps the value in fcsr by copying the original value into
integer register rd, and then writing a new value obtained from integer register rs1 into fcsr.

The fields within the fcsr can also be accessed individually through different CSR addresses, and separate assembler pseudoinstructions are defined
for these accesses. The FRRM instruction reads the Rounding Mode field frm (fcsr bits 7—5) and copies it into the least-significant three bits of integer
register rd, with zero in all other bits. FSRM swaps the value in frm by copying the original value into integer register rd, and then writing a new
value obtained from the three least-significant bits of integer register rs1 into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued
Exception Flags field fflags (fcsr bits 4—0).

Bits 31—8 of the fcsr are reserved for other standard extensions. If these extensions are not present, implementations shall ignore writes to these bits
and supply a zero value when read. Standard software should preserve the contents of these bits.

Floating-point operations use either a static rounding mode encoded in the instruction, or a dynamic rounding mode held in frm. Rounding modes
are encoded as shown in Table 7. A value of 111 in the instruction’s rm field selects the dynamic rounding mode held in frm. The behavior of
floating-point instructions that depend on rounding mode when executed with a reserved rounding mode is reserved, including both static reserved
rounding modes (101-110) and dynamic reserved rounding modes (101-111). Some instructions, including widening conversions, have the rm field
but are nevertheless mathematically unaffected by the rounding mode; software should set their rm field to RNE (000) but implementations must
treat the rm field as usual (in particular, with regard to decoding legal vs. reserved encodings).



The C99 language standard effectively mandates the provision of a dynamic rounding mode register. In typical implementations,
writes to the dynamic rounding mode CSR state will serialize the pipeline. Static rounding modes are used to implement specialized
arithmetic operations that often have to switch frequently between different rounding modes.

The ratified version of the F spec mandated that an illegal-instruction exception was raised when an instruction was executed with
a reserved dynamic rounding mode. This has been weakened to reserved, which matches the behavior of static rounding-mode
instructions. Raising an illegal-instruction exception is still valid behavior when encountering a reserved encoding, so
implementations compatible with the ratified spec are compatible with the weakened spec.

The accrued exception flags indicate the exception conditions that have arisen on any floating-point arithmetic instruction since the field was last
reset by software, as shown in Table 8. The base RISC-V ISA does not support generating a trap on the setting of a floating-point exception flag.

Table 14. Accrued exception flag
encoding.

Flag Mnemonic Flag Meaning

NV Invalid Operation

DZ Divide by Zero

OF Overflow

UF Underflow

NX Inexact


As allowed by the standard, we do not support traps on floating-point exceptions in the F extension, but instead require explicit
checks of the flags in software. We considered adding branches controlled directly by the contents of the floating-point accrued
exception flags, but ultimately chose to omit these instructions to keep the ISA simple.

D.2.1. Attributes

CSR Address 0x3

Defining
extension

F

Length 32-bit

Privilege Mode U

D.2.2. Format

208

0123457815

NXUFOFDZNVFRM

1631

Figure 2. fcsr format

D.2.3. Field Summary

Na
me

Location Type Reset Value

fcsr.
FR
M

7:5 RW-H UNDEFINED_LEGAL

fcsr.
NV

4 RW-H UNDEFINED_LEGAL

fcsr.
DZ

3 RW-H UNDEFINED_LEGAL

fcsr.
OF

2 RW-H UNDEFINED_LEGAL

fcsr.
UF

1 RW-H UNDEFINED_LEGAL

fcsr.
NX

0 RW-H UNDEFINED_LEGAL

D.2.4. Fields

fcsr.FRM Field

Location:

7:5

Description:

Rounding modes are encoded as follows:

.Rounding mode encoding.
[%autowidth,float="center",align="center",cols=",,<",options="header"]
!===
!Rounding Mode |Mnemonic |Meaning
!000 !RNE !Round to Nearest, ties to Even
!001 !RTZ !Round towards Zero
!010 !RDN !Round Down (towards -\infty)
!011 !RUP !Round Up (towards +\infty)
!100 !RMM !Round to Nearest, ties to Max Magnitude
!101 ! !Reserved for future use.
!110 ! !Reserved for future use.
!111 !DYN !In instruction’s rm field, selects dynamic rounding mode; In Rounding Mode register, reserved.
!===

A value of 111 in the
instruction’s rm field selects the dynamic rounding mode held in
frm. The behavior of floating-point instructions that depend on
rounding mode when executed with a reserved rounding mode is reserved,
including both static reserved rounding modes (101-110) and dynamic reserved
rounding modes (101-111). Some instructions, including widening conversions,
have the rm field but are nevertheless mathematically unaffected by the
rounding mode; software should set their rm field to
RNE (000) but implementations must treat the rm field as usual (in
particular, with regard to decoding legal vs. reserved encodings).

Type:

RW-H

209

Reset value:

UNDEFINED_LEGAL

fcsr.NV Field

Location:

4

Description:

Invalid Operation

Cumulative error flag for floating point operations.

Set by hardware when a floating point operation is invalid and stays set until explicitly
cleared by software.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

fcsr.DZ Field

Location:

3

Description:

Divide by zero

Cumulative error flag for floating point operations.

Set by hardware when a floating point divide attempts to divide by zero and stays set until explicitly
cleared by software.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

fcsr.OF Field

Location:

2

Description:

Overflow

Cumulative error flag for floating point operations.

Set by hardware when a floating point operation overflows and stays set until explicitly
cleared by software.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

fcsr.UF Field

Location:

1

210

Description:

Underflow

Cumulative error flag for floating point operations.

Set by hardware when a floating point operation underflows and stays set until explicitly
cleared by software.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

fcsr.NX Field

Location:

0

Description:

Inexact

Cumulative error flag for floating point operations.

Set by hardware when a floating point operation is inexact and stays set until explicitly
cleared by software.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

211

D.3. fflags
Floating-Point Accrued Exceptions

The accrued exception flags indicate the exception conditions that have arisen on any floating-point arithmetic instruction since the field was last
reset by software.

The base RISC-V ISA does not support generating a trap on the setting of a floating-point exception flag.

As allowed by the standard, we do not support traps on floating-point exceptions in the F extension, but instead require explicit checks of the flags in
software. We considered adding branches controlled directly by the contents of the floating-point accrued exception flags, but ultimately chose to
omit these instructions to keep the ISA simple.

D.3.1. Attributes

CSR Address 0x1

Defining
extension

F

Length 32-bit

Privilege Mode U

D.3.2. Format

01234515

NXUFOFDZNV

1631

Figure 3. fflags format

D.3.3. Field Summary

Na
me

Location Type Reset Value

ffla
gs.N

V

4 RW-H UNDEFINED_LEGAL

ffla
gs.D

Z

3 RW-H UNDEFINED_LEGAL

ffla
gs.O

F

2 RW-H UNDEFINED_LEGAL

ffla
gs.U

F

1 RW-H UNDEFINED_LEGAL

ffla
gs.N

X

0 RW-H UNDEFINED_LEGAL

D.3.4. Fields

fflags.NV Field

Location:

4

Description:

Set by hardware when a floating point operation is invalid and stays set until explicitly
cleared by software.

Type:

RW-H

212

Reset value:

UNDEFINED_LEGAL

fflags.DZ Field

Location:

3

Description:

Set by hardware when a floating point divide attempts to divide by zero and stays set until explicitly
cleared by software.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

fflags.OF Field

Location:

2

Description:

Set by hardware when a floating point operation overflows and stays set until explicitly
cleared by software.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

fflags.UF Field

Location:

1

Description:

Set by hardware when a floating point operation underflows and stays set until explicitly
cleared by software.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

fflags.NX Field

Location:

0

Description:

Set by hardware when a floating point operation is inexact and stays set until explicitly
cleared by software.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

213

D.3.5. Software write

This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

NV = CSR[fcsr].NV = csr_value.NV;
return csr_value.NV;

DZ = CSR[fcsr].DZ = csr_value.DZ;
return csr_value.DZ;

OF = CSR[fcsr].OF = csr_value.OF;
return csr_value.OF;

UF = CSR[fcsr].UF = csr_value.UF;
return csr_value.UF;

NX = CSR[fcsr].NX = csr_value.NX;
return csr_value.NX;

D.3.6. Software read

This CSR may return a value that is different from what is stored in hardware.

return (CSR[fcsr].NV `<< 4) | (CSR[fcsr].DZ `<< 3) | (CSR[fcsr].OF `<< 2) | (CSR[fcsr].UF `<< 1) | CSR[fcsr].NX;

214

D.4. frm
Floating-Point Dynamic Rounding Mode

Rounding modes are encoded as follows:

Table 15. Rounding mode encoding.

!Rounding
Mode

Mnemon
ic

Meaning !000 !RNE !Round to Nearest, ties to Even !001 !RTZ !Round towards Zero !010 !RDN !Round Down
(towards -\infty) !011 !RUP !Round Up (towards +\infty) !100 !RMM !Round to Nearest, ties to Max Magnitude !101
! !Reserved for future use. !110 ! !Reserved for future use. !111 !DYN !In instruction’s rm field, selects dynamic rounding
mode; In Rounding Mode register, reserved.

The behavior of floating-point instructions that depend on rounding mode when executed with a reserved rounding mode is reserved, including both
static reserved rounding modes (101-110) and dynamic reserved rounding modes (101-111).

Some instructions, including widening conversions, have the rm field but are nevertheless mathematically unaffected by the rounding mode;
software should set their rm field to RNE (000) but implementations must treat the rm field as usual (in particular, with regard to decoding legal vs.
reserved encodings).

D.4.1. Attributes

CSR Address 0x2

Defining
extension

F

Length 32-bit

Privilege Mode U

D.4.2. Format

02315

ROUNDINGMODE

1631

Figure 4. frm format

D.4.3. Field Summary

Name Location Type Reset Value

frm.RO
UNDIN
GMODE

2:0 RW-H UNDEFINED_LEGAL

D.4.4. Fields

frm.ROUNDINGMODE Field

Location:

2:0

Description:

Rounding mode data.

Type:

RW-H

Reset value:

UNDEFINED_LEGAL

D.4.5. Software write

This CSR may store a value that is different from what software attempts to write.

When a software write occurs (e.g., through csrrw), the following determines the written value:

215

ROUNDINGMODE = CSR[fcsr].FRM = csr_value.ROUNDINGMODE;
return csr_value.ROUNDINGMODE;

D.4.6. Software read

This CSR may return a value that is different from what is stored in hardware.

return CSR[fcsr].FRM;

216

D.5. hpmcounter10
User-mode Hardware Performance Counter 7

Alias for M-mode CSR mhpmcounter10.

Privilege mode access is controlled with mcounteren.HPM10 <%- if ext?(:S) -%> , scounteren.HPM10 <%- if ext?(:H) -%> , and hcounteren.HPM10 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM10 scounteren.HPM10 hcounteren.HPM10 hpmcounter10 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM10 scounteren.HPM10 hpmcounter10 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM10 hpmcounter10 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.5.1. Attributes

CSR Address 0xc0a

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.5.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 5. hpmcounter10 format

D.5.3. Field Summary

217

Name Location Type Reset Value

hpmcou
nter10.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.5.4. Fields

hpmcounter10.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter10.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.5.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM10 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM10 & CSR[scounteren].HPM10) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM10 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM10 == 1'b0 && CSR[mcounteren].HPM10 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM10 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM10 & CSR[scounteren].HPM10) == 1'b0) && (CSR[mcounteren].HPM10 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM10 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(10);

218

D.6. hpmcounter11
User-mode Hardware Performance Counter 8

Alias for M-mode CSR mhpmcounter11.

Privilege mode access is controlled with mcounteren.HPM11 <%- if ext?(:S) -%> , scounteren.HPM11 <%- if ext?(:H) -%> , and hcounteren.HPM11 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM11 scounteren.HPM11 hcounteren.HPM11 hpmcounter11 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM11 scounteren.HPM11 hpmcounter11 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM11 hpmcounter11 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.6.1. Attributes

CSR Address 0xc0b

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.6.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 6. hpmcounter11 format

D.6.3. Field Summary

219

Name Location Type Reset Value

hpmcou
nter11.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.6.4. Fields

hpmcounter11.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter11.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.6.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM11 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM11 & CSR[scounteren].HPM11) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM11 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM11 == 1'b0 && CSR[mcounteren].HPM11 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM11 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM11 & CSR[scounteren].HPM11) == 1'b0) && (CSR[mcounteren].HPM11 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM11 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(11);

220

D.7. hpmcounter12
User-mode Hardware Performance Counter 9

Alias for M-mode CSR mhpmcounter12.

Privilege mode access is controlled with mcounteren.HPM12 <%- if ext?(:S) -%> , scounteren.HPM12 <%- if ext?(:H) -%> , and hcounteren.HPM12 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM12 scounteren.HPM12 hcounteren.HPM12 hpmcounter12 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM12 scounteren.HPM12 hpmcounter12 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM12 hpmcounter12 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.7.1. Attributes

CSR Address 0xc0c

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.7.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 7. hpmcounter12 format

D.7.3. Field Summary

221

Name Location Type Reset Value

hpmcou
nter12.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.7.4. Fields

hpmcounter12.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter12.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.7.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM12 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM12 & CSR[scounteren].HPM12) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM12 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM12 == 1'b0 && CSR[mcounteren].HPM12 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM12 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM12 & CSR[scounteren].HPM12) == 1'b0) && (CSR[mcounteren].HPM12 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM12 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(12);

222

D.8. hpmcounter13
User-mode Hardware Performance Counter 10

Alias for M-mode CSR mhpmcounter13.

Privilege mode access is controlled with mcounteren.HPM13 <%- if ext?(:S) -%> , scounteren.HPM13 <%- if ext?(:H) -%> , and hcounteren.HPM13 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM13 scounteren.HPM13 hcounteren.HPM13 hpmcounter13 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM13 scounteren.HPM13 hpmcounter13 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM13 hpmcounter13 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.8.1. Attributes

CSR Address 0xc0d

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.8.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 8. hpmcounter13 format

D.8.3. Field Summary

223

Name Location Type Reset Value

hpmcou
nter13.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.8.4. Fields

hpmcounter13.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter13.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.8.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM13 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM13 & CSR[scounteren].HPM13) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM13 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM13 == 1'b0 && CSR[mcounteren].HPM13 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM13 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM13 & CSR[scounteren].HPM13) == 1'b0) && (CSR[mcounteren].HPM13 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM13 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(13);

224

D.9. hpmcounter14
User-mode Hardware Performance Counter 11

Alias for M-mode CSR mhpmcounter14.

Privilege mode access is controlled with mcounteren.HPM14 <%- if ext?(:S) -%> , scounteren.HPM14 <%- if ext?(:H) -%> , and hcounteren.HPM14 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM14 scounteren.HPM14 hcounteren.HPM14 hpmcounter14 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM14 scounteren.HPM14 hpmcounter14 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM14 hpmcounter14 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.9.1. Attributes

CSR Address 0xc0e

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.9.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 9. hpmcounter14 format

D.9.3. Field Summary

225

Name Location Type Reset Value

hpmcou
nter14.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.9.4. Fields

hpmcounter14.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter14.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.9.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM14 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM14 & CSR[scounteren].HPM14) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM14 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM14 == 1'b0 && CSR[mcounteren].HPM14 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM14 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM14 & CSR[scounteren].HPM14) == 1'b0) && (CSR[mcounteren].HPM14 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM14 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(14);

226

D.10. hpmcounter15
User-mode Hardware Performance Counter 12

Alias for M-mode CSR mhpmcounter15.

Privilege mode access is controlled with mcounteren.HPM15 <%- if ext?(:S) -%> , scounteren.HPM15 <%- if ext?(:H) -%> , and hcounteren.HPM15 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM15 scounteren.HPM15 hcounteren.HPM15 hpmcounter15 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM15 scounteren.HPM15 hpmcounter15 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM15 hpmcounter15 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.10.1. Attributes

CSR Address 0xc0f

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.10.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 10. hpmcounter15 format

D.10.3. Field Summary

227

Name Location Type Reset Value

hpmcou
nter15.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.10.4. Fields

hpmcounter15.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter15.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.10.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM15 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM15 & CSR[scounteren].HPM15) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM15 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM15 == 1'b0 && CSR[mcounteren].HPM15 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM15 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM15 & CSR[scounteren].HPM15) == 1'b0) && (CSR[mcounteren].HPM15 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM15 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(15);

228

D.11. hpmcounter16
User-mode Hardware Performance Counter 13

Alias for M-mode CSR mhpmcounter16.

Privilege mode access is controlled with mcounteren.HPM16 <%- if ext?(:S) -%> , scounteren.HPM16 <%- if ext?(:H) -%> , and hcounteren.HPM16 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM16 scounteren.HPM16 hcounteren.HPM16 hpmcounter16 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM16 scounteren.HPM16 hpmcounter16 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM16 hpmcounter16 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.11.1. Attributes

CSR Address 0xc10

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.11.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 11. hpmcounter16 format

D.11.3. Field Summary

229

Name Location Type Reset Value

hpmcou
nter16.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.11.4. Fields

hpmcounter16.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter16.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.11.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM16 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM16 & CSR[scounteren].HPM16) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM16 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM16 == 1'b0 && CSR[mcounteren].HPM16 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM16 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM16 & CSR[scounteren].HPM16) == 1'b0) && (CSR[mcounteren].HPM16 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM16 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(16);

230

D.12. hpmcounter17
User-mode Hardware Performance Counter 14

Alias for M-mode CSR mhpmcounter17.

Privilege mode access is controlled with mcounteren.HPM17 <%- if ext?(:S) -%> , scounteren.HPM17 <%- if ext?(:H) -%> , and hcounteren.HPM17 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM17 scounteren.HPM17 hcounteren.HPM17 hpmcounter17 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM17 scounteren.HPM17 hpmcounter17 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM17 hpmcounter17 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.12.1. Attributes

CSR Address 0xc11

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.12.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 12. hpmcounter17 format

D.12.3. Field Summary

231

Name Location Type Reset Value

hpmcou
nter17.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.12.4. Fields

hpmcounter17.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter17.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.12.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM17 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM17 & CSR[scounteren].HPM17) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM17 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM17 == 1'b0 && CSR[mcounteren].HPM17 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM17 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM17 & CSR[scounteren].HPM17) == 1'b0) && (CSR[mcounteren].HPM17 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM17 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(17);

232

D.13. hpmcounter18
User-mode Hardware Performance Counter 15

Alias for M-mode CSR mhpmcounter18.

Privilege mode access is controlled with mcounteren.HPM18 <%- if ext?(:S) -%> , scounteren.HPM18 <%- if ext?(:H) -%> , and hcounteren.HPM18 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM18 scounteren.HPM18 hcounteren.HPM18 hpmcounter18 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM18 scounteren.HPM18 hpmcounter18 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM18 hpmcounter18 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.13.1. Attributes

CSR Address 0xc12

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.13.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 13. hpmcounter18 format

D.13.3. Field Summary

233

Name Location Type Reset Value

hpmcou
nter18.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.13.4. Fields

hpmcounter18.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter18.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.13.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM18 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM18 & CSR[scounteren].HPM18) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM18 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM18 == 1'b0 && CSR[mcounteren].HPM18 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM18 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM18 & CSR[scounteren].HPM18) == 1'b0) && (CSR[mcounteren].HPM18 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM18 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(18);

234

D.14. hpmcounter19
User-mode Hardware Performance Counter 16

Alias for M-mode CSR mhpmcounter19.

Privilege mode access is controlled with mcounteren.HPM19 <%- if ext?(:S) -%> , scounteren.HPM19 <%- if ext?(:H) -%> , and hcounteren.HPM19 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM19 scounteren.HPM19 hcounteren.HPM19 hpmcounter19 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM19 scounteren.HPM19 hpmcounter19 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM19 hpmcounter19 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.14.1. Attributes

CSR Address 0xc13

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.14.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 14. hpmcounter19 format

D.14.3. Field Summary

235

Name Location Type Reset Value

hpmcou
nter19.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.14.4. Fields

hpmcounter19.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter19.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.14.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM19 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM19 & CSR[scounteren].HPM19) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM19 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM19 == 1'b0 && CSR[mcounteren].HPM19 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM19 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM19 & CSR[scounteren].HPM19) == 1'b0) && (CSR[mcounteren].HPM19 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM19 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(19);

236

D.15. hpmcounter20
User-mode Hardware Performance Counter 17

Alias for M-mode CSR mhpmcounter20.

Privilege mode access is controlled with mcounteren.HPM20 <%- if ext?(:S) -%> , scounteren.HPM20 <%- if ext?(:H) -%> , and hcounteren.HPM20 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM20 scounteren.HPM20 hcounteren.HPM20 hpmcounter20 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM20 scounteren.HPM20 hpmcounter20 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM20 hpmcounter20 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.15.1. Attributes

CSR Address 0xc14

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.15.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 15. hpmcounter20 format

D.15.3. Field Summary

237

Name Location Type Reset Value

hpmcou
nter20.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.15.4. Fields

hpmcounter20.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter20.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.15.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM20 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM20 & CSR[scounteren].HPM20) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM20 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM20 == 1'b0 && CSR[mcounteren].HPM20 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM20 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM20 & CSR[scounteren].HPM20) == 1'b0) && (CSR[mcounteren].HPM20 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM20 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(20);

238

D.16. hpmcounter21
User-mode Hardware Performance Counter 18

Alias for M-mode CSR mhpmcounter21.

Privilege mode access is controlled with mcounteren.HPM21 <%- if ext?(:S) -%> , scounteren.HPM21 <%- if ext?(:H) -%> , and hcounteren.HPM21 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM21 scounteren.HPM21 hcounteren.HPM21 hpmcounter21 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM21 scounteren.HPM21 hpmcounter21 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM21 hpmcounter21 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.16.1. Attributes

CSR Address 0xc15

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.16.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 16. hpmcounter21 format

D.16.3. Field Summary

239

Name Location Type Reset Value

hpmcou
nter21.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.16.4. Fields

hpmcounter21.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter21.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.16.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM21 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM21 & CSR[scounteren].HPM21) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM21 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM21 == 1'b0 && CSR[mcounteren].HPM21 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM21 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM21 & CSR[scounteren].HPM21) == 1'b0) && (CSR[mcounteren].HPM21 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM21 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(21);

240

D.17. hpmcounter22
User-mode Hardware Performance Counter 19

Alias for M-mode CSR mhpmcounter22.

Privilege mode access is controlled with mcounteren.HPM22 <%- if ext?(:S) -%> , scounteren.HPM22 <%- if ext?(:H) -%> , and hcounteren.HPM22 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM22 scounteren.HPM22 hcounteren.HPM22 hpmcounter22 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM22 scounteren.HPM22 hpmcounter22 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM22 hpmcounter22 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.17.1. Attributes

CSR Address 0xc16

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.17.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 17. hpmcounter22 format

D.17.3. Field Summary

241

Name Location Type Reset Value

hpmcou
nter22.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.17.4. Fields

hpmcounter22.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter22.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.17.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM22 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM22 & CSR[scounteren].HPM22) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM22 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM22 == 1'b0 && CSR[mcounteren].HPM22 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM22 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM22 & CSR[scounteren].HPM22) == 1'b0) && (CSR[mcounteren].HPM22 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM22 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(22);

242

D.18. hpmcounter23
User-mode Hardware Performance Counter 20

Alias for M-mode CSR mhpmcounter23.

Privilege mode access is controlled with mcounteren.HPM23 <%- if ext?(:S) -%> , scounteren.HPM23 <%- if ext?(:H) -%> , and hcounteren.HPM23 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM23 scounteren.HPM23 hcounteren.HPM23 hpmcounter23 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM23 scounteren.HPM23 hpmcounter23 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM23 hpmcounter23 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.18.1. Attributes

CSR Address 0xc17

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.18.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 18. hpmcounter23 format

D.18.3. Field Summary

243

Name Location Type Reset Value

hpmcou
nter23.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.18.4. Fields

hpmcounter23.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter23.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.18.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM23 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM23 & CSR[scounteren].HPM23) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM23 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM23 == 1'b0 && CSR[mcounteren].HPM23 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM23 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM23 & CSR[scounteren].HPM23) == 1'b0) && (CSR[mcounteren].HPM23 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM23 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(23);

244

D.19. hpmcounter24
User-mode Hardware Performance Counter 21

Alias for M-mode CSR mhpmcounter24.

Privilege mode access is controlled with mcounteren.HPM24 <%- if ext?(:S) -%> , scounteren.HPM24 <%- if ext?(:H) -%> , and hcounteren.HPM24 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM24 scounteren.HPM24 hcounteren.HPM24 hpmcounter24 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM24 scounteren.HPM24 hpmcounter24 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM24 hpmcounter24 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.19.1. Attributes

CSR Address 0xc18

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.19.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 19. hpmcounter24 format

D.19.3. Field Summary

245

Name Location Type Reset Value

hpmcou
nter24.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.19.4. Fields

hpmcounter24.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter24.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.19.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM24 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM24 & CSR[scounteren].HPM24) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM24 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM24 == 1'b0 && CSR[mcounteren].HPM24 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM24 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM24 & CSR[scounteren].HPM24) == 1'b0) && (CSR[mcounteren].HPM24 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM24 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(24);

246

D.20. hpmcounter25
User-mode Hardware Performance Counter 22

Alias for M-mode CSR mhpmcounter25.

Privilege mode access is controlled with mcounteren.HPM25 <%- if ext?(:S) -%> , scounteren.HPM25 <%- if ext?(:H) -%> , and hcounteren.HPM25 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM25 scounteren.HPM25 hcounteren.HPM25 hpmcounter25 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM25 scounteren.HPM25 hpmcounter25 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM25 hpmcounter25 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.20.1. Attributes

CSR Address 0xc19

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.20.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 20. hpmcounter25 format

D.20.3. Field Summary

247

Name Location Type Reset Value

hpmcou
nter25.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.20.4. Fields

hpmcounter25.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter25.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.20.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM25 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM25 & CSR[scounteren].HPM25) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM25 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM25 == 1'b0 && CSR[mcounteren].HPM25 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM25 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM25 & CSR[scounteren].HPM25) == 1'b0) && (CSR[mcounteren].HPM25 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM25 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(25);

248

D.21. hpmcounter26
User-mode Hardware Performance Counter 23

Alias for M-mode CSR mhpmcounter26.

Privilege mode access is controlled with mcounteren.HPM26 <%- if ext?(:S) -%> , scounteren.HPM26 <%- if ext?(:H) -%> , and hcounteren.HPM26 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM26 scounteren.HPM26 hcounteren.HPM26 hpmcounter26 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM26 scounteren.HPM26 hpmcounter26 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM26 hpmcounter26 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.21.1. Attributes

CSR Address 0xc1a

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.21.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 21. hpmcounter26 format

D.21.3. Field Summary

249

Name Location Type Reset Value

hpmcou
nter26.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.21.4. Fields

hpmcounter26.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter26.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.21.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM26 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM26 & CSR[scounteren].HPM26) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM26 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM26 == 1'b0 && CSR[mcounteren].HPM26 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM26 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM26 & CSR[scounteren].HPM26) == 1'b0) && (CSR[mcounteren].HPM26 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM26 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(26);

250

D.22. hpmcounter27
User-mode Hardware Performance Counter 24

Alias for M-mode CSR mhpmcounter27.

Privilege mode access is controlled with mcounteren.HPM27 <%- if ext?(:S) -%> , scounteren.HPM27 <%- if ext?(:H) -%> , and hcounteren.HPM27 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM27 scounteren.HPM27 hcounteren.HPM27 hpmcounter27 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM27 scounteren.HPM27 hpmcounter27 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM27 hpmcounter27 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.22.1. Attributes

CSR Address 0xc1b

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.22.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 22. hpmcounter27 format

D.22.3. Field Summary

251

Name Location Type Reset Value

hpmcou
nter27.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.22.4. Fields

hpmcounter27.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter27.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.22.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM27 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM27 & CSR[scounteren].HPM27) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM27 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM27 == 1'b0 && CSR[mcounteren].HPM27 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM27 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM27 & CSR[scounteren].HPM27) == 1'b0) && (CSR[mcounteren].HPM27 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM27 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(27);

252

D.23. hpmcounter28
User-mode Hardware Performance Counter 25

Alias for M-mode CSR mhpmcounter28.

Privilege mode access is controlled with mcounteren.HPM28 <%- if ext?(:S) -%> , scounteren.HPM28 <%- if ext?(:H) -%> , and hcounteren.HPM28 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM28 scounteren.HPM28 hcounteren.HPM28 hpmcounter28 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM28 scounteren.HPM28 hpmcounter28 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM28 hpmcounter28 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.23.1. Attributes

CSR Address 0xc1c

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.23.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 23. hpmcounter28 format

D.23.3. Field Summary

253

Name Location Type Reset Value

hpmcou
nter28.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.23.4. Fields

hpmcounter28.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter28.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.23.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM28 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM28 & CSR[scounteren].HPM28) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM28 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM28 == 1'b0 && CSR[mcounteren].HPM28 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM28 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM28 & CSR[scounteren].HPM28) == 1'b0) && (CSR[mcounteren].HPM28 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM28 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(28);

254

D.24. hpmcounter29
User-mode Hardware Performance Counter 26

Alias for M-mode CSR mhpmcounter29.

Privilege mode access is controlled with mcounteren.HPM29 <%- if ext?(:S) -%> , scounteren.HPM29 <%- if ext?(:H) -%> , and hcounteren.HPM29 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM29 scounteren.HPM29 hcounteren.HPM29 hpmcounter29 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM29 scounteren.HPM29 hpmcounter29 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM29 hpmcounter29 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.24.1. Attributes

CSR Address 0xc1d

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.24.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 24. hpmcounter29 format

D.24.3. Field Summary

255

Name Location Type Reset Value

hpmcou
nter29.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.24.4. Fields

hpmcounter29.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter29.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.24.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM29 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM29 & CSR[scounteren].HPM29) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM29 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM29 == 1'b0 && CSR[mcounteren].HPM29 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM29 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM29 & CSR[scounteren].HPM29) == 1'b0) && (CSR[mcounteren].HPM29 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM29 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(29);

256

D.25. hpmcounter3
User-mode Hardware Performance Counter 0

Alias for M-mode CSR mhpmcounter3.

Privilege mode access is controlled with mcounteren.HPM3 <%- if ext?(:S) -%> , scounteren.HPM3 <%- if ext?(:H) -%> , and hcounteren.HPM3 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM3 scounteren.HPM3 hcounteren.HPM3 hpmcounter3 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM3 scounteren.HPM3 hpmcounter3 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM3 hpmcounter3 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.25.1. Attributes

CSR Address 0xc03

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.25.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 25. hpmcounter3 format

D.25.3. Field Summary

257

Name Location Type Reset Value

hpmco
unter3.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.25.4. Fields

hpmcounter3.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter3.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.25.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM3 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM3 & CSR[scounteren].HPM3) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM3 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM3 == 1'b0 && CSR[mcounteren].HPM3 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM3 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM3 & CSR[scounteren].HPM3) == 1'b0) && (CSR[mcounteren].HPM3 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM3 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(3);

258

D.26. hpmcounter30
User-mode Hardware Performance Counter 27

Alias for M-mode CSR mhpmcounter30.

Privilege mode access is controlled with mcounteren.HPM30 <%- if ext?(:S) -%> , scounteren.HPM30 <%- if ext?(:H) -%> , and hcounteren.HPM30 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM30 scounteren.HPM30 hcounteren.HPM30 hpmcounter30 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM30 scounteren.HPM30 hpmcounter30 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM30 hpmcounter30 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.26.1. Attributes

CSR Address 0xc1e

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.26.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 26. hpmcounter30 format

D.26.3. Field Summary

259

Name Location Type Reset Value

hpmcou
nter30.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.26.4. Fields

hpmcounter30.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter30.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.26.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM30 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM30 & CSR[scounteren].HPM30) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM30 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM30 == 1'b0 && CSR[mcounteren].HPM30 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM30 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM30 & CSR[scounteren].HPM30) == 1'b0) && (CSR[mcounteren].HPM30 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM30 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(30);

260

D.27. hpmcounter31
User-mode Hardware Performance Counter 28

Alias for M-mode CSR mhpmcounter31.

Privilege mode access is controlled with mcounteren.HPM31 <%- if ext?(:S) -%> , scounteren.HPM31 <%- if ext?(:H) -%> , and hcounteren.HPM31 <%-
end -%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM31 scounteren.HPM31 hcounteren.HPM31 hpmcounter31 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM31 scounteren.HPM31 hpmcounter31 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM31 hpmcounter31 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.27.1. Attributes

CSR Address 0xc1f

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.27.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 27. hpmcounter31 format

D.27.3. Field Summary

261

Name Location Type Reset Value

hpmcou
nter31.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.27.4. Fields

hpmcounter31.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter31.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.27.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM31 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM31 & CSR[scounteren].HPM31) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM31 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM31 == 1'b0 && CSR[mcounteren].HPM31 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM31 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM31 & CSR[scounteren].HPM31) == 1'b0) && (CSR[mcounteren].HPM31 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM31 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(31);

262

D.28. hpmcounter4
User-mode Hardware Performance Counter 1

Alias for M-mode CSR mhpmcounter4.

Privilege mode access is controlled with mcounteren.HPM4 <%- if ext?(:S) -%> , scounteren.HPM4 <%- if ext?(:H) -%> , and hcounteren.HPM4 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM4 scounteren.HPM4 hcounteren.HPM4 hpmcounter4 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM4 scounteren.HPM4 hpmcounter4 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM4 hpmcounter4 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.28.1. Attributes

CSR Address 0xc04

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.28.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 28. hpmcounter4 format

D.28.3. Field Summary

263

Name Location Type Reset Value

hpmco
unter4.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.28.4. Fields

hpmcounter4.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter4.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.28.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM4 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM4 & CSR[scounteren].HPM4) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM4 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM4 == 1'b0 && CSR[mcounteren].HPM4 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM4 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM4 & CSR[scounteren].HPM4) == 1'b0) && (CSR[mcounteren].HPM4 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM4 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(4);

264

D.29. hpmcounter5
User-mode Hardware Performance Counter 2

Alias for M-mode CSR mhpmcounter5.

Privilege mode access is controlled with mcounteren.HPM5 <%- if ext?(:S) -%> , scounteren.HPM5 <%- if ext?(:H) -%> , and hcounteren.HPM5 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM5 scounteren.HPM5 hcounteren.HPM5 hpmcounter5 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM5 scounteren.HPM5 hpmcounter5 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM5 hpmcounter5 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.29.1. Attributes

CSR Address 0xc05

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.29.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 29. hpmcounter5 format

D.29.3. Field Summary

265

Name Location Type Reset Value

hpmco
unter5.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.29.4. Fields

hpmcounter5.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter5.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.29.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM5 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM5 & CSR[scounteren].HPM5) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM5 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM5 == 1'b0 && CSR[mcounteren].HPM5 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM5 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM5 & CSR[scounteren].HPM5) == 1'b0) && (CSR[mcounteren].HPM5 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM5 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(5);

266

D.30. hpmcounter6
User-mode Hardware Performance Counter 3

Alias for M-mode CSR mhpmcounter6.

Privilege mode access is controlled with mcounteren.HPM6 <%- if ext?(:S) -%> , scounteren.HPM6 <%- if ext?(:H) -%> , and hcounteren.HPM6 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM6 scounteren.HPM6 hcounteren.HPM6 hpmcounter6 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM6 scounteren.HPM6 hpmcounter6 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM6 hpmcounter6 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.30.1. Attributes

CSR Address 0xc06

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.30.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 30. hpmcounter6 format

D.30.3. Field Summary

267

Name Location Type Reset Value

hpmco
unter6.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.30.4. Fields

hpmcounter6.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter6.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.30.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM6 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM6 & CSR[scounteren].HPM6) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM6 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM6 == 1'b0 && CSR[mcounteren].HPM6 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM6 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM6 & CSR[scounteren].HPM6) == 1'b0) && (CSR[mcounteren].HPM6 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM6 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(6);

268

D.31. hpmcounter7
User-mode Hardware Performance Counter 4

Alias for M-mode CSR mhpmcounter7.

Privilege mode access is controlled with mcounteren.HPM7 <%- if ext?(:S) -%> , scounteren.HPM7 <%- if ext?(:H) -%> , and hcounteren.HPM7 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM7 scounteren.HPM7 hcounteren.HPM7 hpmcounter7 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM7 scounteren.HPM7 hpmcounter7 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM7 hpmcounter7 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.31.1. Attributes

CSR Address 0xc07

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.31.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 31. hpmcounter7 format

D.31.3. Field Summary

269

Name Location Type Reset Value

hpmco
unter7.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.31.4. Fields

hpmcounter7.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter7.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.31.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM7 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM7 & CSR[scounteren].HPM7) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM7 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM7 == 1'b0 && CSR[mcounteren].HPM7 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM7 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM7 & CSR[scounteren].HPM7) == 1'b0) && (CSR[mcounteren].HPM7 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM7 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(7);

270

D.32. hpmcounter8
User-mode Hardware Performance Counter 5

Alias for M-mode CSR mhpmcounter8.

Privilege mode access is controlled with mcounteren.HPM8 <%- if ext?(:S) -%> , scounteren.HPM8 <%- if ext?(:H) -%> , and hcounteren.HPM8 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM8 scounteren.HPM8 hcounteren.HPM8 hpmcounter8 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM8 scounteren.HPM8 hpmcounter8 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM8 hpmcounter8 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.32.1. Attributes

CSR Address 0xc08

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.32.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 32. hpmcounter8 format

D.32.3. Field Summary

271

Name Location Type Reset Value

hpmco
unter8.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.32.4. Fields

hpmcounter8.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter8.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.32.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM8 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM8 & CSR[scounteren].HPM8) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM8 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM8 == 1'b0 && CSR[mcounteren].HPM8 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM8 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM8 & CSR[scounteren].HPM8) == 1'b0) && (CSR[mcounteren].HPM8 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM8 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(8);

272

D.33. hpmcounter9
User-mode Hardware Performance Counter 6

Alias for M-mode CSR mhpmcounter9.

Privilege mode access is controlled with mcounteren.HPM9 <%- if ext?(:S) -%> , scounteren.HPM9 <%- if ext?(:H) -%> , and hcounteren.HPM9 <%- end
-%> <%- end -%> as follows:

<%- if ext?(:H) -%>

mcounteren.HPM9 scounteren.HPM9 hcounteren.HPM9 hpmcounter9 behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

<%- elsif ext?(:S) -%>

mcounteren.HPM9 scounteren.HPM9 hpmcounter9 behavior

S-mode U-mode

0 - IllegalInstruction IllegalInstruction

1 0 read-only IllegalInstruction

1 1 read-only read-only

<%- else -%>

mcounteren.HPM9 hpmcounter9 behavior

U-mode

0 IllegalInstruction

1 read-only

<%- end -%>

D.33.1. Attributes

CSR Address 0xc09

Defining
extension

Zihpm

Length 64-bit

Privilege Mode U

D.33.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 33. hpmcounter9 format

D.33.3. Field Summary

273

Name Location Type Reset Value

hpmco
unter9.
COUNT

63:0 RO-H UNDEFINED_LEGAL

D.33.4. Fields

hpmcounter9.COUNT Field

Location:

63:0

Description:

Alias of mhpmcounter9.COUNT.

Type:

RO-H

Reset value:

UNDEFINED_LEGAL

D.33.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].HPM9 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].HPM9 & CSR[scounteren].HPM9) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].HPM9 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].HPM9 == 1'b0 && CSR[mcounteren].HPM9 == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM9 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].HPM9 & CSR[scounteren].HPM9) == 1'b0) && (CSR[mcounteren].HPM9 == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].HPM9 == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_hpm_counter(9);

274

D.34. instret
Instructions retired counter for RDINSTRET Instruction

Alias for M-mode CSR minstret.

Privilege mode access is controlled with mcounteren.IR, scounteren.IR, and hcounteren.IR as follows:

mcounteren.IR scounteren.IR hcounteren.IR instret behavior

S-mode U-mode VS-mode VU-mode

0 - - IllegalInstruction IllegalInstruction IllegalInstruction IllegalInstruction

1 0 0 read-only IllegalInstruction VirtualInstruction VirtualInstruction

1 1 0 read-only read-only VirtualInstruction VirtualInstruction

1 0 1 read-only IllegalInstruction read-only VirtualInstruction

1 1 1 read-only read-only read-only read-only

D.34.1. Attributes

CSR Address 0xc02

Defining
extension

Zicntr

Length 64-bit

Privilege Mode U

D.34.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 34. instret format

D.34.3. Field Summary

Nam
e

Location Type Reset Value

instre
t.COU

NT

63:0 RO-H 0

D.34.4. Fields

instret.COUNT Field

Location:

63:0

Description:

Alias of minstret.COUNT.

Type:

RO-H

Reset value:

0

275

D.34.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].IR == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].IR & CSR[scounteren].IR) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].IR == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].IR == 1'b0 && CSR[mcounteren].IR == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].IR == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].IR & CSR[scounteren].IR) == 1'b0) && (CSR[mcounteren].IR == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].IR == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return CSR[minstret].COUNT;

276

D.35. time
Timer for RDTIME Instruction

This CSR does not exist, and access will cause an IllegalInstruction exception.

Shadow of the memory-mapped M-mode CSR mtime.

Privilege mode access is controlled with mcounteren.TM, scounteren.TM, and hcounteren.TM as follows:

mcounteren.TM scounteren.TM scounteren.TM time behavior

S-mode U-mode VS-mode VU-mode

0 - - Illegal Instruction Illegal Instruction Illegal Instruction Illegal Instruction

1 0 0 read-only Illegal Instruction Illegal Instruction Illegal Instruction

1 1 0 read-only read-only Illegal Instruction Illegal Instruction

1 0 1 read-only Illegal Instruction read-only Illegal Instruction

1 1 1 read-only read-only read-only read-only

D.35.1. Attributes

CSR Address 0xc01

Defining
extension

Zicntr

Length 64-bit

Privilege Mode U

D.35.2. Format

015

COUNT

1631

COUNT

3247

COUNT

4863

COUNT

Figure 35. time format

D.35.3. Field Summary

Nam
e

Location Type Reset Value

time.
COU
NT

63:0 RO-H UNDEFINED_LEGAL

D.35.4. Fields

time.COUNT Field

Location:

63:0

Description:

Reports the current wall-clock time from the timer device.

Alias of the mtime memory-mapped CSR.

Type:

RO-H

277

Reset value:

UNDEFINED_LEGAL

D.35.5. Software read

This CSR may return a value that is different from what is stored in hardware.

if (!TIME_CSR_IMPLEMENTED) {
 unimplemented_csr($encoding);
}
if (mode() == PrivilegeMode::S) {
 if (CSR[mcounteren].TM == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::U) {
 if (CSR[misa].S == 1'b1) {
 if ((CSR[mcounteren].TM & CSR[scounteren].TM) == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
 } else if (CSR[mcounteren].TM == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VS) {
 if (CSR[hcounteren].TM == 1'b0 && CSR[mcounteren].TM == 1'b1) {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].TM == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
} else if (mode() == PrivilegeMode::VU) {
 if (CSR[hcounteren].TM & CSR[scounteren].TM) == 1'b0) && (CSR[mcounteren].IR == 1'b1 {
 raise(ExceptionCode::VirtualInstruction, mode(), $encoding);
 } else if (CSR[mcounteren].TM == 1'b0) {
 raise(ExceptionCode::IllegalInstruction, mode(), $encoding);
 }
}
return read_mtime();

278

Appendix E: IDL Function Details

E.1. implemented? (generated)
Return true if the implementation supports extension.

Return Type
Boolean

Arguments
ExtensionName extension

E.2. implemented_version? (generated)
Return true if the implementation supports extension meeting 'version_requirement'.

Return Type
Boolean

Arguments
ExtensionName extension, String version_requirement

E.3. implemented_csr? (generated)
Return true if csr_addr is an implemented CSR

Return Type
Boolean

Arguments
Bits<12> csr_addr

E.4. direct_csr_lookup (generated)
Return CSR info for a CSR with direct address csr_addr.

If no CSR exists, <return_value>.valid == false

Return Type
Csr

Arguments
Bits<12> csr_addr

E.5. indirect_csr_lookup (generated)
Return CSR info for a CSR with indirect address csr_addr at window slot window_slot.

If no CSR exists, <return_value>.valid == false

Return Type
Csr

Arguments
Bits<MXLEN> csr_addr, Bits<4> window_slot

E.6. csr_hw_read (generated)
Returns the raw value of csr

Return Type
Bits

Arguments
Csr csr

279

E.7. csr_sw_read (generated)
Returns the result of CSR[csr].sw_read(); i.e., the software view of the register

Return Type
Bits

Arguments
Csr csr

E.8. csr_sw_write (generated)
Writes value to csr, applying an WARL transformations first.

Uses the sw_write(…) functions of CSR field definitions.

Return Type
void

Arguments
Csr csr, Bits<MXLEN> value

E.9. unpredictable (builtin)
Indicate that the hart has reached a state that is unpredictable because the RISC-V spec allows multiple behaviors. Generally, this will be a fatal
condition to any emulation, since it is unclear what to do next.

The single argument why is a string describing why the hart entered an unpredictable state.

Return Type
void

Arguments
String why

E.10. unreachable (builtin)
Indicate that the IDL line should be unreachable.

If this function is called, it represents a bug in the IDL code.

Return Type
void

Arguments None

E.11. read_hpm_counter (builtin)
Returns the value of hpmcounterN.

N must be between 3..31.

hpmcounterN must be implemented.

Return Type
Bits

Arguments
Bits<5> n

E.12. hartid (builtin)
Returns the value for mhartid as seen by this hart.

Must obey the rules of the priv spec:

The mhartid CSR is an MXLEN-bit read-only register containing the integer ID of the hardware thread running the
code. This register must be readable in any implementation. Hart IDs might not necessarily be numbered

280

contiguously in a multiprocessor system, but at least one hart must have a hart ID of zero. Hart IDs must be unique
within the execution environment.

Return Type
XReg

Arguments None

E.13. read_mcycle (builtin)
Return the current value of the cycle counter.

Return Type
Bits

Arguments None

E.14. read_mtime (builtin)
Return the current value of the real time device.

Return Type
Bits

Arguments None

E.15. sw_write_mcycle (builtin)
Given a value that software is trying to write into mcycle, perform the write and return the value that will actually be written.

Return Type
Bits

Arguments
Bits<64> value

E.16. cache_block_zero (builtin)
Zero the cache block at the given physical address.

The cache block may be zeroed using 1 or more writes.

A cache-block-sized region is zeroed regardless of whether or not the memory is in a cacheable PMA region.

Return Type
void

Arguments
XReg cache_block_physical_address

E.17. eei_ecall_from_m (builtin)
When TRAP_ON_ECALL_FROM_M is false, this function will be called to emulate the EEI handling of ECALL-from-M.

If TRAP_ON_ECALL_FROM_M is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type
void

Arguments None

E.18. eei_ecall_from_s (builtin)
When TRAP_ON_ECALL_FROM_S is false, this function will be called to emulate the EEI handling of ECALL-from-S.

If TRAP_ON_ECALL_FROM_S is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

281

Return Type
void

Arguments None

E.19. eei_ecall_from_u (builtin)
When TRAP_ON_ECALL_FROM_U is false, this function will be called to emulate the EEI handling of ECALL-from-U.

If TRAP_ON_ECALL_FROM_U is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type
void

Arguments None

E.20. eei_ecall_from_vs (builtin)
When TRAP_ON_ECALL_FROM_VS is false, this function will be called to emulate the EEI handling of ECALL-from-VS.

If TRAP_ON_ECALL_FROM_VS is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type
void

Arguments None

E.21. eei_ebreak (builtin)
When TRAP_ON_EBREAK is false, this function will be called to emulate the EEI handling of EBREAK

If TRAP_ON_EBREAK is true, this function will never be called, and does not need to be provided (if pruning is applied to IDL).

Return Type
void

Arguments None

E.22. memory_model_acquire (builtin)
Perform an acquire; that is, ensure that no subsequent operation in program order appears to an external observer to occur after the operation
calling this function.

Return Type
void

Arguments None

E.23. memory_model_release (builtin)
Perform a release; that is, ensure that no prior store in program order can be observed external to this hart after this function returns.

Return Type
void

Arguments None

E.24. assert (builtin)
Assert that a condition is true. Failure represents an error in the IDL model.

Return Type
void

Arguments
Boolean test, String message

282

E.25. notify_mode_change (builtin)
Called whenever the privilege mode changes. Downstream tools can use this to hook events.

Return Type
void

Arguments
PrivilegeMode new_mode, PrivilegeMode old_mode

E.26. abort_current_instruction (builtin)
Abort the current instruction, and start refetching from $pc.

Return Type
void

Arguments None

E.27. ebreak (builtin)
Raise an Environment Break exception, returning control to the debug environment.

Return Type
void

Arguments None

E.28. prefetch_instruction (builtin)
Hint to prefetch a block containing virtual_address for an upcoming fetch.

Return Type
void

Arguments
XReg virtual_address

E.29. prefetch_read (builtin)
Hint to prefetch a block containing virtual_address for an upcoming load.

Return Type
void

Arguments
XReg virtual_address

E.30. prefetch_write (builtin)
Hint to prefetch a block containing virtual_address for an upcoming store.

Return Type
void

Arguments
XReg virtual_address

E.31. fence (builtin)
Execute a memory ordering fence.(according to the FENCE instruction).

Return Type
void

283

Arguments
Boolean pi, Boolean pr, Boolean po, Boolean pw, Boolean si, Boolean sr, Boolean so,
Boolean sw

E.32. fence_tso (builtin)
Execute a TSO memory ordering fence.(according to the FENCE instruction).

Return Type
void

Arguments None

E.33. ifence (builtin)
Execute a memory ordering instruction fence (according to FENCE.I).

Return Type
void

Arguments None

E.34. pause (builtin)
Pause hart retirement for a implementation-defined period of time, which may be zero.

See Zihintpause for more.

Return Type
void

Arguments None

E.35. pow (generated)
Return value to the power exponent.

Return Type
XReg

Arguments
XReg value, XReg exponent

E.36. maybe_cache_translation (generated)
Given a translation result, potentially cache the result for later use. This function models a TLB fill operation. A valid implementation does nothing.

Return Type
void

Arguments
XReg vaddr, MemoryOperation op, TranslationResult result

E.37. cached_translation (generated)
Possibly returns a cached translation result matching vaddr.

CachedTranslationResult contains a Boolean 'valid' field. If valid, 'result' is a usable translation. Otherwise, the cache lookup failed.

Return Type
CachedTranslationResult

Arguments
XReg vaddr, MemoryOperation op

284

E.38. order_pgtbl_writes_before_vmafence (builtin)
Orders all writes prior to this call in global memory order that affect a page table in the set identified by order_type before any subsequent
sfence.vma/hfence.vma/sinval.vma/hinval.gvma/hinval.vvma in program order.

Performs the ordering function of SFENCE.VMA/HFENCE.[GV]VMA/SFENCE.W.INVAL.

A valid implementation does nothing if address caching is not used.

Return Type
void

Arguments
VmaOrderType order_type

E.39. order_pgtbl_reads_after_vmafence (builtin)
Orders all reads after to this call in global memory order to a page table in the set identified by order_type after any prior
sfence.vma/hfence.vma/sinval.vma/hinval.gvma/hinval.vvma in program order.

Performs the ordering function of SFENCE.VMA/HFENCE.[GV]VMA/SFENCE.INVAL.IR.

A valid implementation does nothing if address caching is not used.

Return Type
void

Arguments
VmaOrderType order_type

E.40. invalidate_translations (generated)
Locally invalidate the cached S-mode/VS-mode/G-stage address translations contained in the set identified by inval_type.

A valid implementation does nothing if address caching is not used.

Return Type
void

Arguments
VmaOrderType inval_type

E.41. read_physical_memory
Read from physical memory.

Return Type
Bits<len>

Arguments
XReg paddr

if (len == 8) {
 return read_physical_memory_8(paddr);
} else if (len == 16) {
 return read_physical_memory_16(paddr);
} else if (len == 32) {
 return read_physical_memory_32(paddr);
} else if (len == 64) {
 return read_physical_memory_64(paddr);
} else {
 assert(false, "Invalid len");
}

E.42. read_physical_memory_8 (builtin)
Read a byte from physical memory.

285

Return Type
Bits⑧

Arguments
XReg paddr

E.43. read_physical_memory_16 (builtin)
Read two bytes from physical memory.

Return Type
Bits⑯

Arguments
XReg paddr

E.44. read_physical_memory_32 (builtin)
Read four bytes from physical memory.

Return Type
Bits

Arguments
XReg paddr

E.45. read_physical_memory_64 (builtin)
Read eight bytes from physical memory.

Return Type
Bits

Arguments
XReg paddr

E.46. write_physical_memory
Write to physical memory.

Return Type
void

Arguments
XReg paddr, Bits<len> value

if (len == 8) {
 write_physical_memory_8(paddr, value);
} else if (len == 16) {
 write_physical_memory_16(paddr, value);
} else if (len == 32) {
 write_physical_memory_32(paddr, value);
} else if (len == 64) {
 write_physical_memory_64(paddr, value);
} else {
 assert(false, "Invalid len");
}

E.47. write_physical_memory_8 (builtin)
Write a byte to physical memory.

Return Type
void

286

Arguments
XReg paddr, Bits<8> value

E.48. write_physical_memory_16 (builtin)
Write two bytes to physical memory.

Return Type
void

Arguments
XReg paddr, Bits<16> value

E.49. write_physical_memory_32 (builtin)
Write four bytes to physical memory.

Return Type
void

Arguments
XReg paddr, Bits<32> value

E.50. write_physical_memory_64 (builtin)
Write eight bytes to physical memory.

Return Type
void

Arguments
XReg paddr, Bits<64> value

E.51. wfi (builtin)
Wait-for-interrupt: hint that the processor should enter a low power state until the next interrupt.

A valid implementation is a no-op.

The model will advance the PC; this function does not need to.

Return Type
void

Arguments None

E.52. pma_applies? (builtin)
Checks if attr is applied to the entire physical address region between [paddr, paddr + len) based on static PMA attributes.

Return Type
Boolean

Arguments
PmaAttribute attr, Bits<PHYS_ADDR_WIDTH> paddr, U32 len

E.53. atomic_check_then_write_32 (builtin)
Atomically:

• Reads 32-bits from paddr

• Compares the read value to compare_value

• Writes write_value to paddr if the comparison was bitwise-equal

returns true if the write occurs, and false otherwise

Preconditions:

287

• paddr will be aligned to 32-bits

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, Bits<32> compare_value, Bits<32>
write_value

E.54. atomic_check_then_write_64 (builtin)
Atomically:

• Reads 64-bits from paddr

• Compares the read value to compare_value

• Writes write_value to paddr if the comparison was bitwise-equal

returns true if the write occurs, and false otherwise

Preconditions:

• paddr will be aligned to 64-bits

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, Bits<64> compare_value, Bits<64>
write_value

E.55. atomically_set_pte_a (builtin)
Atomically:

• Reads the pte_len value at pte_addr

◦ If the read value does not exactly equal pte_value, returns false

• Sets the 'A' bit and writes the result to pte_addr

• return true

Preconditions:

• pte_addr will be aligned to 64-bits

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> pte_addr, Bits<MXLEN> pte_value, U32
pte_len

E.56. atomically_set_pte_a_d (builtin)
Atomically:

• Reads the pte_len value at pte_addr

◦ If the read value does not exactly equal pte_value, returns false

• Sets the 'A' and 'D' bits and writes the result to pte_addr

• return true

Preconditions:

• pte_addr will be aligned to 64-bits

Return Type
Boolean

288

Arguments
Bits<PHYS_ADDR_WIDTH> pte_addr, Bits<MXLEN> pte_value, U32
pte_len

E.57. atomic_read_modify_write_32 (builtin)
Atomically read-modify-write 32-bits starting at phys_address using value and op.

Return the original (unmodified) read value.

All access checks/alignment checks/etc. should be done before calling this function; it’s assumed the RMW is OK to proceed.

Return Type
Bits

Arguments
Bits<PHYS_ADDR_WIDTH> phys_addr, Bits<32> value, AmoOperation
op

E.58. atomic_read_modify_write_64 (builtin)
Atomically read-modify-write 64-bits starting at phys_address using value and op.

Return the original (unmodified) read value.

All access checks/alignment checks/etc. should be done before calling this function; it’s assumed the RMW is OK to proceed.

Return Type
Bits

Arguments
Bits<PHYS_ADDR_WIDTH> phys_addr, Bits<64> value, AmoOperation
op

E.59. set_external_interrupt
Set an external interrupt targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
 CSR[mip].MEIP = 1'b1;
} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
 pending_smode_external_interrupt = true;
} else if ((CSR[misa].H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
 CSR[mip].VSEIP = 1'b1;
} else {
 assert(false, "Invalid target_mode");
}
refresh_pending_interrupts();

E.60. clear_external_interrupt
Clear an external interrupt targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
 CSR[mip].MEIP = 1'b0;

289

} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
 pending_smode_external_interrupt = false;
} else if ((CSR[misa].H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
 CSR[mip].VSEIP = 1'b0;
} else {
 assert(false, "Invalid target_mode");
}
refresh_pending_interrupts();

E.61. set_software_interrupt
Set a software interrupt targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
 CSR[mip].MSIP = 1'b1;
} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
 CSR[mip].SSIP = 1'b1;
} else {
 assert(false, "Invalid target_mode");
}
refresh_pending_interrupts();

E.62. clear_software_interrupt
Clear a software interrupt targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
 CSR[mip].MSIP = 1'b0;
} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
 CSR[mip].SSIP = 1'b0;
} else {
 assert(false, "Invalid target_mode");
}
refresh_pending_interrupts();

E.63. set_timer_interrupt
Set a timer interrupt from the platform targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
 CSR[mip].MTIP = 1'b1;
} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
 CSR[mip].STIP = 1'b1;
} else if ((CSR[misa].H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
 pending_vsmode_timer_interrupt = true;
} else {
 assert(false, "Invalid target_mode");
}

290

refresh_pending_interrupts();

E.64. clear_timer_interrupt
Set a timer interrupt from the platform targeting target_mode

Return Type
void

Arguments
PrivilegeMode target_mode

if (target_mode == PrivilegeMode::M) {
 CSR[mip].MTIP = 1'b0;
} else if ((CSR[misa].S == 1'b1) && (target_mode == PrivilegeMode::S)) {
 CSR[mip].STIP = 1'b0;
} else if ((CSR[misa].H == 1'b1) && (target_mode == PrivilegeMode::VS)) {
 pending_vsmode_timer_interrupt = false;
} else {
 assert(false, "Invalid target_mode");
}
refresh_pending_interrupts();

E.65. refresh_pending_interrupts
refreshes the calculation of a pending interrupt

needs to be called after any state update that could change a pending interrupt. This includes: - CSR[mip] - CSR[mie] - CSR[mstatus].MIE -
CSR[mstatus].SIE - CSR[vsstatus].SIE - CSR[mideleg] - CSR[sideleg] - CSR[hideleg] - CSR[hvip] - CSR[hgeip] - CSR[hgeie] - mode changes

Return Type
void

Arguments None

Bits<MXLEN> pending_ints = CSR[CSR[mip]].sw_read() & $bits(CSR[CSR[mie]]);
if (pending_ints == 0) {
 pending_and_enabled_interrupts = 0;
 return ;
}
Boolean HAS_MIDELEG = implemented_version?(ExtensionName::S, "<= 1.9.1") || (implemented_version?(ExtensionName::S, "> 1.9.1") &&
implemented_version?(ExtensionName::Sm, "> 1.9.1"));
Bits<MXLEN> mmode_enabled_ints = mode() == PrivilegeMode::M) && (CSR[mstatus].MIE == 1'b0 ? 0 : ($bits(CSR[CSR[mie]]) &
(HAS_MIDELEG ? ~$bits(CSR[CSR[mideleg]]) : ~MXLEN'0));
Bits<MXLEN> mmode_pending_and_enabled = pending_ints & mmode_enabled_ints;
if (mmode_pending_and_enabled != 0) {
 pending_and_enabled_interrupts = mmode_pending_and_enabled;
 return ;
}
if (CSR[misa].S == 1'b1) {
 Bits<MXLEN> smode_enabled_ints = mode() == PrivilegeMode::M) || (CSR[mstatus].SIE == 1'b0 ? 0 : $bits(CSR[CSR[mie]]) &
($bits(CSR[CSR[mideleg]]));
 Bits<MXLEN> smode_pending_and_enabled = pending_ints & smode_enabled_ints;
 if (smode_pending_and_enabled != 0) {
 pending_and_enabled_interrupts = smode_pending_and_enabled;
 return ;
 }
}
pending_and_enabled_interrupts = 0;

E.66. highest_priority_interrupt
Given a bitmask of interrupts in the format of MIE/MIP, return the highest priority interrupt code that is set

Interrupt priority is: MEI, MSI, MTI, SEI, SSI, STI, SGEI, VSEI, VSSI, VSTI, LCOFI

Return Type
InterruptCode

291

Arguments
Bits<MXLEN> int_mask

if (int_mask[$bits(InterruptCode::MachineExternal)] == 1'b1) {
 return InterruptCode::MachineExternal;
} else if (int_mask[$bits(InterruptCode::MachineSoftware)] == 1'b1) {
 return InterruptCode::MachineSoftware;
} else if (int_mask[$bits(InterruptCode::MachineTimer)] == 1'b1) {
 return InterruptCode::MachineTimer;
} else if (CSR[misa].S == 1'b1) {
 if (int_mask[$bits(InterruptCode::SupervisorExternal)] == 1'b1) {
 return InterruptCode::SupervisorExternal;
 } else if (int_mask[$bits(InterruptCode::SupervisorSoftware)] == 1'b1) {
 return InterruptCode::SupervisorSoftware;
 } else if (int_mask[$bits(InterruptCode::SupervisorTimer)] == 1'b1) {
 return InterruptCode::SupervisorTimer;
 }
} else if (implemented?(ExtensionName::Sscofpmf)) {
 if (int_mask[$bits(InterruptCode::LocalCounterOverflow)] == 1'b1) {
 return InterruptCode::LocalCounterOverflow;
 }
}
assert(false, "There is no valid interrupt");

E.67. choose_interrupt
Return the highest priority interrupt that is both pending and enabled and the mode it will be taken in

Return Type
InterruptCode, PrivilegeMode

Arguments None

InterruptCode chosen;
Boolean HAS_MIDELEG = implemented_version?(ExtensionName::S, "<= 1.9.1") || (implemented_version?(ExtensionName::S, "> 1.9.1") &&
implemented_version?(ExtensionName::Sm, "> 1.9.1"));
Bits<MXLEN> mmode_pending_and_enabled = pending_and_enabled_interrupts & ~(HAS_MIDELEG ? $bits(CSR[CSR[mideleg]]) : MXLEN'0);
if (mmode_pending_and_enabled != 0) {
 assert((mode() != PrivilegeMode::M) || (CSR[mstatus].MIE == 1'b1), "M-mode interrupts are not enabled");
 chosen = highest_priority_interrupt(mmode_pending_and_enabled);
} else if (CSR[misa].S == 1'b1) {
 Bits<MXLEN> smode_pending_and_enabled = (pending_and_enabled_interrupts & $bits(CSR[CSR[mideleg]]));
 if (smode_pending_and_enabled != 0) {
 assert((mode() == PrivilegeMode::U) || (mode() == PrivilegeMode::VU) || (mode() == PrivilegeMode::VS) || (mode() ==
PrivilegeMode::S) && (CSR[mstatus].SIE == 1'b1), "S-mode interrupt can't be triggered");
 chosen = highest_priority_interrupt(smode_pending_and_enabled);
 }
}
assert($bits(chosen) != 0, "Didn't pick interrupt?");
PrivilegeMode to_mode;
Bits<MXLEN> chosen_mask = (MXLEN'1 << $bits(chosen));
if (((HAS_MIDELEG ? $bits(CSR[CSR[mideleg]]) : MXLEN'0) & chosen_mask) == 0) {
 to_mode = PrivilegeMode::M;
} else {
 if (CSR[misa].S == 1'b1) {
 to_mode = PrivilegeMode::S;
 } else {
 to_mode = PrivilegeMode::U;
 }
}
return chosen, to_mode;

E.68. take_interrupt
Take (adjust CSRs and set PC to handler) the highest priority interrupt that is both pending and enabled

Return Type
void

292

Arguments None

PrivilegeMode to_mode;
InterruptCode code;
(code, to_mode = choose_interrupt());
if (to_mode == PrivilegeMode::M) {
 CSR[mepc].PC = $pc;
 CSR[mstatus].MPP = $bits(mode())[1:0];
 if (CSR[misa].H == 1'b1) {
 if (MXLEN == 64) {
 CSR[mstatus].MPV = $bits(mode())[2];
 } else {
 CSR[mstatush].MPV = $bits(mode())[2];
 }
 CSR[mtval2].VALUE = 0;
 CSR[mtinst].VALUE = 0;
 }
 CSR[mcause].CODE = $bits(code);
 CSR[mcause].INT = 1'b1;
 CSR[mtval].VALUE = 0;
 if (CSR[mtvec].MODE == 0) {
 $pc = {CSR[mtvec].BASE, 2'b00};
 } else if (CSR[mtvec].MODE == 1'b1) {
 $pc = {CSR[mtvec].BASE, 2'b00} + ($bits(code) * 4);
 }
} else if ((CSR[misa].S == 1'b1) && (to_mode == PrivilegeMode::S)) {
 CSR[sepc].PC = $pc;
 CSR[mstatus].SPP = $bits(mode())[0];
 if (CSR[misa].H == 1'b1) {
 CSR[hstatus].SPV = $bits(mode())[2];
 }
 CSR[scause].CODE = $bits(code);
 CSR[scause].INT = 1'b1;
 CSR[stval].VALUE = 0;
 if (CSR[stvec].MODE == 0) {
 $pc = {CSR[stvec].BASE, 2'b00};
 } else if (CSR[stvec].MODE == 1'b1) {
 $pc = {CSR[stvec].BASE, 2'b00} + ($bits(code) * 4);
 }
} else if ((CSR[misa].H == 1'b1) && (to_mode == PrivilegeMode::VS)) {
 CSR[vsepc].PC = $pc;
 CSR[vsstatus].SPP = $bits(mode())[0];
 CSR[vscause].CODE = $bits(code);
 CSR[vscause].INT = 1'b1;
 CSR[vstval].VALUE = 0;
 if (CSR[vstvec].MODE == 0) {
 $pc = {CSR[vstvec].BASE, 2'b00};
 } else if (CSR[vstvec].MODE == 1'b1) {
 $pc = {CSR[vstvec].BASE, 2'b00} + ($bits(code) * 4);
 }
}
set_mode_no_refresh(to_mode);

E.69. fetch_memory_aligned_16
Fetch 16 bits from virtual memory using a known aligned address.

Return Type
Bits⑯

Arguments
XReg virtual_address

TranslationResult result;
if (CSR[misa].S == 1) {
 result = translate(virtual_address, MemoryOperation::Fetch, mode(), virtual_address);
} else {
 result.paddr = virtual_address;
}
access_check(result.paddr, 16, virtual_address, MemoryOperation::Fetch, ExceptionCode::InstructionAccessFault, mode());

293

return read_physical_memory<16>(result.paddr);

E.70. fetch_memory_aligned_32
Fetch 32 bits from virtual memory using a known aligned address.

Return Type
Bits

Arguments
XReg virtual_address

TranslationResult result;
if (CSR[misa].S == 1) {
 result = translate(virtual_address, MemoryOperation::Fetch, mode(), virtual_address);
} else {
 result.paddr = virtual_address;
}
access_check(result.paddr, 32, virtual_address, MemoryOperation::Fetch, ExceptionCode::InstructionAccessFault, mode());
return read_physical_memory<32>(result.paddr);

E.71. power_of_2?
Returns true if value is a power of two, false otherwise

Return Type
Boolean

Arguments
Bits<N> value

return (value != 0) && value & (value - 1 == 0);

E.72. has_virt_mem?
Returns true if some virtual memory translation (Sv*) is supported in the config.

Return Type
Boolean

Arguments None

return implemented?(ExtensionName::Sv32) || implemented?(ExtensionName::Sv39) || implemented?(ExtensionName::Sv48) ||
implemented?(ExtensionName::Sv57);

E.73. max_va_size
Returns the largest possible Virtual Address width in any supported translation mode.

The max VA is determined by physical address size when in M mode or S-mode with Bare translation. Otherwise, max VA is the size of a virtual
address in the largest supported Sv* mode.

Return the largest that applies.

Return Type
Bits⑧

Arguments None

Bits<8> translated_va_size = 0;
if (implemented?(ExtensionName::Sv57)) {
 translated_va_size = 57;
} else if (implemented?(ExtensionName::Sv48)) {
 translated_va_size = 48;
} else if (implemented?(ExtensionName::Sv39)) {
 translated_va_size = 39;

294

} else if (implemented?(ExtensionName::Sv32)) {
 translated_va_size = 32;
}
if (PHYS_ADDR_WIDTH > translated_va_size) {
 if (PHYS_ADDR_WIDTH > MXLEN) {
 return MXLEN;
 } else {
 return PHYS_ADDR_WIDTH;
 }
} else {
 return translated_va_size;
}

E.74. highest_set_bit
Returns the position of the highest (nearest MSB) bit that is '1', or -1 if value is zero.

Return Type
Bits⑧

Arguments
XReg value

for (Bits<8> i = xlen() - 1; i >= 0; i--) {
 if (value[i] == 1) {
 return i;
 }
}
return -'sd1;

E.75. lowest_set_bit
Returns the position of the lowest (nearest LSB) bit that is '1', or XLEN if value is zero.

Return Type
Bits⑧

Arguments
XReg value

for (Bits<8> i = 0; i < xlen(); i++) {
 if (value[i] == 1) {
 return i;
 }
}
return xlen();

E.76. bit_length
Returns the minimum number of bits needed to represent value.

Only works on unsigned values.

The value 0 returns 1.

Return Type
XReg

Arguments
XReg value

for (XReg i = 63; i > 0; i--) {
 if (value[i] == 1) {
 return i;
 }
}
return 1;

295

E.77. count_leading_zeros
Returns the number of leading 0 bits before the most-significant 1 bit of value, or N if value is zero.

Return Type
Bits<bit_length(N)>

Arguments
Bits<N> value

for (U32 i = 0; i < N; i++) {
 if (value[N - 1 - i] == 1) {
 return i;
 }
}
return N;

E.78. sext
Sign extend value starting at first_extended_bit.

Bits [XLEN-1:`first_extended_bit`] of the return value should get the value of bit (first_extended bit - 1).

Return Type
XReg

Arguments
XReg value, XReg first_extended_bit

if (first_extended_bit == MXLEN) {
 return value;
} else {
 Bits<1> sign = value[first_extended_bit - 1];
 for (U32 i = MXLEN - 1; i >= first_extended_bit; i--) {
 value[i] = sign;
 }
 return value;
}

E.79. is_naturally_aligned
Checks if value is naturally aligned to N bits.

Return Type
Boolean

Arguments
XReg value

return true if (N == 8);
XReg Mask = (N / 8) - 1;
return (value & ~Mask) == value;

E.80. in_naturally_aligned_region?
Checks if a length-bit access starting at address lies entirely within an N-bit naturally-aligned region.

Return Type
Boolean

Arguments
XReg address, U32 length

XReg Mask = (N / 8) - 1;
return (address & ~Mask) == ((address + length - 1) & ~Mask);

296

E.81. contains?
Given a region defined by region_start, region_size, determine if a target defined by target_start, target_size is completely contained with the region.

Return Type
Boolean

Arguments
XReg region_start, U32 region_size, XReg target_start, U32 target_size

return target_start >= region_start && (target_start + target_size) <= (region_start + region_size);

E.82. set_fp_flag
Add flag to the sticky flags bits in CSR[fcsr]

Return Type
void

Arguments
FpFlag flag

if (flag == FpFlag::NX) {
 CSR[fcsr].NX = 1;
} else if (flag == FpFlag::UF) {
 CSR[fcsr].UF = 1;
} else if (flag == FpFlag::OF) {
 CSR[fcsr].OF = 1;
} else if (flag == FpFlag::DZ) {
 CSR[fcsr].DZ = 1;
} else if (flag == FpFlag::NV) {
 CSR[fcsr].NV = 1;
}

E.83. rm_to_mode
Convert rm to a RoundingMode.

encoding is the full encoding of the instruction rm comes from.

Will raise an IllegalInstruction exception if rm is a reserved encoding.

Return Type
RoundingMode

Arguments
Bits<3> rm, Bits<32> encoding

if (rm == $bits(RoundingMode::RNE)) {
 return RoundingMode::RNE;
} else if (rm == $bits(RoundingMode::RTZ)) {
 return RoundingMode::RTZ;
} else if (rm == $bits(RoundingMode::RDN)) {
 return RoundingMode::RDN;
} else if (rm == $bits(RoundingMode::RUP)) {
 return RoundingMode::RUP;
} else if (rm == $bits(RoundingMode::RMM)) {
 return RoundingMode::RMM;
} else if (rm == $bits(RoundingMode::DYN)) {
 return $enum(RoundingMode, CSR[fcsr].FRM);
} else {
 raise(ExceptionCode::IllegalInstruction, mode(), encoding);
}

E.84. mark_f_state_dirty
Potentially updates mstatus.FS to the Dirty (3) state, depending on configuration settings.

297

Return Type
void

Arguments None

if (HW_MSTATUS_FS_DIRTY_UPDATE == "precise") {
 CSR[mstatus].FS = 3;
} else if (HW_MSTATUS_FS_DIRTY_UPDATE == "imprecise") {
 unpredictable("The hart may or may not update mstatus.FS now");
}

E.85. nan_box
Produces a properly NaN-boxed floating-point value from a floating-point value of smaller size by adding all 1’s to the upper bits.

Return Type
Bits<TO_SIZE>

Arguments
Bits<FROM_SIZE> from_value

assert(FROM_SIZE < TO_SIZE, "Bad template arguments; FROM_SIZE must be less than TO_SIZE");
return {{TO_SIZE - FROM_SIZE{1'b1}}, from_value};

E.86. check_f_ok
Checks if instructions from the F extension can be executed, and, if not, raise an exception.

Return Type
void

Arguments
Bits<INSTR_ENC_SIZE> encoding

if (MUTABLE_MISA_F && CSR[misa].F == 0) {
 raise(ExceptionCode::IllegalInstruction, mode(), encoding);
}
if (CSR[mstatus].FS == 0) {
 raise(ExceptionCode::IllegalInstruction, mode(), encoding);
}

E.87. is_sp_neg_inf?
Return true if sp_value is negative infinity.

Return Type
Boolean

Arguments
Bits<32> sp_value

return sp_value == SP_NEG_INF;

E.88. is_sp_pos_inf?
Return true if sp_value is positive infinity.

Return Type
Boolean

Arguments
Bits<32> sp_value

298

return sp_value == SP_POS_INF;

E.89. is_sp_neg_norm?
Returns true if sp_value is a negative normal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 1) && (sp_value[30:23] != 0b11111111) && !((sp_value[30:23] == 0b00000000) && sp_value[22:0] != 0);

E.90. is_sp_pos_norm?
Returns true if sp_value is a positive normal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 0) && (sp_value[30:23] != 0b11111111) && !((sp_value[30:23] == 0b00000000) && sp_value[22:0] != 0);

E.91. is_sp_neg_subnorm?
Returns true if sp_value is a negative subnormal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 1) && (sp_value[30:23] == 0) && (sp_value[22:0] != 0);

E.92. is_sp_pos_subnorm?
Returns true if sp_value is a positive subnormal number.

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[31] == 0) && (sp_value[30:23] == 0) && (sp_value[22:0] != 0);

E.93. is_sp_neg_zero?
Returns true if sp_value is negative zero.

Return Type
Boolean

Arguments
Bits<32> sp_value

return sp_value == SP_NEG_ZERO;

299

E.94. is_sp_pos_zero?
Returns true if sp_value is positive zero.

Return Type
Boolean

Arguments
Bits<32> sp_value

return sp_value == SP_POS_ZERO;

E.95. is_sp_nan?
Returns true if sp_value is a NaN (quiet or signaling)

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[30:23] == 0b11111111) && (sp_value[22:0] != 0);

E.96. is_sp_signaling_nan?
Returns true if sp_value is a signaling NaN

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[30:23] == 0b11111111) && (sp_value[22] == 0) && (sp_value[21:0] != 0);

E.97. is_sp_quiet_nan?
Returns true if sp_value is a quiet NaN

Return Type
Boolean

Arguments
Bits<32> sp_value

return (sp_value[30:23] == 0b11111111) && (sp_value[22] == 1);

E.98. softfloat_shiftRightJam32
Shifts a right by the number of bits given in dist, which must not be zero. If any nonzero bits are shifted off, they are "jammed" into the least-
significant bit of the shifted value by setting the least-significant bit to 1. This shifted-and-jammed value is returned. The value of dist can be
arbitrarily large. In particular, if dist is greater than 32, the result will be either 0 or 1, depending on whether a is zero or nonzero.

Return Type
Bits

Arguments
Bits<32> a, Bits<32> dist

return (dist < 31) ? a >> dist | (a << (-dist & 31 != 0) ? 1 : 0) : ((a != 0) ? 1 : 0);

300

E.99. softfloat_shiftRightJam64
Shifts a right by the number of bits given in dist, which must not be zero. If any nonzero bits are shifted off, they are "jammed" into the least-
significant bit of the shifted value by setting the least-significant bit to 1. This shifted-and-jammed value is returned.

The value of 'dist' can be arbitrarily large. In particular, if dist is greater than 64, the result will be either 0 or 1, depending on whether a is zero or
nonzero.

Return Type
Bits

Arguments
Bits<64> a, Bits<32> dist

return (dist < 63) ? a >> dist | (a << (-dist & 63 != 0) ? 1 : 0) : ((a != 0) ? 1 : 0);

E.100. softfloat_roundToI32
Round to signed 32-bit integer, using rounding_mode

Return Type
Bits

Arguments
Bits<1> sign, Bits<64> sig, RoundingMode roundingMode

Bits<16> roundIncrement = 0x800;
if ((roundingMode != RoundingMode::RMM) && (roundingMode != RoundingMode::RNE)) {
 roundIncrement = 0;
 if (sign == 1 ? (roundingMode == RoundingMode::RDN) : (roundingMode == RoundingMode::RUP)) {
 roundIncrement = 0xFFF;
 }
}
Bits<16> roundBits = sig & 0xFFF;
sig = sig + roundIncrement;
if ((sig & 0xFFFFF00000000000) != 0) {
 set_fp_flag(FpFlag::NV);
 return sign == 1 ? WORD_NEG_OVERFLOW : WORD_POS_OVERFLOW;
}
Bits<32> sig32 = sig >> 12;
if ((roundBits == 0x800 && (roundingMode == RoundingMode::RNE))) {
 sig32 = sig32 & ~32'b1;
}
Bits<32> z = (sign == 1) ? -sig32 : sig32;
if ((z != 0) && $signed(z) < 's0) != (sign == 1) {
 set_fp_flag(FpFlag::NV);
 return sign == 1 ? WORD_NEG_OVERFLOW : WORD_POS_OVERFLOW;
}
if (roundBits != 0) {
 set_fp_flag(FpFlag::NX);
}
return z;

E.101. softfloat_roundToUI32
Round to unsigned 32-bit integer, using rounding_mode

Return Type
Bits

Arguments
Bits<1> sign, Bits<64> sig, RoundingMode roundingMode

Bits<16> roundIncrement = 0x800;
if ((roundingMode != RoundingMode::RMM) && (roundingMode != RoundingMode::RNE)) {
 roundIncrement = 0;
 if (sign == 1) {
 if (sig == 0) {

301

 return 0;
 }
 if (roundingMode == RoundingMode::RDN) {
 set_fp_flag(FpFlag::NV);
 }
 } else {
 if (roundingMode == RoundingMode::RUP) {
 roundIncrement = 0xFFF;
 }
 }
}
Bits<16> roundBits = sig & 0xFFF;
sig = sig + roundIncrement;
if ((sig & 0xFFFFF00000000000) != 0) {
 set_fp_flag(FpFlag::NV);
 return sign == 1 ? UI32_NEG_OVERFLOW : UI32_POS_OVERFLOW;
}
Bits<32> z = sig >> 12;
if ((roundBits == 0x800 && (roundingMode == RoundingMode::RNE))) {
 z = z & ~32'b1;
}
if ((z != 0) && (sign == 1)) {
 set_fp_flag(FpFlag::NV);
 return sign == 1 ? UI32_NEG_OVERFLOW : UI32_POS_OVERFLOW;
}
if (roundBits != 0) {
 set_fp_flag(FpFlag::NX);
}
return z;

E.102. packToF32UI
Pack components into a 32-bit value

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig

return {sign, exp, sig};

E.103. packToF16UI
Pack components into a 16-bit value

Return Type
Bits

Arguments
Bits<1> sign, Bits<5> exp, Bits<10> sig

return {sign, exp, sig};

E.104. softfloat_normSubnormalF16Sig
normalize subnormal half-precision value

Return Type
Bits<5>, Bits⑩

Arguments
Bits<16> hp_value

Bits<8> shift_dist = count_leading_zeros<16>(hp_value);
return 1 - shift_dist, hp_value << shift_dist;

302

E.105. softfloat_roundPackToF32
Round FP value according to mdode and then pack it in IEEE format.

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

Bits<8> roundIncrement = 0x40;
if ((mode != RoundingMode::RNE) && (mode != RoundingMode::RMM)) {
 roundIncrement = (mode == sign != 0) ? RoundingMode::RDN : RoundingMode::RUP ? 0x7F : 0;
}
Bits<8> roundBits = sig & 0x7f;
if (0xFD <= exp) {
 if ($signed(exp) < 's0) {
 Boolean isTiny = ($signed(exp) < -8's1) || (sig + roundIncrement < 0x80000000);
 sig = softfloat_shiftRightJam32(sig, -exp);
 exp = 0;
 roundBits = sig & 0x7F;
 if (isTiny && (roundBits != 0)) {
 set_fp_flag(FpFlag::UF);
 }
 } else if ('shFD < $signed(exp) || (0x80000000 <= sig + roundIncrement)) {
 set_fp_flag(FpFlag::OF);
 set_fp_flag(FpFlag::NX);
 return packToF32UI(sign, 0xFF, 0) - roundIncrement == 0) ? 1 : 0); } } sig = (sig + roundIncrement);
if (sig == 0) {
 exp = 0;
}
return packToF32UI(sign, exp, sig);

E.106. softfloat_normRoundPackToF32
Normalize, round, and pack into a 32-bit floating point value

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

Bits<8> shiftDist = count_leading_zeros<32>(sig) - 1;
exp = exp - shiftDist;
if ((7 <= shiftDist) && (exp < 0xFD)) {
 return packToF32UI(sign, (sig != 0) ? exp : 0, sig << (shiftDist - 7));
} else {
 return softfloat_roundPackToF32(sign, exp, sig << shiftDist, mode);
}

E.107. signF32UI
Extract sign-bit of a 32-bit floating point number

Return Type
Bits①

Arguments
Bits<32> a

return a[31];

E.108. expF32UI
Extract exponent of a 32-bit floating point number

303

Return Type
Bits⑧

Arguments
Bits<32> a

return a[30:23];

E.109. fracF32UI
Extract significand of a 32-bit floating point number

Return Type
Bits

Arguments
Bits<32> a

return a[22:0];

E.110. returnNonSignalingNaN
Returns a non-signalling NaN version of the floating-point number Does not modify the input

Return Type
U32

Arguments
U32 a

U32 a_copy = a;
a_copy[22] = 1'b1;
return a_copy;

E.111. returnMag
Returns magnitude of the given number Does not modify the input

Return Type
U32

Arguments
U32 a

U32 a_copy = a;
a_copy[31] = 1'b0;
return a_copy;

E.112. returnLargerMag
Returns the larger number between a and b by magnitude If either number is signaling NaN then that is made quiet

Return Type
U32

Arguments
U32 a, U32 b

U32 mag_a = returnMag(a);
U32 mag_b = returnMag(b);
U32 nonsig_a = returnNonSignalingNaN(a);
U32 nonsig_b = returnNonSignalingNaN(b);
if (mag_a < mag_b) {

304

 return nonsig_b;
}
if (mag_b < mag_a) {
 return nonsig_a;
}
return (nonsig_a < nonsig_b) ? nonsig_a : nonsig_b;

E.113. softfloat_propagateNaNF32UI
Interpreting 'a' and 'b' as the bit patterns of two 32-bit floating- | point values, at least one of which is a NaN, returns the bit pattern of | the
combined NaN result. If either 'a' or 'b' has the pattern of a | signaling NaN, the invalid exception is raised.

Return Type
U32

Arguments
U32 a, U32 b

Boolean isSigNaN_a = is_sp_signaling_nan?(a);
Boolean isSigNaN_b = is_sp_signaling_nan?(b);
if (isSigNaN_a || isSigNaN_b) {
 set_fp_flag(FpFlag::NV);
}
return SP_CANONICAL_NAN;

E.114. softfloat_addMagsF32
Returns sum of the magnitudes of 2 floating point numbers

Return Type
U32

Arguments
U32 a, U32 b, RoundingMode mode

Bits<8> expA = expF32UI(a);
Bits<23> sigA = fracF32UI(a);
Bits<8> expB = expF32UI(b);
Bits<23> sigB = fracF32UI(b);
U32 sigZ;
U32 z;
Bits<1> signZ;
Bits<8> expZ;
Bits<8> expDiff = expA - expB;
if (expDiff == 8'd0) {
 if (expA == 8'd0) {
 z = a + b;
 return z;
 }
 if (expA == 8'hFF) {
 if ((sigA != 8'd0) || (sigB != 8'd0)) {
 return softfloat_propagateNaNF32UI(a, b);
 }
 return a;
 }
 signZ = signF32UI(a);
 expZ = expA;
 sigZ = 32'h01000000 + sigA + sigB;
 if (sigZ & 0x1) == 0) && (expZ < 8'hFE {
 sigZ = sigZ >> 1;
 return (32'h0 + (signZ << 31) + (expZ << 23) + sigZ);
 }
 sigZ = sigZ << 6;
} else {
 signZ = signF32UI(a);
 U32 sigA_32 = 32'h0 + (sigA << 6);
 U32 sigB_32 = 32'h0 + (sigA << 6);
 if (expDiff < 0) {
 if (expB == 8'hFF) {
 if (sigB != 0) {

305

 return softfloat_propagateNaNF32UI(a, b);
 }
 return packToF32UI(signZ, 8'hFF, 23'h0);
 }
 expZ = expB;
 sigA_32 = (expA == 0) ? 2 * sigA_32 : (sigA_32 + 0x20000000);
 sigA_32 = softfloat_shiftRightJam32(sigA_32, (32'h0 - expDiff));
 } else {
 if (expA == 8'hFF) {
 if (sigA != 0) {
 return softfloat_propagateNaNF32UI(a, b);
 }
 return a;
 }
 expZ = expA;
 sigB_32 = (expB == 0) ? 2 * sigB_32 : (sigB_32 + 0x20000000);
 sigB_32 = softfloat_shiftRightJam32(sigB_32, (32'h0 + expDiff));
 }
 U32 sigZ = 0x20000000 + sigA + sigB;
 if (sigZ < 0x40000000) {
 expZ = expZ - 1;
 sigZ = sigZ << 1;
 }
}
return softfloat_roundPackToF32(signZ, expZ, sigZ[22:0], mode);

E.115. softfloat_subMagsF32
Returns difference of the magnitudes of 2 floating point numbers

Return Type
U32

Arguments
U32 a, U32 b, RoundingMode mode

Bits<8> expA = expF32UI(a);
Bits<23> sigA = fracF32UI(a);
Bits<8> expB = expF32UI(b);
Bits<23> sigB = fracF32UI(b);
U32 sigZ;
U32 z;
Bits<1> signZ;
Bits<8> expZ;
U32 sigDiff;
U32 sigX;
U32 sigY;
U32 sigA_32;
U32 sigB_32;
Bits<8> shiftDist;
Bits<8> expDiff = expA - expB;
if (expDiff == 8'd0) {
 if (expA == 8'hFF) {
 if ((sigA != 8'd0) || (sigB != 8'd0)) {
 return softfloat_propagateNaNF32UI(a, b);
 }
 return a;
 }
 sigDiff = sigA - sigB;
 if (sigDiff == 0) {
 return packToF32UI(((mode == RoundingMode::RDN) ? 1 : 0), 0, 0);
 }
 if (expA != 0) {
 expA = expA - 1;
 }
 signZ = signF32UI(a);
 if (sigDiff < 0) {
 signZ = ~signZ;
 sigDiff = -32'sh1 * sigDiff;
 }
 shiftDist = count_leading_zeros<32>(sigDiff) - 8;
 expZ = expA - shiftDist;

306

 if (expZ < 0) {
 shiftDist = expA;
 expZ = 0;
 }
 return packToF32UI(signZ, expZ, sigDiff << shiftDist);
} else {
 signZ = signF32UI(a);
 sigA_32 = 32'h0 + (sigA << 7);
 sigB_32 = 32'h0 + (sigB << 7);
 if (expDiff < 0) {
 signZ = ~signZ;
 if (expB == 0xFF) {
 if (sigB_32 != 0) {
 return softfloat_propagateNaNF32UI(a, b);
 }
 return packToF32UI(signZ, expB, 0);
 }
 expZ = expB - 1;
 sigX = sigB_32 | 0x40000000;
 sigY = sigA_32 + ((expA != 0) ? 0x40000000 : sigA_32);
 expDiff = -expDiff;
 } else {
 if (expA == 0xFF) {
 if (sigA_32 != 0) {
 return softfloat_propagateNaNF32UI(a, b);
 }
 return a;
 }
 expZ = expA - 1;
 sigX = sigA_32 | 0x40000000;
 sigY = sigB_32 + ((expB != 0) ? 0x40000000 : sigB_32);
 }
 return softfloat_normRoundPackToF32(signZ, expZ, sigX - softfloat_shiftRightJam32(sigY, expDiff), mode);
}

E.116. f32_add
Returns sum of 2 floating point numbers

Return Type
U32

Arguments
U32 a, U32 b, RoundingMode mode

U32 a_xor_b = a ^ b;
if (signF32UI(a_xor_b) == 1) {
 return softfloat_subMagsF32(a, b, mode);
} else {
 return softfloat_addMagsF32(a, b, mode);
}

E.117. f32_sub
Returns difference of 2 floating point numbers

Return Type
U32

Arguments
U32 a, U32 b, RoundingMode mode

U32 a_xor_b = a ^ b;
if (signF32UI(a_xor_b) == 1) {
 return softfloat_addMagsF32(a, b, mode);
} else {
 return softfloat_subMagsF32(a, b, mode);
}

307

E.118. i32_to_f32
Converts 32-bit signed integer to 32-bit floating point number

Return Type
U32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = a[31];
if ((a & 0x7FFFFFFF) == 0) {
 return (sign == 1) ? packToF32UI(1, 0x9E, 0) : packToF32UI(0, 0, 0);
}
U32 magnitude_of_A = returnMag(a);
return softfloat_normRoundPackToF32(sign, 0x9C, magnitude_of_A, mode);

E.119. ui32_to_f32
Converts 32-bit unsigned integer to 32-bit floating point number

Return Type
U32

Arguments
U32 a, RoundingMode mode

if (a == 0) {
 return a;
}
if (a[31] == 1) {
 return softfloat_roundPackToF32(0, 0x9D, a >> 1 | (a & 1), mode);
} else {
 return softfloat_normRoundPackToF32(0, 0x9C, a, mode);
}

E.120. f32_to_i32
Converts 32-bit floating point number to a signed 32-bit integer

Return Type
U32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = signF32UI(a);
Bits<8> exp = expF32UI(a);
Bits<23> sig = fracF32UI(a);
Bits<8> shiftDist;
U64 sig64;
if ((exp == 8'hFF) && (sig != 0)) {
 sign = 0;
 set_fp_flag(FpFlag::NV);
 return I32_NAN;
}
if (exp != 0) {
 sig = sig | 32'h00800000;
}
sig64 = sig `<< 32;
shiftDist = 8'hAA - exp;
if (shiftDist > 0) {
 sig64 = softfloat_shiftRightJam64(sig64, shiftDist);
}
return softfloat_roundToI32(sign, sig64, mode);

308

E.121. f32_to_ui32
Converts 32-bit floating point number to an unsigned 32-bit integer

Return Type
U32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = signF32UI(a);
Bits<8> exp = expF32UI(a);
Bits<23> sig = fracF32UI(a);
Bits<8> shiftDist;
U64 sig64;
if ((exp == 8'hFF) && (sig != 0)) {
 sign = 0;
 set_fp_flag(FpFlag::NV);
 return UI32_NAN;
}
if (exp != 0) {
 sig = sig | 32'h00800000;
}
sig64 = sig `<< 32;
shiftDist = 8'hAA - exp;
if (shiftDist > 0) {
 sig64 = softfloat_shiftRightJam64(sig64, shiftDist);
}
return softfloat_roundToUI32(sign, sig64, mode);

E.122. softfloat_roundPackToF32_no_flag
Round FP value according to mdode and then pack it in IEEE format. No flags to be set

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

Bits<8> roundIncrement = 0x40;
if ((mode != RoundingMode::RNE) && (mode != RoundingMode::RMM)) {
 roundIncrement = (mode == sign != 0) ? RoundingMode::RDN : RoundingMode::RUP ? 0x7F : 0;
}
Bits<8> roundBits = sig & 0x7f;
if (0xFD <= exp) {
 if ($signed(exp) < 's0) {
 Boolean isTiny = ($signed(exp) < -8's1) || (sig + roundIncrement < 0x80000000);
 sig = softfloat_shiftRightJam32(sig, -exp);
 exp = 0;
 roundBits = sig & 0x7F;
 } else if ('shFD < $signed(exp) || (0x80000000 <= sig + roundIncrement)) {
 return packToF32UI(sign, 0xFF, 0) - roundIncrement == 0) ? 1 : 0); } } sig = (sig + roundIncrement);
if (sig == 0) {
 exp = 0;
}
return packToF32UI(sign, exp, sig);

E.123. softfloat_normRoundPackToF32_no_flag
Normalize, round, and pack into a 32-bit floating point value No flags to be set

Return Type
Bits

Arguments
Bits<1> sign, Bits<8> exp, Bits<23> sig, RoundingMode mode

309

Bits<8> shiftDist = count_leading_zeros<32>(sig) - 1;
exp = exp - shiftDist;
if ((7 <= shiftDist) && (exp < 0xFD)) {
 return packToF32UI(sign, (sig != 0) ? exp : 0, sig << (shiftDist - 7));
} else {
 return softfloat_roundPackToF32_no_flag(sign, exp, sig << shiftDist, mode);
}

E.124. i32_to_f32_no_flag
Converts 32-bit signed integer to 32-bit floating point number No flags to be set

Return Type
U32

Arguments
U32 a, RoundingMode mode

Bits<1> sign = a[31];
if ((a & 0x7FFFFFFF) == 0) {
 return (sign == 1) ? packToF32UI(1, 0x9E, 0) : packToF32UI(0, 0, 0);
}
U32 magnitude_of_A = returnMag(a);
return softfloat_normRoundPackToF32_no_flag(sign, 0x9C, magnitude_of_A, mode);

E.125. softfloat_roundToI32_no_flag
Round to signed 32-bit integer, using rounding_mode No flag to be set

Return Type
Bits

Arguments
Bits<1> sign, Bits<64> sig, RoundingMode roundingMode

Bits<16> roundIncrement = 0x800;
if ((roundingMode != RoundingMode::RMM) && (roundingMode != RoundingMode::RNE)) {
 roundIncrement = 0;
 if (sign == 1 ? (roundingMode == RoundingMode::RDN) : (roundingMode == RoundingMode::RUP)) {
 roundIncrement = 0xFFF;
 }
}
Bits<16> roundBits = sig & 0xFFF;
sig = sig + roundIncrement;
if ((sig & 0xFFFFF00000000000) != 0) {
 return sign == 1 ? WORD_NEG_OVERFLOW : WORD_POS_OVERFLOW;
}
Bits<32> sig32 = sig >> 12;
if ((roundBits == 0x800 && (roundingMode == RoundingMode::RNE))) {
 sig32 = sig32 & ~32'b1;
}
Bits<32> z = (sign == 1) ? -sig32 : sig32;
if ((z != 0) && $signed(z) < 's0) != (sign == 1) {
 return sign == 1 ? WORD_NEG_OVERFLOW : WORD_POS_OVERFLOW;
}
return z;

E.126. f32_to_i32_no_flag
Converts 32-bit floating point number to a signed 32-bit integer No flags to be set

Return Type
U32

Arguments
U32 a, RoundingMode mode

310

Bits<1> sign = signF32UI(a);
Bits<8> exp = expF32UI(a);
Bits<23> sig = fracF32UI(a);
Bits<8> shiftDist;
U64 sig64;
if ((exp == 8'hFF) && (sig != 0)) {
 sign = 0;
 return I32_NAN;
}
if (exp != 0) {
 sig = sig | 32'h00800000;
}
sig64 = sig `<< 32;
shiftDist = 8'hAA - exp;
if (shiftDist > 0) {
 sig64 = softfloat_shiftRightJam64(sig64, shiftDist);
}
return softfloat_roundToI32_no_flag(sign, sig64, mode);

E.127. round_f32_to_integral
Rounds 32-bit floating point number to a signed 32-bit integer. This 32-bit integer is represented as a floating point number and returned.

Return Type
U32

Arguments
U32 a, RoundingMode mode

if ((is_sp_neg_inf?(a)) || (is_sp_pos_inf?(a)) || (is_sp_pos_zero?(a)) || (is_sp_neg_zero?(a))) {
 return a;
} else if (is_sp_signaling_nan?(a)) {
 set_fp_flag(FpFlag::NV);
 return a;
}
U32 intermediate;
intermediate = f32_to_i32_no_flag(a, mode);
return i32_to_f32_no_flag(intermediate, mode);

E.128. vector_state
Get the current vector state from CSRs

Return Type
VectorState

Arguments None

VectorState state;
state.log2_sew = 3 + CSR[vtype].VSEW;
state.sew = 7'b1 << state.log2_sew;
Bits<3> vlmul = CSR[vtype].VLMUL;
state.lmul_type = CSR[vtype].VLMUL[2] == 1'b1 ? VectorLmulType::Divide : VectorLmulType::Multiply;
state.log2_lmul = CSR[vtype].VLMUL[1:0];
if (vlmul == 3'b101) {
 state.log2_lmul = 3;
} else if (vlmul == 3'b110) {
 state.log2_lmul = 2;
} else if (vlmul == 3'b111) {
 state.log2_lmul = 1;
} else if (vlmul == 3'b100) {
 unpredictable("VLMUL value 0b100 is reserved");
}
return state;

E.129. mode
Returns the current active privilege mode.

311

Return Type
PrivilegeMode

Arguments None

if ((!implemented?(ExtensionName::S)) && (!implemented?(ExtensionName::U)) && (!implemented?(ExtensionName::H))) {
 return PrivilegeMode::M;
} else {
 return current_mode;
}

E.130. set_mode_no_refresh
Set the current privilege mode to new_mode, but don’t refresh interrupts

Return Type
void

Arguments
PrivilegeMode new_mode

if (new_mode != current_mode) {
 notify_mode_change(new_mode, current_mode);
 current_mode = new_mode;
}

E.131. set_mode
Set the current privilege mode to new_mode

Return Type
void

Arguments
PrivilegeMode new_mode

if (new_mode != current_mode) {
 notify_mode_change(new_mode, current_mode);
 current_mode = new_mode;
 refresh_pending_interrupts();
}

E.132. compatible_mode?
Returns true if target_mode is more privileged than actual_mode.

Return Type
Boolean

Arguments
PrivilegeMode target_mode, PrivilegeMode actual_mode

if (target_mode == PrivilegeMode::M) {
 return actual_mode == PrivilegeMode::M;
} else if (target_mode == PrivilegeMode::S) {
 return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S);
} else if (target_mode == PrivilegeMode::U) {
 return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S) || (actual_mode == PrivilegeMode::U);
} else if (target_mode == PrivilegeMode::VS) {
 return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S) || (actual_mode == PrivilegeMode::VS);
} else if (target_mode == PrivilegeMode::VU) {
 return (actual_mode == PrivilegeMode::M) || (actual_mode == PrivilegeMode::S) || (actual_mode == PrivilegeMode::VS) ||
(actual_mode == PrivilegeMode::VU);
}

312

E.133. exception_handling_mode
Returns the target privilege mode that will handle synchronous exception exception_code

Return Type
PrivilegeMode

Arguments
ExceptionCode exception_code

if (mode() == PrivilegeMode::M) {
 return PrivilegeMode::M;
} else if (implemented?(ExtensionName::S) && mode() == PrivilegeMode::HS) || (mode() == PrivilegeMode::U) {
 if (($bits(CSR[CSR[medeleg]]) & (MXLEN'1 << $bits(exception_code))) != 0) {
 return PrivilegeMode::HS;
 } else {
 return PrivilegeMode::M;
 }
} else {
 assert(implemented?(ExtensionName::H) && mode() == PrivilegeMode::VS) || (mode() == PrivilegeMode::VU, "Unexpected mode");
 if (($bits(CSR[CSR[medeleg]]) & (MXLEN'1 << $bits(exception_code))) != 0) {
 if (($bits(CSR[CSR[hedeleg]]) & (MXLEN'1 << $bits(exception_code))) != 0) {
 return PrivilegeMode::VS;
 } else {
 return PrivilegeMode::HS;
 }
 } else {
 return PrivilegeMode::M;
 }
}

E.134. creg2reg
Maps a C register index (e.g., rs1' in the specification) to an X register index. From the specification:

Table 16. Registers specified by the three-bit rs1′, rs2′, and rd′ fields of the CIW, CL, CS, CA, and CB formats.

RVC Register Number

Integer Register Number

Integer Register ABI Name

Floating-Point Register Number

Floating-Point Register ABI Name

000 001 010 011 100 101 110 111

x8 x9 x10 x11 x12 x13 x14 x15

s0 s1 a0 a1 a2 a3 a4 a5

f8 f9 f10 f11 f12 f13 f14 f15

fs0 fs1 fa0 fa1 fa2 fa3 fa4 fa5

Return Type
Bits⑤

Arguments
Bits<3> creg_idx

return {2'b01, creg_idx};

E.135. unimplemented_csr
Either raises an IllegalInstruction exception or enters unpredictable state, depending on the setting of the TRAP_ON_UNIMPLEMENTED_CSR
parameter.

Return Type
void

Arguments
Bits<INSTR_ENC_SIZE> encoding

if (TRAP_ON_UNIMPLEMENTED_CSR) {
 raise(ExceptionCode::IllegalInstruction, mode(), encoding);
} else {
 unpredictable("Accessing an unimplmented CSR");

313

}

E.136. mtval_readonly?
Returns whether or not CSR[mtval] is read-only based on implementation options

Return Type
Boolean

Arguments None

return !(REPORT_VA_IN_MTVAL_ON_BREAKPOINT || REPORT_VA_IN_MTVAL_ON_LOAD_MISALIGNED || REPORT_VA_IN_MTVAL_ON_STORE_AMO_MISALIGNED ||
REPORT_VA_IN_MTVAL_ON_INSTRUCTION_MISALIGNED || REPORT_VA_IN_MTVAL_ON_LOAD_ACCESS_FAULT ||
REPORT_VA_IN_MTVAL_ON_STORE_AMO_ACCESS_FAULT || REPORT_VA_IN_MTVAL_ON_INSTRUCTION_ACCESS_FAULT ||
REPORT_VA_IN_MTVAL_ON_LOAD_PAGE_FAULT || REPORT_VA_IN_MTVAL_ON_STORE_AMO_PAGE_FAULT || REPORT_VA_IN_MTVAL_ON_INSTRUCTION_PAGE_FAULT
|| REPORT_ENCODING_IN_MTVAL_ON_ILLEGAL_INSTRUCTION || REPORT_CAUSE_IN_MTVAL_ON_SHADOW_STACK_SOFTWARE_CHECK ||
REPORT_CAUSE_IN_MTVAL_ON_LANDING_PAD_SOFTWARE_CHECK);

E.137. stval_readonly?
Returns whether or not CSR[stval] is read-only based on implementation options

Return Type
Boolean

Arguments None

if (implemented?(ExtensionName::S)) {
 return !(REPORT_VA_IN_STVAL_ON_BREAKPOINT || REPORT_VA_IN_STVAL_ON_LOAD_MISALIGNED || REPORT_VA_IN_STVAL_ON_STORE_AMO_MISALIGNED
|| REPORT_VA_IN_STVAL_ON_INSTRUCTION_MISALIGNED || REPORT_VA_IN_STVAL_ON_LOAD_ACCESS_FAULT ||
REPORT_VA_IN_STVAL_ON_STORE_AMO_ACCESS_FAULT || REPORT_VA_IN_STVAL_ON_INSTRUCTION_ACCESS_FAULT ||
REPORT_VA_IN_STVAL_ON_LOAD_PAGE_FAULT || REPORT_VA_IN_STVAL_ON_STORE_AMO_PAGE_FAULT || REPORT_VA_IN_STVAL_ON_INSTRUCTION_PAGE_FAULT
|| REPORT_ENCODING_IN_STVAL_ON_ILLEGAL_INSTRUCTION || REPORT_CAUSE_IN_STVAL_ON_SHADOW_STACK_SOFTWARE_CHECK ||
REPORT_CAUSE_IN_STVAL_ON_LANDING_PAD_SOFTWARE_CHECK);
} else {
 return true;
}

E.138. vstval_readonly?
Returns whether or not CSR[vstval] is read-only based on implementation options

Return Type
Boolean

Arguments None

if (implemented?(ExtensionName::H)) {
 return !(REPORT_VA_IN_VSTVAL_ON_BREAKPOINT || REPORT_VA_IN_VSTVAL_ON_LOAD_MISALIGNED ||
REPORT_VA_IN_VSTVAL_ON_STORE_AMO_MISALIGNED || REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_MISALIGNED ||
REPORT_VA_IN_VSTVAL_ON_LOAD_ACCESS_FAULT || REPORT_VA_IN_VSTVAL_ON_STORE_AMO_ACCESS_FAULT ||
REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_ACCESS_FAULT || REPORT_VA_IN_VSTVAL_ON_LOAD_PAGE_FAULT ||
REPORT_VA_IN_VSTVAL_ON_STORE_AMO_PAGE_FAULT || REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_PAGE_FAULT ||
REPORT_ENCODING_IN_VSTVAL_ON_ILLEGAL_INSTRUCTION || REPORT_CAUSE_IN_VSTVAL_ON_SHADOW_STACK_SOFTWARE_CHECK ||
REPORT_CAUSE_IN_VSTVAL_ON_LANDING_PAD_SOFTWARE_CHECK);
} else {
 return true;
}

E.139. mtval_for
Given an exception code and a legal non-zero value for mtval, returns the value to be written in mtval considering implementation options

Return Type
XReg

314

Arguments
ExceptionCode exception_code, XReg tval

if (exception_code == ExceptionCode::Breakpoint) {
 return REPORT_VA_IN_MTVAL_ON_BREAKPOINT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAddressMisaligned) {
 return REPORT_VA_IN_MTVAL_ON_LOAD_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAddressMisaligned) {
 return REPORT_VA_IN_MTVAL_ON_STORE_AMO_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAddressMisaligned) {
 return REPORT_VA_IN_MTVAL_ON_INSTRUCTION_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAccessFault) {
 return REPORT_VA_IN_MTVAL_ON_LOAD_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAccessFault) {
 return REPORT_VA_IN_MTVAL_ON_STORE_AMO_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAccessFault) {
 return REPORT_VA_IN_MTVAL_ON_INSTRUCTION_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadPageFault) {
 return REPORT_VA_IN_MTVAL_ON_LOAD_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoPageFault) {
 return REPORT_VA_IN_MTVAL_ON_STORE_AMO_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionPageFault) {
 return REPORT_VA_IN_MTVAL_ON_INSTRUCTION_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::IllegalInstruction) {
 return REPORT_ENCODING_IN_MTVAL_ON_ILLEGAL_INSTRUCTION ? tval : 0;
} else if (exception_code == ExceptionCode::SoftwareCheck) {
 return tval;
} else {
 return 0;
}

E.140. stval_for
Given an exception code and a legal non-zero value for stval, returns the value to be written in stval considering implementation options

Return Type
XReg

Arguments
ExceptionCode exception_code, XReg tval

if (exception_code == ExceptionCode::Breakpoint) {
 return REPORT_VA_IN_STVAL_ON_BREAKPOINT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAddressMisaligned) {
 return REPORT_VA_IN_STVAL_ON_LOAD_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAddressMisaligned) {
 return REPORT_VA_IN_STVAL_ON_STORE_AMO_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAddressMisaligned) {
 return REPORT_VA_IN_STVAL_ON_INSTRUCTION_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAccessFault) {
 return REPORT_VA_IN_STVAL_ON_LOAD_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAccessFault) {
 return REPORT_VA_IN_STVAL_ON_STORE_AMO_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAccessFault) {
 return REPORT_VA_IN_STVAL_ON_INSTRUCTION_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadPageFault) {
 return REPORT_VA_IN_STVAL_ON_LOAD_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoPageFault) {
 return REPORT_VA_IN_STVAL_ON_STORE_AMO_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionPageFault) {
 return REPORT_VA_IN_STVAL_ON_INSTRUCTION_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::IllegalInstruction) {
 return REPORT_ENCODING_IN_STVAL_ON_ILLEGAL_INSTRUCTION ? tval : 0;
} else if (exception_code == ExceptionCode::SoftwareCheck) {
 return tval;
} else {
 return 0;
}

315

E.141. vstval_for
Given an exception code and a legal non-zero value for vstval, returns the value to be written in vstval considering implementation options

Return Type
XReg

Arguments
ExceptionCode exception_code, XReg tval

if (exception_code == ExceptionCode::Breakpoint) {
 return REPORT_VA_IN_VSTVAL_ON_BREAKPOINT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAddressMisaligned) {
 return REPORT_VA_IN_VSTVAL_ON_LOAD_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAddressMisaligned) {
 return REPORT_VA_IN_VSTVAL_ON_STORE_AMO_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAddressMisaligned) {
 return REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_MISALIGNED ? tval : 0;
} else if (exception_code == ExceptionCode::LoadAccessFault) {
 return REPORT_VA_IN_VSTVAL_ON_LOAD_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoAccessFault) {
 return REPORT_VA_IN_VSTVAL_ON_STORE_AMO_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionAccessFault) {
 return REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_ACCESS_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::LoadPageFault) {
 return REPORT_VA_IN_VSTVAL_ON_LOAD_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::StoreAmoPageFault) {
 return REPORT_VA_IN_VSTVAL_ON_STORE_AMO_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::InstructionPageFault) {
 return REPORT_VA_IN_VSTVAL_ON_INSTRUCTION_PAGE_FAULT ? tval : 0;
} else if (exception_code == ExceptionCode::IllegalInstruction) {
 return REPORT_ENCODING_IN_VSTVAL_ON_ILLEGAL_INSTRUCTION ? tval : 0;
} else if (exception_code == ExceptionCode::SoftwareCheck) {
 return tval;
} else {
 return 0;
}

E.142. raise_guest_page_fault
Raise a guest page fault exception.

Return Type
void

Arguments
MemoryOperation op, XReg gpa, XReg gva, XReg tinst_value, PrivilegeMode from_mode

ExceptionCode code;
Boolean write_gpa_in_tval;
if (op == MemoryOperation::Read) {
 code = ExceptionCode::LoadGuestPageFault;
 write_gpa_in_tval = REPORT_GPA_IN_TVAL_ON_LOAD_GUEST_PAGE_FAULT;
} else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
 code = ExceptionCode::StoreAmoGuestPageFault;
 write_gpa_in_tval = REPORT_GPA_IN_TVAL_ON_STORE_AMO_GUEST_PAGE_FAULT;
} else {
 assert(op == MemoryOperation::Fetch, "unexpected memory operation");
 code = ExceptionCode::InstructionGuestPageFault;
 write_gpa_in_tval = REPORT_GPA_IN_TVAL_ON_INSTRUCTION_GUEST_PAGE_FAULT;
}
PrivilegeMode handling_mode = exception_handling_mode(code);
if (handling_mode == PrivilegeMode::S) {
 CSR[htval].VALUE = write_gpa_in_tval ? (gpa >> 2) : 0;
 CSR[htinst].VALUE = tinst_value;
 CSR[sepc].PC = $pc;
 if (!stval_readonly?()) {
 CSR[stval].VALUE = stval_for(code, gva);
 }
 $pc = {CSR[stvec].BASE, 2'b00};

316

 CSR[scause].INT = 1'b0;
 CSR[scause].CODE = $bits(code);
 CSR[hstatus].GVA = 1;
 CSR[hstatus].SPV = 1;
 CSR[hstatus].SPVP = $bits(from_mode)[0];
 CSR[mstatus].SPP = $bits(from_mode)[0];
} else {
 assert(handling_mode == PrivilegeMode::M, "unexpected privilege mode");
 CSR[mtval2].VALUE = write_gpa_in_tval ? (gpa >> 2) : 0;
 CSR[mtinst].VALUE = tinst_value;
 CSR[mstatus].MPP = $bits(from_mode)[1:0];
 if (MXLEN == 64) {
 CSR[mstatus].MPV = 1;
 } else {
 CSR[mstatush].MPV = 1;
 }
}
set_mode(handling_mode);
abort_current_instruction();

E.143. raise
Raise synchronous exception number exception_code.

The exception may be imprecise, and will cause execution to enter an unpredictable state, if PRECISE_SYNCHRONOUS_EXCEPTIONS is false.

Otherwise, the exception will be precise.

Return Type
void

Arguments
ExceptionCode exception_code, PrivilegeMode from_mode, XReg tval

if (!PRECISE_SYNCHRONOUS_EXCEPTIONS) {
 unpredictable("Imprecise synchronous exception");
} else {
 raise_precise(exception_code, from_mode, tval);
}

E.144. raise_precise
Raise synchronous exception number exception_code.

Return Type
void

Arguments
ExceptionCode exception_code, PrivilegeMode from_mode, XReg tval

PrivilegeMode handling_mode = exception_handling_mode(exception_code);
if (handling_mode == PrivilegeMode::M) {
 CSR[mepc].PC = $pc;
 if (!mtval_readonly?()) {
 CSR[mtval].VALUE = mtval_for(exception_code, tval);
 }
 $pc = {CSR[mtvec].BASE, 2'b00};
 CSR[mcause].INT = 1'b0;
 CSR[mcause].CODE = $bits(exception_code);
 if (CSR[misa].H == 1) {
 CSR[mtval2].VALUE = 0;
 CSR[mtinst].VALUE = 0;
 if (from_mode == PrivilegeMode::VU || from_mode == PrivilegeMode::VS) {
 if (MXLEN == 32) {
 CSR[mstatush].MPV = 1;
 } else {
 CSR[mstatus].MPV = 1;
 }
 } else {
 if (MXLEN == 32) {

317

 CSR[mstatush].MPV = 0;
 } else {
 CSR[mstatus].MPV = 0;
 }
 }
 }
 CSR[mstatus].MPP = $bits(from_mode);
} else if (CSR[misa].S == 1 && (handling_mode == PrivilegeMode::S)) {
 CSR[sepc].PC = $pc;
 if (!stval_readonly?()) {
 CSR[stval].VALUE = stval_for(exception_code, tval);
 }
 $pc = {CSR[stvec].BASE, 2'b00};
 CSR[scause].INT = 1'b0;
 CSR[scause].CODE = $bits(exception_code);
 CSR[mstatus].SPP = $bits(from_mode)[0];
 if (CSR[misa].H == 1) {
 CSR[htval].VALUE = 0;
 CSR[htinst].VALUE = 0;
 CSR[hstatus].SPV = $bits(from_mode)[2];
 if (from_mode == PrivilegeMode::VU || from_mode == PrivilegeMode::VS) {
 CSR[hstatus].SPV = 1;
 if (exception_code == ExceptionCode::Breakpoint) && (REPORT_VA_IN_STVAL_ON_BREAKPOINT || exception_code ==
ExceptionCode::LoadAddressMisaligned) && (REPORT_VA_IN_STVAL_ON_LOAD_MISALIGNED || exception_code ==
ExceptionCode::StoreAmoAddressMisaligned) && (REPORT_VA_IN_STVAL_ON_STORE_AMO_MISALIGNED || exception_code ==
ExceptionCode::InstructionAddressMisaligned) && (REPORT_VA_IN_STVAL_ON_INSTRUCTION_MISALIGNED || exception_code ==
ExceptionCode::LoadAccessFault) && (REPORT_VA_IN_STVAL_ON_LOAD_ACCESS_FAULT || exception_code ==
ExceptionCode::StoreAmoAccessFault) && (REPORT_VA_IN_STVAL_ON_STORE_AMO_ACCESS_FAULT || exception_code ==
ExceptionCode::InstructionAccessFault) && (REPORT_VA_IN_STVAL_ON_INSTRUCTION_ACCESS_FAULT || exception_code ==
ExceptionCode::LoadPageFault) && (REPORT_VA_IN_STVAL_ON_LOAD_PAGE_FAULT || exception_code == ExceptionCode::StoreAmoPageFault) &&
(REPORT_VA_IN_STVAL_ON_STORE_AMO_PAGE_FAULT || exception_code == ExceptionCode::InstructionPageFault) &&
(REPORT_VA_IN_STVAL_ON_INSTRUCTION_PAGE_FAULT) {
 CSR[hstatus].GVA = 1;
 } else {
 CSR[hstatus].GVA = 0;
 }
 CSR[hstatus].SPVP = $bits(from_mode)[0];
 } else {
 CSR[hstatus].SPV = 0;
 CSR[hstatus].GVA = 0;
 }
 }
} else if (CSR[misa].H == 1 && (handling_mode == PrivilegeMode::VS)) {
 CSR[vsepc].PC = $pc;
 if (!vstval_readonly?()) {
 CSR[vstval].VALUE = vstval_for(exception_code, tval);
 }
 $pc = {CSR[vstvec].BASE, 2'b00};
 CSR[vscause].INT = 1'b0;
 CSR[vscause].CODE = $bits(exception_code);
 CSR[vsstatus].SPP = $bits(from_mode)[0];
}
set_mode(handling_mode);
abort_current_instruction();

E.145. ialign
Returns IALIGN, the smallest instruction encoding size, in bits.

Return Type
Bits⑥

Arguments None

if (implemented?(ExtensionName::C) && (CSR[misa].C == 0x1)) {
 return 16;
} else {
 return 32;
}

318

E.146. jump
Jump to virtual address target_addr.

If target address is misaligned, raise a MisalignedAddress exception.

Return Type
void

Arguments
XReg target_addr

if ((ialign() == 16) && target_addr & 0x1) != 0 {
 raise(ExceptionCode::InstructionAddressMisaligned, mode(), target_addr);
} else if ((ialign() == 32) && (target_addr & 0x3) != 0) {
 raise(ExceptionCode::InstructionAddressMisaligned, mode(), target_addr);
}
$pc = target_addr;

E.147. jump_halfword
Jump to virtual halfword address target_hw_addr.

If target address is misaligned, raise a MisalignedAddress exception.

Return Type
void

Arguments
XReg target_hw_addr

assert((target_hw_addr & 0x1) == 0x0, "Expected halfword-aligned address in jump_halfword");
if (ialign() != 16) {
 if ((target_hw_addr & 0x3) != 0) {
 raise(ExceptionCode::InstructionAddressMisaligned, mode(), target_hw_addr);
 }
}
$pc = target_hw_addr;

E.148. valid_interrupt_code?
Returns true if code is a legal interrupt number.

Return Type
Boolean

Arguments
XReg code

if (code > 1 `<< $enum_element_size(InterruptCode - 1)) {
 return false;
}
if ($array_includes?($enum_to_a(InterruptCode), code)) {
 return true;
} else {
 return false;
}

E.149. valid_exception_code?
Returns true if code is a legal exception number.

Return Type
Boolean

319

Arguments
XReg code

if (code > 1 `<< $enum_element_size(ExceptionCode - 1)) {
 return false;
}
if ($array_includes?($enum_to_a(ExceptionCode), code)) {
 return true;
} else {
 return false;
}

E.150. xlen
Returns the effective XLEN for the current privilege mode.

Return Type
Bits⑧

Arguments None

if (MXLEN == 32) {
 return 32;
} else {
 if (mode() == PrivilegeMode::M) {
 if (CSR[misa].MXL == $bits(XRegWidth::XLEN32)) {
 return 32;
 } else if (CSR[misa].MXL == $bits(XRegWidth::XLEN64)) {
 return 64;
 } else {
 unreachable();
 }
 } else if (implemented?(ExtensionName::S) && mode() == PrivilegeMode::S) {
 if (CSR[mstatus].SXL == $bits(XRegWidth::XLEN32)) {
 return 32;
 } else if (CSR[mstatus].SXL == $bits(XRegWidth::XLEN64)) {
 return 64;
 } else {
 unreachable();
 }
 } else if (implemented?(ExtensionName::U) && mode() == PrivilegeMode::U) {
 if (CSR[mstatus].UXL == $bits(XRegWidth::XLEN32)) {
 return 32;
 } else if (CSR[mstatus].UXL == $bits(XRegWidth::XLEN64)) {
 return 64;
 } else {
 unreachable();
 }
 } else if (implemented?(ExtensionName::H) && mode() == PrivilegeMode::VS) {
 if (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {
 return 32;
 } else if (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN64)) {
 return 64;
 } else {
 unreachable();
 }
 } else if (implemented?(ExtensionName::H) && mode() == PrivilegeMode::VU) {
 if (CSR[vsstatus].UXL == $bits(XRegWidth::XLEN32)) {
 return 32;
 } else if (CSR[vsstatus].UXL == $bits(XRegWidth::XLEN64)) {
 return 64;
 } else {
 unreachable();
 }
 }
}

320

E.151. virtual_mode?
Returns True if the current mode is virtual (VS or VU).

Return Type
Boolean

Arguments None

return (mode() == PrivilegeMode::VS) || (mode() == PrivilegeMode::VU);

E.152. mask_eaddr
Mask upper N bits of an effective address if pointer masking is enabled

Return Type
XReg

Arguments
XReg eaddr

return eaddr;

E.153. pmp_match_64
Given a physical address, see if any PMP entry matches.

If there is a complete match, return the PmpCfg that guards the region. If there is no match or a partial match, report that result.

Return Type
PmpMatchResult, PmpCfg

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size

Bits<12> pmpcfg0_addr = 0x3a0;
Bits<12> pmpaddr0_addr = 0x3b0;
for (U32 i = 0; i < NUM_PMP_ENTRIES; i++) {
 Bits<12> pmpcfg_idx = pmpcfg0_addr + (i / 8) * 2;
 Bits<6> shamt = (i % 8) * 8;
 Csr pmpcfg_csr = direct_csr_lookup(pmpcfg_idx);
 PmpCfg cfg = (csr_hw_read(pmpcfg_csr) >> shamt)[7:0];
 Bits<12> pmpaddr_idx = pmpaddr0_addr + i;
 Csr pmpaddr_csr = direct_csr_lookup(pmpaddr_idx);
 Bits<64> pmpaddr_csr_value = csr_sw_read(pmpaddr_csr);
 Bits<PHYS_ADDR_WIDTH> range_base = 0;
 Bits<PHYS_ADDR_WIDTH> range_limit = 0;
 if (cfg.A == $bits(PmpCfg_A::TOR)) {
 if (i == 0) {
 range_base = 0;
 } else {
 Csr tor_pmpaddr_csr = direct_csr_lookup(pmpaddr_idx - 1);
 range_base = (csr_sw_read(tor_pmpaddr_csr))[PHYS_ADDR_WIDTH - 1:0];
 }
 range_limit = (pmpaddr_csr_value)[PHYS_ADDR_WIDTH - 1:0] - 1;
 } else if (cfg.A == $bits(PmpCfg_A::NAPOT)) {
 Bits<PHYS_ADDR_WIDTH - 1> pmpaddr_value = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 1:0];
 Bits<PHYS_ADDR_WIDTH - 1> mask = pmpaddr_value ^ (pmpaddr_value + 1);
 range_base = (pmpaddr_value & ~mask);
 range_limit = range_base + mask;
 } else if (cfg.A == $bits(PmpCfg_A::NA4)) {
 range_base = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 1:0];
 range_limit = range_base + 3;
 }
 if (paddr {
 return PmpMatchResult::FullMatch, cfg;
 } else if (! {
 return PmpMatchResult::PartialMatch, -;
 }

321

}
return PmpMatchResult::NoMatch, -;

E.154. pmp_match_32
Given a physical address, see if any PMP entry matches.

If there is a complete match, return the PmpCfg that guards the region. If there is no match or a partial match, report that result.

Return Type
PmpMatchResult, PmpCfg

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size

Bits<12> pmpcfg0_addr = 0x3a0;
Bits<12> pmpaddr0_addr = 0x3b0;
for (U32 i = 0; i < NUM_PMP_ENTRIES; i++) {
 Bits<12> pmpcfg_idx = pmpcfg0_addr + (i / 4);
 Bits<6> shamt = (i % 4) * 8;
 Csr pmpcfg_csr = direct_csr_lookup(pmpcfg_idx);
 PmpCfg cfg = (csr_hw_read(pmpcfg_csr) >> shamt)[7:0];
 Bits<12> pmpaddr_idx = pmpaddr0_addr + i;
 Csr pmpaddr_csr = direct_csr_lookup(pmpaddr_idx);
 Bits<32> pmpaddr_csr_value = csr_sw_read(pmpaddr_csr);
 Bits<PHYS_ADDR_WIDTH> range_base = 0;
 Bits<PHYS_ADDR_WIDTH> range_limit = 0;
 if (cfg.A == $bits(PmpCfg_A::TOR)) {
 if (i == 0) {
 range_base = 0;
 } else {
 Csr tor_pmpaddr_csr = direct_csr_lookup(pmpaddr_idx - 1);
 range_base = csr_sw_read(tor_pmpaddr_csr)[PHYS_ADDR_WIDTH - 1:0];
 }
 range_limit = (pmpaddr_csr_value)[PHYS_ADDR_WIDTH - 1:0] - 1;
 } else if (cfg.A == $bits(PmpCfg_A::NAPOT)) {
 Bits<PHYS_ADDR_WIDTH - 1> pmpaddr_value = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 3:0];
 Bits<PHYS_ADDR_WIDTH - 1> mask = pmpaddr_value ^ (pmpaddr_value + 1);
 range_base = pmpaddr_value & ~mask;
 range_limit = range_base + mask;
 } else if (cfg.A == $bits(PmpCfg_A::NA4)) {
 range_base = pmpaddr_csr_value[PHYS_ADDR_WIDTH - 1:0];
 range_limit = range_base + 3;
 }
 if (paddr {
 return PmpMatchResult::FullMatch, cfg;
 } else if (! {
 return PmpMatchResult::PartialMatch, -;
 }
}
return PmpMatchResult::NoMatch, -;

E.155. pmp_match
Given a physical address, see if any PMP entry matches.

If there is a complete match, return the PmpCfg that guards the region. If there is no match or a partial match, report that result.

Return Type
PmpMatchResult, PmpCfg

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size

if (MXLEN == 64) {
 return pmp_match_64(paddr, access_size);
} else {
 return pmp_match_32(paddr, access_size);
}

322

E.156. mpv
Returns the current value of CSR[mstatus].MPV (when MXLEN == 64) of CSR[mstatush].MPV (when MXLEN == 32)

Return Type
Bits①

Arguments None

if (implemented?(ExtensionName::H)) {
 return (MXLEN == 32) ? CSR[mstatush].MPV : CSR[mstatus].MPV;
} else {
 assert(false, "TODO");
}

E.157. effective_ldst_mode
Returns the effective privilege mode for normal explicit loads and stores, taking into account the current actual privilege mode and modifications
from mstatus.MPRV.

Return Type
PrivilegeMode

Arguments None

if (mode() == PrivilegeMode::M) {
 if (CSR[misa].U == 1 && CSR[mstatus].MPRV == 1) {
 if (CSR[mstatus].MPP == 0b00) {
 if (CSR[misa].H == 1 && mpv() == 0b1) {
 return PrivilegeMode::VU;
 } else {
 return PrivilegeMode::U;
 }
 } else if (CSR[misa].S == 1 && CSR[mstatus].MPP == 0b01) {
 if (CSR[misa].H == 1 && mpv() == 0b1) {
 return PrivilegeMode::VS;
 } else {
 return PrivilegeMode::S;
 }
 }
 }
}
return mode();

E.158. pmp_check
Given a physical address and operation type, return whether or not the access is allowed by PMP.

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size, MemoryOperation type

PrivilegeMode mode = effective_ldst_mode();
PmpMatchResult match_result;
PmpCfg cfg;
(match_result, cfg = pmp_match(paddr, access_size));
if (match_result == PmpMatchResult::FullMatch) {
 if (mode == PrivilegeMode::M && (cfg.L == 0)) {
 return true;
 }
 if (type == MemoryOperation::Write && (cfg.W == 0)) {
 return false;
 } else if (type == MemoryOperation::Read && (cfg.R == 0)) {
 return false;
 } else if (type == MemoryOperation::Fetch && (cfg.X == 0)) {
 return false;
 }

323

} else if (match_result == PmpMatchResult::NoMatch) {
 if (mode == PrivilegeMode::M) {
 return true;
 } else {
 return false;
 }
} else {
 assert(match_result == PmpMatchResult::PartialMatch, "PMP matching logic error");
 return false;
}
return true;

E.159. access_check
Checks if the physical address paddr is able to access memory, and raises the appropriate exception if not.

Return Type
void

Arguments
Bits<PHYS_ADDR_WIDTH> paddr, U32 access_size, XReg vaddr, MemoryOperation type,
ExceptionCode fault_type, PrivilegeMode from_mode

if (paddr > 1 `<< PHYS_ADDR_WIDTH) - access_size {
 raise(fault_type, from_mode, vaddr);
}
if (implemented?(ExtensionName::Smpmp)) {
 if (!pmp_check(paddr[PHYS_ADDR_WIDTH - 1:0], access_size, type)) {
 raise(fault_type, from_mode, vaddr);
 }
}

E.160. base32?
return True iff current effective XLEN == 32

Return Type
Boolean

Arguments None

if (MXLEN == 32) {
 return true;
} else {
 XRegWidth xlen32 = XRegWidth::XLEN32;
 if (mode() == PrivilegeMode::M) {
 return CSR[misa].MXL == $bits(xlen32);
 } else if (implemented?(ExtensionName::S) && mode() == PrivilegeMode::S) {
 return CSR[mstatus].SXL == $bits(xlen32);
 } else if (implemented?(ExtensionName::U) && mode() == PrivilegeMode::U) {
 return CSR[mstatus].UXL == $bits(xlen32);
 } else if (implemented?(ExtensionName::H) && mode() == PrivilegeMode::VS) {
 return CSR[hstatus].VSXL == $bits(xlen32);
 } else {
 assert(implemented?(ExtensionName::H) && mode() == PrivilegeMode::VU, "Unexpected mode");
 return CSR[vsstatus].UXL == $bits(xlen32);
 }
}

E.161. base64?
return True iff current effective XLEN == 64

Return Type
Boolean

Arguments None

324

return xlen() == 64;

E.162. current_translation_mode
Returns the current first-stage translation mode for an explicit load or store from mode given the machine state (e.g., value of satp or vsatp csr).

Returns SatpMode::Reserved if the setting found in satp or vsatp is invalid.

Return Type
SatpMode

Arguments
PrivilegeMode mode

PrivilegeMode effective_mode = effective_ldst_mode();
if (effective_mode == PrivilegeMode::M) {
 return SatpMode::Bare;
}
if (CSR[misa].H == 1'b1) {
 if (effective_mode == PrivilegeMode::VS || effective_mode == PrivilegeMode::VU) {
 Bits<4> mode_val = CSR[vsatp].MODE;
 if (mode_val == $bits(SatpMode::Bare)) {
 return SatpMode::Bare;
 } else if (mode_val == $bits(SatpMode::Sv32)) {
 if (MXLEN == 64) {
 if ((effective_mode == PrivilegeMode::VS) && (CSR[hstatus].VSXL != $bits(XRegWidth::XLEN32))) {
 return SatpMode::Reserved;
 }
 if ((effective_mode == PrivilegeMode::VU) && (CSR[vsstatus].UXL != $bits(XRegWidth::XLEN32))) {
 return SatpMode::Reserved;
 }
 }
 if (!SV32_VSMODE_TRANSLATION) {
 return SatpMode::Reserved;
 }
 return SatpMode::Sv32;
 } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv39))) {
 if (effective_mode == PrivilegeMode::VS && CSR[hstatus].VSXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (effective_mode == PrivilegeMode::VU && CSR[vsstatus].UXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (!SV39_VSMODE_TRANSLATION) {
 return SatpMode::Reserved;
 }
 return SatpMode::Sv39;
 } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv48))) {
 if (effective_mode == PrivilegeMode::VS && CSR[hstatus].VSXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (effective_mode == PrivilegeMode::VU && CSR[vsstatus].UXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (!SV48_VSMODE_TRANSLATION) {
 return SatpMode::Reserved;
 }
 return SatpMode::Sv48;
 } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv57))) {
 if (effective_mode == PrivilegeMode::VS && CSR[hstatus].VSXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (effective_mode == PrivilegeMode::VU && CSR[vsstatus].UXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (!SV57_VSMODE_TRANSLATION) {
 return SatpMode::Reserved;
 }
 return SatpMode::Sv57;
 } else {
 return SatpMode::Reserved;

325

 }
 } else {
 return SatpMode::Reserved;
 }
} else if (CSR[misa].S == 1'b1) {
 assert(effective_mode == PrivilegeMode::S || effective_mode == PrivilegeMode::U, "unexpected priv mode");
 Bits<4> mode_val = CSR[satp].MODE;
 if (mode_val == $bits(SatpMode::Bare)) {
 return SatpMode::Bare;
 } else if (mode_val == $bits(SatpMode::Sv32)) {
 if (MXLEN == 64) {
 if (effective_mode == PrivilegeMode::S && CSR[mstatus].SXL != $bits(XRegWidth::XLEN32)) {
 return SatpMode::Reserved;
 }
 if (effective_mode == PrivilegeMode::U && CSR[sstatus].UXL != $bits(XRegWidth::XLEN32)) {
 return SatpMode::Reserved;
 }
 }
 if (!implemented?(ExtensionName::Sv32)) {
 return SatpMode::Reserved;
 }
 return SatpMode::Sv32;
 } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv39))) {
 if (effective_mode == PrivilegeMode::S && CSR[mstatus].SXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (effective_mode == PrivilegeMode::U && CSR[sstatus].UXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (!implemented?(ExtensionName::Sv39)) {
 return SatpMode::Reserved;
 }
 return SatpMode::Sv39;
 } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv48))) {
 if (effective_mode == PrivilegeMode::S && CSR[mstatus].SXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (effective_mode == PrivilegeMode::U && CSR[sstatus].UXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (!implemented?(ExtensionName::Sv48)) {
 return SatpMode::Reserved;
 }
 return SatpMode::Sv48;
 } else if ((MXLEN == 64) && (mode_val == $bits(SatpMode::Sv57))) {
 if (effective_mode == PrivilegeMode::S && CSR[mstatus].SXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (effective_mode == PrivilegeMode::U && CSR[sstatus].UXL != $bits(XRegWidth::XLEN64)) {
 return SatpMode::Reserved;
 }
 if (!implemented?(ExtensionName::Sv57)) {
 return SatpMode::Reserved;
 }
 return SatpMode::Sv57;
 } else {
 return SatpMode::Reserved;
 }
} else {
 return SatpMode::Reserved;
}

E.163. current_gstage_translation_mode
Returns the current second-stage translation mode for a load or store from VS-mode or VU-mode.

Return Type
HgatpMode

Arguments None

return $enum(HgatpMode, CSR[hgatp].MODE);

326

E.164. translate_gstage
Translates a guest physical address to a physical address.

Return Type
TranslationResult

Arguments
XReg gpaddr, XReg vaddr, MemoryOperation op, PrivilegeMode effective_mode,
Bits<INSTR_ENC_SIZE> encoding

TranslationResult result;
if (effective_mode == PrivilegeMode::S || effective_mode == PrivilegeMode::U) {
 result.paddr = gpaddr;
 return result;
}
Boolean mxr = CSR[mstatus].MXR == 1;
if (GSTAGE_MODE_BARE && CSR[hgatp].MODE == $bits(HgatpMode::Bare)) {
 result.paddr = gpaddr;
 return result;
} else if (SV32X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv32x4)) {
 return gstage_page_walk<32, 34, 32, 2>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else if (SV39X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv39x4)) {
 return gstage_page_walk<39, 56, 64, 3>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else if (SV48X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv48x4)) {
 return gstage_page_walk<48, 56, 64, 4>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else if (SV57X4_TRANSLATION && CSR[hgatp].MODE == $bits(HgatpMode::Sv57x4)) {
 return gstage_page_walk<57, 56, 64, 5>(gpaddr, vaddr, op, effective_mode, false, encoding);
} else {
 if (op == MemoryOperation::Read) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst_value_for_guest_page_fault(op, encoding, true), effective_mode);
 } else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst_value_for_guest_page_fault(op, encoding, true), effective_mode);
 } else {
 assert(op == MemoryOperation::Fetch, "unexpected memory op");
 raise_guest_page_fault(op, gpaddr, vaddr, tinst_value_for_guest_page_fault(op, encoding, true), effective_mode);
 }
}

E.165. tinst_value_for_guest_page_fault
Returns the value of htinst/mtinst for a Guest Page Fault

Return Type
XReg

Arguments
MemoryOperation op, Bits<INSTR_ENC_SIZE> encoding, Boolean for_final_vs_pte

if (for_final_vs_pte) {
 if (op == MemoryOperation::Fetch) {
 if (TINST_VALUE_ON_FINAL_INSTRUCTION_GUEST_PAGE_FAULT == "always zero") {
 return 0;
 } else {
 assert(TINST_VALUE_ON_FINAL_INSTRUCTION_GUEST_PAGE_FAULT == "always pseudoinstruction", "Instruction guest page faults can
only report zero/pseudo instruction in tval");
 return 0x00002000;
 }
 } else if (op == MemoryOperation::Read) {
 if (TINST_VALUE_ON_FINAL_LOAD_GUEST_PAGE_FAULT == "always zero") {
 return 0;
 } else if (TINST_VALUE_ON_FINAL_LOAD_GUEST_PAGE_FAULT == "always pseudoinstruction") {
 if (($array_size(VSXLEN) == 1 && VSXLEN[0] == 32) || MXLEN == 64) && (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {
 return 0x00002000;
 } else {
 return 0x00003000;
 }
 } else if (TINST_VALUE_ON_FINAL_LOAD_GUEST_PAGE_FAULT == "always transformed standard instruction") {
 return tinst_transform(encoding, 0);
 } else {

327

 unpredictable("Custom value written into htinst/mtinst");
 }
 } else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
 if (TINST_VALUE_ON_FINAL_STORE_AMO_GUEST_PAGE_FAULT == "always zero") {
 return 0;
 } else if (TINST_VALUE_ON_FINAL_STORE_AMO_GUEST_PAGE_FAULT == "always pseudoinstruction") {
 if (($array_size(VSXLEN) == 1 && VSXLEN[0] == 32) || MXLEN == 64) && (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {
 return 0x00002020;
 } else {
 return 0x00003020;
 }
 } else if (TINST_VALUE_ON_FINAL_STORE_AMO_GUEST_PAGE_FAULT == "always transformed standard instruction") {
 return tinst_transform(encoding, 0);
 } else {
 unpredictable("Custom value written into htinst/mtinst");
 }
 }
} else {
 if (REPORT_GPA_IN_TVAL_ON_INTERMEDIATE_GUEST_PAGE_FAULT) {
 if (($array_size(VSXLEN) == 1 && VSXLEN[0] == 32) || MXLEN == 64) && (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN32)) {
 return 0x00002000;
 } else if (($array_size(VSXLEN) == 1 && VSXLEN[0] == 64) || MXLEN == 64) && (CSR[hstatus].VSXL == $bits(XRegWidth::XLEN64)) {
 return 0x00003000;
 }
 }
}

E.166. tinst_transform
Returns the standard transformation of an encoding for htinst/mtinst

Return Type
Bits<INSTR_ENC_SIZE>

Arguments
Bits<INSTR_ENC_SIZE> encoding, Bits<5> addr_offset

if (encoding[1:0] == 0b11) {
 if (encoding[6:2] == 5'b00001) {
 return {{12{1'b0}}, addr_offset, encoding[14:0]};
 } else if (encoding[6:2] == 5'b01000) {
 return {{7{1'b0}}, encoding[24:20], addr_offset, encoding[14:12], {5{1'b0}}, encoding[6:0]};
 } else if (encoding[6:2] == 5'b01011) {
 return {encoding[31:20], addr_offset, encoding[14:0]};
 } else if (encoding[6:2] == 5'b00011) {
 return {encoding[31:20], addr_offset, encoding[14:0]};
 } else {
 assert(false, "Bad transform");
 }
} else {
 assert(false, "TODO: compressed instruction");
}

E.167. transformed_standard_instruction_for_tinst
Transforms an instruction encoding for htinst.

Return Type
Bits<INSTR_ENC_SIZE>

Arguments
Bits<INSTR_ENC_SIZE> original

assert(false, "TODO");
return 0;

328

E.168. tinst_value
Returns the value of htinst/mtinst for the given exception code.

Return Type
XReg

Arguments
ExceptionCode code, Bits<INSTR_ENC_SIZE> encoding

if (code == ExceptionCode::InstructionAddressMisaligned) {
 if (TINST_VALUE_ON_INSTRUCTION_ADDRESS_MISALIGNED == "always zero") {
 return 0;
 } else {
 unpredictable("An unpredictable value is written into tinst in response to an InstructionAddressMisaligned exception");
 }
} else if (code == ExceptionCode::InstructionAccessFault) {
 return 0;
} else if (code == ExceptionCode::IllegalInstruction) {
 return 0;
} else if (code == ExceptionCode::Breakpoint) {
 if (TINST_VALUE_ON_BREAKPOINT == "always zero") {
 return 0;
 } else {
 unpredictable("An unpredictable value is written into tinst in response to a Breakpoint exception");
 }
} else if (code == ExceptionCode::VirtualInstruction) {
 if (TINST_VALUE_ON_VIRTUAL_INSTRUCTION == "always zero") {
 return 0;
 } else {
 unpredictable("An unpredictable value is written into tinst in response to a VirtualInstruction exception");
 }
} else if (code == ExceptionCode::LoadAddressMisaligned) {
 if (TINST_VALUE_ON_LOAD_ADDRESS_MISALIGNED == "always zero") {
 return 0;
 } else if (TINST_VALUE_ON_LOAD_ADDRESS_MISALIGNED == "always transformed standard instruction") {
 return transformed_standard_instruction_for_tinst(encoding);
 } else {
 unpredictable("An unpredictable value is written into tinst in response to a LoadAddressMisaligned exception");
 }
} else if (code == ExceptionCode::LoadAccessFault) {
 if (TINST_VALUE_ON_LOAD_ACCESS_FAULT == "always zero") {
 return 0;
 } else if (TINST_VALUE_ON_LOAD_ACCESS_FAULT == "always transformed standard instruction") {
 return transformed_standard_instruction_for_tinst(encoding);
 } else {
 unpredictable("An unpredictable value is written into tinst in response to a LoadAccessFault exception");
 }
} else if (code == ExceptionCode::StoreAmoAddressMisaligned) {
 if (TINST_VALUE_ON_STORE_AMO_ADDRESS_MISALIGNED == "always zero") {
 return 0;
 } else if (TINST_VALUE_ON_STORE_AMO_ADDRESS_MISALIGNED == "always transformed standard instruction") {
 return transformed_standard_instruction_for_tinst(encoding);
 } else {
 unpredictable("An unpredictable value is written into tinst in response to a StoreAmoAddressMisaligned exception");
 }
} else if (code == ExceptionCode::StoreAmoAccessFault) {
 if (TINST_VALUE_ON_STORE_AMO_ACCESS_FAULT == "always zero") {
 return 0;
 } else if (TINST_VALUE_ON_STORE_AMO_ACCESS_FAULT == "always transformed standard instruction") {
 return transformed_standard_instruction_for_tinst(encoding);
 } else {
 unpredictable("An unpredictable value is written into tinst in response to a StoreAmoAccessFault exception");
 }
} else if (code == ExceptionCode::Ucall) {
 if (TINST_VALUE_ON_UCALL == "always zero") {
 return 0;
 } else {
 unpredictable("An unpredictable value is written into tinst in response to a UCall exception");
 }
} else if (code == ExceptionCode::Scall) {
 if (TINST_VALUE_ON_SCALL == "always zero") {
 return 0;

329

 } else {
 unpredictable("An unpredictable value is written into tinst in response to a SCall exception");
 }
} else if (code == ExceptionCode::Mcall) {
 if (TINST_VALUE_ON_MCALL == "always zero") {
 return 0;
 } else {
 unpredictable("An unpredictable value is written into tinst in response to a MCall exception");
 }
} else if (code == ExceptionCode::VScall) {
 if (TINST_VALUE_ON_VSCALL == "always zero") {
 return 0;
 } else {
 unpredictable("An unpredictable value is written into tinst in response to a VSCall exception");
 }
} else if (code == ExceptionCode::InstructionPageFault) {
 return 0;
} else if (code == ExceptionCode::LoadPageFault) {
 if (TINST_VALUE_ON_LOAD_PAGE_FAULT == "always zero") {
 return 0;
 } else if (TINST_VALUE_ON_LOAD_PAGE_FAULT == "always transformed standard instruction") {
 return transformed_standard_instruction_for_tinst(encoding);
 } else {
 unpredictable("An unpredictable value is written into tinst in response to a LoadPageFault exception");
 }
} else if (code == ExceptionCode::StoreAmoPageFault) {
 if (TINST_VALUE_ON_STORE_AMO_PAGE_FAULT == "always zero") {
 return 0;
 } else if (TINST_VALUE_ON_STORE_AMO_PAGE_FAULT == "always transformed standard instruction") {
 return transformed_standard_instruction_for_tinst(encoding);
 } else {
 unpredictable("An unpredictable value is written into tinst in response to a StoreAmoPageFault exception");
 }
} else {
 assert(false, "Unhandled exception type");
}

E.169. gstage_page_walk
Translate guest physical address to physical address through a page walk.

May raise a Guest Page Fault if an error involving the page table structure occurs along the walk.

Implicit reads of the page table are accessed check, and may raise Access Faults. Implicit writes (updates of A/D) are also accessed checked, and may
raise Access Faults

The translated address is not accessed checked.

Returns the translated physical address.

Return Type
TranslationResult

Arguments
XReg gpaddr, XReg vaddr, MemoryOperation op, PrivilegeMode effective_mode, Boolean
for_final_vs_pte, Bits<INSTR_ENC_SIZE> encoding

Bits<PA_SIZE> ppn;
TranslationResult result;
U32 VPN_SIZE = (LEVELS == 2) ? 10 : 9;
ExceptionCode access_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadAccessFault : (op == MemoryOperation::Fetch ?
ExceptionCode::InstructionAccessFault : ExceptionCode::StoreAmoAccessFault);
ExceptionCode page_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadGuestPageFault : (op == MemoryOperation::Fetch ?
ExceptionCode::InstructionGuestPageFault : ExceptionCode::StoreAmoGuestPageFault);
Boolean mxr = for_final_vs_pte && (CSR[mstatus].MXR == 1);
Boolean pbmte = implemented?(ExtensionName::Svpbmt) && CSR[menvcfg].PBMTE == 1;
Boolean adue = implemented?(ExtensionName::Svadu) && CSR[menvcfg].ADUE == 1;
Bits<32> tinst = tinst_value_for_guest_page_fault(op, encoding, for_final_vs_pte);
U32 max_gpa_width = LEVELS * VPN_SIZE + 2 + 12;
if (gpaddr >> max_gpa_width != 0) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
}
ppn = CSR[hgatp].PPN;

330

for (U32 i = (LEVELS - 1); i >= 0; i--) {
 U32 this_vpn_size = (i == (LEVELS - 1)) ? VPN_SIZE + 2 : VPN_SIZE;
 U32 vpn = (gpaddr >> (12 + VPN_SIZE * i)) & 1 << this_vpn_size) - 1); Bits<PA_SIZE> pte_paddr = (ppn << 12) + (vpn * (PTESIZE /
8;
 if (!pma_applies?(PmaAttribute::HardwarePageTableRead, pte_paddr, PTESIZE)) {
 raise(access_fault_code, PrivilegeMode::U, vaddr);
 }
 access_check(pte_paddr, PTESIZE, vaddr, MemoryOperation::Read, access_fault_code, effective_mode);
 Bits<PTESIZE> pte = read_physical_memory<PTESIZE>(pte_paddr);
 PteFlags pte_flags = pte[9:0];
 if ((VA_SIZE != 32) && (pte[58:54] != 0)) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 if (!implemented?(ExtensionName::Svrsw60t59b)) {
 if ((PTESIZE >= 64) && pte[60:59] != 0) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 }
 if (!implemented?(ExtensionName::Svnapot)) {
 if ((PTESIZE >= 64) && pte[63] != 0) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 }
 if ((PTESIZE >= 64) && !pbmte && (pte[62:61] != 0)) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 if ((PTESIZE >= 64) && pbmte && (pte[62:61] == 3)) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 if (pte_flags.V == 0) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 if (pte_flags.R == 0 && pte_flags.W == 1) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 if (pte_flags.R == 1 || pte_flags.X == 1) {
 if (pte_flags.U == 0) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 if (op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite && (pte_flags.W == 0)) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 } else if ((op == MemoryOperation::Fetch) && (pte_flags.X == 0)) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 } else if ((op == MemoryOperation::Read) || (op == MemoryOperation::ReadModifyWrite)) {
 if (!mxr) && (pte_flags.R == 0 || mxr) && (pte_flags.X == 0 && pte_flags.R == 0) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 }
 if ((i > 0) && (pte[(i - 1) * VPN_SIZE:0] != 0)) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 if ((pte_flags.A == 0) || pte_flags.D == 0) && ((op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite)) {
 if (adue) {
 if (!pma_applies?(PmaAttribute::RsrvEventual, pte_paddr, PTESIZE)) {
 raise(access_fault_code, PrivilegeMode::U, vaddr);
 }
 if (!pma_applies?(PmaAttribute::HardwarePageTableWrite, pte_paddr, PTESIZE)) {
 raise(access_fault_code, PrivilegeMode::U, vaddr);
 }
 access_check(pte_paddr, PTESIZE, vaddr, MemoryOperation::Write, access_fault_code, effective_mode);
 Boolean success;
 Bits<PTESIZE> updated_pte;
 if (pte_flags.D == 0 && (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite)) {
 updated_pte = pte | 0b11000000;
 } else {
 updated_pte = pte | 0b01000000;
 }
 if (PTESIZE == 32) {
 success = atomic_check_then_write_32(pte_paddr, pte, updated_pte);
 } else if (PTESIZE == 64) {
 success = atomic_check_then_write_64(pte_paddr, pte, updated_pte);
 } else {
 assert(false, "Unexpected PTESIZE");
 }
 if (!success) {

331

 i = i + 1;
 } else {
 result.paddr = pte_paddr;
 if (PTESIZE >= 64) {
 result.pbmt = $enum(Pbmt, pte[62:61]);
 }
 result.pte_flags = pte_flags;
 return result;
 }
 } else {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 }
 } else {
 if (i == 0) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 if (pte_flags.D == 1 || pte_flags.A == 1 || pte_flags.U == 1) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 if ((VA_SIZE != 32) && (pte[62:61] != 0)) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 if ((VA_SIZE != 32) && pte[63] != 0) {
 raise_guest_page_fault(op, gpaddr, vaddr, tinst, effective_mode);
 }
 ppn = pte[PA_SIZE - 3:10] << 12;
 }
}

E.170. stage1_page_walk
Translate virtual address to physical address through a page walk.

May raise a Page Fault if an error involving the page table structure occurs along the walk.

Implicit reads of the page table are accessed check, and may raise Access Faults. Implicit writes (updates of A/D) are also accessed checked, and may
raise Access Faults

The translated address is not accessed checked.

Returns the translated guest physical address.

Return Type
TranslationResult

Arguments
Bits<MXLEN> vaddr, MemoryOperation op, PrivilegeMode effective_mode,
Bits<INSTR_ENC_SIZE> encoding

Bits<PA_SIZE> ppn;
TranslationResult result;
U32 VPN_SIZE = (LEVELS == 2) ? 10 : 9;
ExceptionCode access_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadAccessFault : (op == MemoryOperation::Fetch ?
ExceptionCode::InstructionAccessFault : ExceptionCode::StoreAmoAccessFault);
ExceptionCode page_fault_code = op == MemoryOperation::Read ? ExceptionCode::LoadPageFault : (op == MemoryOperation::Fetch ?
ExceptionCode::InstructionPageFault : ExceptionCode::StoreAmoPageFault);
Boolean sse = false;
Boolean adue;
if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode::VS || effective_mode == PrivilegeMode::VU)) {
 adue = implemented?(ExtensionName::Svadu) && CSR[henvcfg].ADUE == 1;
} else {
 adue = implemented?(ExtensionName::Svadu) && CSR[menvcfg].ADUE == 1;
}
Boolean pbmte;
if (VA_SIZE == 32) {
 pbmte = false;
} else {
 if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode::VS || effective_mode == PrivilegeMode::VU)) {
 pbmte = implemented?(ExtensionName::Svpbmt) && CSR[henvcfg].PBMTE == 1;
 } else {
 pbmte = implemented?(ExtensionName::Svpbmt) && CSR[menvcfg].PBMTE == 1;
 }

332

}
Boolean mxr;
if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode::VS || effective_mode == PrivilegeMode::VU)) {
 mxr = (CSR[mstatus].MXR == 1) || (CSR[vsstatus].MXR == 1);
 ppn = CSR[vsatp].PPN;
} else {
 mxr = CSR[mstatus].MXR == 1;
 ppn = CSR[satp].PPN;
}
Boolean sum;
if (CSR[misa].H == 1 && (effective_mode == PrivilegeMode::VS)) {
 sum = CSR[vsstatus].SUM == 1;
} else {
 sum = CSR[mstatus].SUM == 1;
}
if ((VA_SIZE < xlen()) && (vaddr[xlen() - 1:VA_SIZE] != {xlen() - VA_SIZE{vaddr[VA_SIZE - 1]}})) {
 raise(page_fault_code, mode(), vaddr);
}
for (U32 I = (LEVELS - 1); I >= 0; I--) {
 U32 vpn = (vaddr >> (12 + VPN_SIZE * I)) & 1 `<< VPN_SIZE) - 1); Bits<PA_SIZE> pte_gpaddr = (ppn << 12) + (vpn * (PTESIZE / 8;
 TranslationResult pte_phys = translate_gstage(pte_gpaddr, vaddr, MemoryOperation::Read, effective_mode, encoding);
 if (!pma_applies?(PmaAttribute::HardwarePageTableRead, pte_phys.paddr, PTESIZE)) {
 raise(access_fault_code, mode(), vaddr);
 }
 access_check(pte_phys.paddr, PTESIZE, vaddr, MemoryOperation::Read, access_fault_code, effective_mode);
 Bits<PTESIZE> pte = read_physical_memory<PTESIZE>(pte_phys.paddr);
 PteFlags pte_flags = pte[9:0];
 Boolean ss_page = (pte_flags.R == 0) && (pte_flags.W == 1) && (pte_flags.X == 0);
 if ((VA_SIZE != 32) && (pte[58:54] != 0)) {
 raise(page_fault_code, mode(), vaddr);
 }
 if (pte_flags.V == 0) {
 raise(page_fault_code, mode(), vaddr);
 }
 if (!sse) {
 if ((pte_flags.R == 0) && (pte_flags.W == 1)) {
 raise(page_fault_code, mode(), vaddr);
 }
 }
 if (pbmte) {
 if (pte[62:61] == 3) {
 raise(page_fault_code, mode(), vaddr);
 }
 } else {
 if ((PTESIZE >= 64) && (pte[62:61] != 0)) {
 raise(page_fault_code, mode(), vaddr);
 }
 }
 if (!implemented?(ExtensionName::Svrsw60t59b)) {
 if ((PTESIZE >= 64) && pte[60:59] != 0) {
 raise(page_fault_code, mode(), vaddr);
 }
 }
 if (!implemented?(ExtensionName::Svnapot)) {
 if ((PTESIZE >= 64) && (pte[63] != 0)) {
 raise(page_fault_code, mode(), vaddr);
 }
 }
 if (pte_flags.R == 1 || pte_flags.X == 1) {
 Bits<PA_SIZE> paddr_base = pte[PA_SIZE - 3:I * VPN_SIZE + 10] `<< (I * VPN_SIZE + 12);
 Bits<PA_SIZE> offset = vaddr[I * VPN_SIZE + 11:0];
 if (op == MemoryOperation::Read || op == MemoryOperation::ReadModifyWrite) {
 if (!mxr) && (pte_flags.R == 0 || mxr) && (pte_flags.X == 0 && pte_flags.R == 0) {
 raise(page_fault_code, mode(), vaddr);
 }
 if (effective_mode == PrivilegeMode::U && pte_flags.U == 0) {
 raise(page_fault_code, mode(), vaddr);
 } else if (CSR[misa].H == 1 && effective_mode == PrivilegeMode::VU && pte_flags.U == 0) {
 raise(page_fault_code, mode(), vaddr);
 } else if (effective_mode == PrivilegeMode::S && pte_flags.U == 1 && !sum) {
 raise(page_fault_code, mode(), vaddr);
 } else if (effective_mode == PrivilegeMode::VS && pte_flags.U == 1 && !sum) {
 raise(page_fault_code, mode(), vaddr);
 }
 }

333

 if (op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite && (pte_flags.W == 0)) {
 raise(page_fault_code, mode(), vaddr);
 } else if ((op == MemoryOperation::Fetch) && (pte_flags.X == 0)) {
 raise(page_fault_code, mode(), vaddr);
 } else if ((op == MemoryOperation::Fetch) && ss_page) {
 raise(page_fault_code, mode(), vaddr);
 }
 raise(page_fault_code, mode(), vaddr) if;
 if ((pte_flags.A == 0) || pte_flags.D == 0) && ((op == MemoryOperation::Write) || (op == MemoryOperation::ReadModifyWrite)) {
 if (adue) {
 TranslationResult pte_phys = translate_gstage(pte_gpaddr, vaddr, MemoryOperation::Write, effective_mode, encoding);
 if (!pma_applies?(PmaAttribute::RsrvEventual, pte_phys.paddr, PTESIZE)) {
 raise(access_fault_code, effective_mode, vaddr);
 }
 if (!pma_applies?(PmaAttribute::HardwarePageTableWrite, pte_phys.paddr, PTESIZE)) {
 raise(access_fault_code, effective_mode, vaddr);
 }
 access_check(pte_phys.paddr, PTESIZE, vaddr, MemoryOperation::Write, access_fault_code, effective_mode);
 Boolean success;
 Bits<PTESIZE> updated_pte;
 if (pte_flags.D == 0 && (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite)) {
 updated_pte = pte | 0b11000000;
 } else {
 updated_pte = pte | 0b01000000;
 }
 if (PTESIZE == 32) {
 success = atomic_check_then_write_32(pte_phys.paddr, pte, updated_pte);
 } else if (PTESIZE == 64) {
 success = atomic_check_then_write_64(pte_phys.paddr, pte, updated_pte);
 } else {
 assert(false, "Unexpected PTESIZE");
 }
 if (!success) {
 I = I + 1;
 } else {
 TranslationResult pte_phys = translate_gstage(paddr_base + offset, vaddr, op, effective_mode, encoding);
 result.paddr = pte_phys.paddr;
 result.pbmt = pte_phys.pbmt == Pbmt::PMA ? $enum(Pbmt, pte[62:61]) : pte_phys.pbmt;
 result.pte_flags = pte_flags;
 return result;
 }
 } else {
 raise(page_fault_code, mode(), vaddr);
 }
 }
 TranslationResult pte_phys = translate_gstage(paddr_base + offset, vaddr, op, effective_mode, encoding);
 result.paddr = pte_phys.paddr;
 if (PTESIZE >= 64) {
 result.pbmt = pte_phys.pbmt == Pbmt::PMA ? $enum(Pbmt, pte[62:61]) : pte_phys.pbmt;
 }
 result.pte_flags = pte_flags;
 return result;
 } else {
 if (I == 0) {
 raise(page_fault_code, mode(), vaddr);
 }
 if (pte_flags.D == 1 || pte_flags.A == 1 || pte_flags.U == 1) {
 raise(page_fault_code, mode(), vaddr);
 }
 if ((VA_SIZE != 32) && (pte[62:61] != 0)) {
 raise(page_fault_code, mode(), vaddr);
 }
 if ((VA_SIZE != 32) && pte[63] != 0) {
 raise(page_fault_code, mode(), vaddr);
 }
 ppn = pte[PA_SIZE - 3:10];
 }
}

E.171. translate
Translate a virtual address for operation type op that appears to execute at effective_mode.

334

The translation will depend on the effective privilege mode.

May raise a Page Fault or Access Fault.

The final physical address is not access checked (for PMP, PMA, etc., violations). (though intermediate page table reads will be)

Return Type
TranslationResult

Arguments
XReg vaddr, MemoryOperation op, PrivilegeMode effective_mode, Bits<INSTR_ENC_SIZE>
encoding

Boolean cached_translation_valid;
CachedTranslationResult cached_translation_result;
cached_translation_result = cached_translation(vaddr, op);
if (cached_translation_result.valid) {
 return cached_translation_result.result;
}
TranslationResult result;
if (effective_mode == PrivilegeMode::M) {
 result.paddr = vaddr;
 return result;
}
SatpMode translation_mode = current_translation_mode(effective_mode);
if (translation_mode == SatpMode::Reserved) {
 if (op == MemoryOperation::Read) {
 raise(ExceptionCode::LoadPageFault, mode(), vaddr);
 } else if (op == MemoryOperation::Write || op == MemoryOperation::ReadModifyWrite) {
 raise(ExceptionCode::StoreAmoPageFault, mode(), vaddr);
 } else {
 assert(op == MemoryOperation::Fetch, "Unexpected memory operation");
 raise(ExceptionCode::InstructionPageFault, mode(), vaddr);
 }
}
if (translation_mode == SatpMode::Bare) {
 result.paddr = vaddr;
} else if (xlen() == 32 && translation_mode == SatpMode::Sv32) {
 result = stage1_page_walk<32, 34, 32, 2>(vaddr, op, effective_mode, encoding);
} else if (xlen() == 64 && translation_mode == SatpMode::Sv39) {
 result = stage1_page_walk<39, 56, 64, 3>(vaddr, op, effective_mode, encoding);
} else if (xlen() == 64 && translation_mode == SatpMode::Sv48) {
 result = stage1_page_walk<48, 56, 64, 4>(vaddr, op, effective_mode, encoding);
} else if (xlen() == 64 && translation_mode == SatpMode::Sv57) {
 result = stage1_page_walk<57, 56, 64, 5>(vaddr, op, effective_mode, encoding);
} else {
 assert(false, "Unexpected SatpMode");
}
maybe_cache_translation(vaddr, op, result);
return result;

E.172. canonical_vaddr?
Returns whether or not vaddr is a valid (i.e., canonical) virtual address.

If pointer masking (S**pm) is enabled, then vaddr will be masked before checking the canonical address.

Return Type
Boolean

Arguments
XReg vaddr

if (CSR[misa].S == 1'b0) {
 return true;
}
SatpMode satp_mode;
if (virtual_mode?()) {
 satp_mode = $enum(SatpMode, CSR[vsatp].MODE);
} else {
 satp_mode = $enum(SatpMode, CSR[satp].MODE);

335

}
XReg eaddr = mask_eaddr(vaddr);
if (SATP_MODE_BARE && (satp_mode == SatpMode::Bare)) {
 return true;
} else if ((MXLEN == 32) && satp_mode == SatpMode::Sv32) {
 return true;
} else if ((MXLEN == 64) && satp_mode == SatpMode::Sv39) {
 return eaddr[63:39] == {25{eaddr[38]}};
} else if ((MXLEN == 64) && satp_mode == SatpMode::Sv48) {
 return eaddr[63:48] == {16{eaddr[47]}};
} else if ((MXLEN == 64) && satp_mode == SatpMode::Sv57) {
 return eaddr[63:57] == {6{eaddr[56]}};
}

E.173. canonical_gpaddr?
Returns whether or not gpaddr is a valid (i.e., canonical) guest physical address.

Return Type
Boolean

Arguments
XReg gpaddr

SatpMode satp_mode = $enum(SatpMode, CSR[satp].MODE);
if (satp_mode == SatpMode::Bare) {
 return true;
} else if (satp_mode == SatpMode::Sv32) {
 return true;
} else if ((MXLEN > 32) && (satp_mode == SatpMode::Sv39)) {
 return gpaddr[63:39] == {25{gpaddr[38]}};
} else if ((MXLEN > 32) && (satp_mode == SatpMode::Sv48)) {
 return gpaddr[63:48] == {16{gpaddr[47]}};
} else if ((MXLEN > 32) && (satp_mode == SatpMode::Sv57)) {
 return gpaddr[63:57] == {6{gpaddr[56]}};
}

E.174. misaligned_is_atomic?
Returns true if an access starting at physical_address that is N bits long is atomic.

This function takes into account any Atomicity Granule PMAs, so it should not be used for load-reserved/store-conditional, since those PMAs do
not apply to those accesses.

Return Type
Boolean

Arguments
Bits<PHYS_ADDR_WIDTH> physical_address

return false if (MISALIGNED_MAX_ATOMICITY_GRANULE_SIZE == 0);
if (pma_applies?(PmaAttribute::MAG16, physical_address, N) && in_naturally_aligned_region?<128>(physical_address, N)) {
 return true;
} else if (pma_applies?(PmaAttribute::MAG8, physical_address, N) && in_naturally_aligned_region?<64>(physical_address, N)) {
 return true;
} else if (pma_applies?(PmaAttribute::MAG4, physical_address, N) && in_naturally_aligned_region?<32>(physical_address, N)) {
 return true;
} else if (pma_applies?(PmaAttribute::MAG2, physical_address, N) && in_naturally_aligned_region?<16>(physical_address, N)) {
 return true;
} else {
 return false;
}

E.175. read_memory_aligned
Read from virtual memory using a known aligned address.

336

Return Type
Bits<LEN>

Arguments
XReg virtual_address, Bits<INSTR_ENC_SIZE> encoding

TranslationResult result;
if (CSR[misa].S == 1) {
 result = translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(), encoding);
} else {
 result.paddr = virtual_address;
}
access_check(result.paddr, LEN, virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault, effective_ldst_mode());
return read_physical_memory<LEN>(result.paddr);

E.176. read_memory
Read from virtual memory.

Return Type
Bits<LEN>

Arguments
XReg virtual_address, Bits<INSTR_ENC_SIZE> encoding

Boolean aligned = is_naturally_aligned<LEN>(virtual_address);
XReg physical_address;
if (aligned) {
 return read_memory_aligned<LEN>(virtual_address, encoding);
}
if (MISALIGNED_MAX_ATOMICITY_GRANULE_SIZE > 0) {
 assert(MISALIGNED_LDST_EXCEPTION_PRIORITY == "low", "Invalid config: can't mix low-priority misaligned exceptions with large
atomicity granule");
 physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(), encoding).paddr
: virtual_address;
 if (misaligned_is_atomic?<LEN>(physical_address)) {
 access_check(physical_address, LEN, virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault,
effective_ldst_mode());
 return read_physical_memory<LEN>(physical_address);
 }
}
if (!MISALIGNED_LDST) {
 if (MISALIGNED_LDST_EXCEPTION_PRIORITY == "low") {
 physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(),
encoding).paddr : virtual_address;
 access_check(physical_address, LEN, virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault,
effective_ldst_mode());
 }
 raise(ExceptionCode::LoadAddressMisaligned, mode(), virtual_address);
} else {
 if (MISALIGNED_SPLIT_STRATEGY == "sequential_bytes") {
 Bits<LEN> result = 0;
 for (U32 I = 0; I < (LEN / 8); I++) {
 result = result | (read_memory_aligned<8>(virtual_address + I, encoding) `<< (8 * I));
 }
 return result;
 } else if (MISALIGNED_SPLIT_STRATEGY == "custom") {
 unpredictable("An implementation is free to break a misaligned access any way, leading to unpredictable behavior when any part
of the misaligned access causes an exception");
 }
}

E.177. read_memory_xlen
Read XLEN bits from memory

Return Type
Bits<MXLEN>

337

Arguments
XReg virtual_address, Bits<INSTR_ENC_SIZE> encoding

if (xlen() == 32) {
 return read_memory<32>(virtual_address, encoding);
} else {
 return read_memory<64>(virtual_address, encoding);
}

E.178. write_memory_xlen
Read XLEN bits from memory

Return Type
void

Arguments
XReg virtual_address, Bits<MXLEN> value, Bits<INSTR_ENC_SIZE> encoding

if (xlen() == 32) {
 return write_memory<32>(virtual_address, value, encoding);
} else {
 return write_memory<64>(virtual_address, value, encoding);
}

E.179. read_memory_xlen_aligned
Read from virtual memory XLEN (which may be runtime-determined) bits using a known aligned address.

Return Type
Bits<MXLEN>

Arguments
XReg virtual_address, Bits<INSTR_ENC_SIZE> encoding

TranslationResult result;
if (CSR[misa].S == 1) {
 result = translate(virtual_address, MemoryOperation::Read, effective_ldst_mode(), encoding);
} else {
 result.paddr = virtual_address;
}
access_check(result.paddr, xlen(), virtual_address, MemoryOperation::Read, ExceptionCode::LoadAccessFault, effective_ldst_mode());
if (xlen() == 32) {
 return read_physical_memory<32>(result.paddr);
} else {
 return read_physical_memory<64>(result.paddr);
}

E.180. invalidate_reservation_set
Invalidates any currently held reservation set.



This function may be called by the platform, independent of any actions occurring in the local hart, for any or no reason.

The platform must call this function if an external hart or device accesses part of this reservation set while reservation_set_valid
could be true.

Return Type
void

Arguments None

reservation_set_valid = false;

338

E.181. register_reservation_set
Register a reservation for a physical address range that subsumes [physical_address, physical_address + N).

Return Type
void

Arguments
Bits<MXLEN> physical_address, Bits<MXLEN> length

reservation_set_valid = true;
reservation_set_address = physical_address;
if (LRSC_RESERVATION_STRATEGY == "reserve naturally-aligned 64-byte region") {
 reservation_set_address = physical_address & ~MXLEN'h3f;
 reservation_set_size = 64;
} else if (LRSC_RESERVATION_STRATEGY == "reserve naturally-aligned 128-byte region") {
 reservation_set_address = physical_address & ~MXLEN'h7f;
 reservation_set_size = 128;
} else if (LRSC_RESERVATION_STRATEGY == "reserve exactly enough to cover the access") {
 reservation_set_address = physical_address;
 reservation_set_size = length;
} else if (LRSC_RESERVATION_STRATEGY == "custom") {
 unpredictable("Implementations may set reservation sets of any size, as long as they cover the reserved accessed");
} else {
 assert(false, "Unexpected LRSC_RESERVATION_STRATEGY");
}

E.182. load_reserved
Register a reservation for virtual_address at least N bits long and read the value from memory.

If aq is set, then also perform a memory model acquire.

If rl is set, then also perform a memory model release (software is discouraged from doing so).

This function assumes alignment checks have already occurred.

Return Type
Bits<N>

Arguments
Bits<MXLEN> virtual_address, Bits<1> aq, Bits<1> rl, Bits<INSTR_ENC_SIZE>
encoding

Bits<PHYS_ADDR_WIDTH> physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Read,
effective_ldst_mode(), encoding).paddr : virtual_address;
if (pma_applies?(PmaAttribute::RsrvNone, physical_address, N)) {
 raise(ExceptionCode::LoadAccessFault, mode(), virtual_address);
}
if (aq == 1) {
 memory_model_acquire();
}
if (rl == 1) {
 memory_model_release();
}
register_reservation_set(physical_address, N);
if (CSR[misa].S == 1 && LRSC_FAIL_ON_VA_SYNONYM) {
 reservation_virtual_address = virtual_address;
}
return read_memory_aligned<N>(physical_address, encoding);

E.183. store_conditional
Atomically check the reservation set to ensure:

• it is valid

• it covers the region addressed by this store

• the address setting the reservation set matches virtual address

339

If the preceding are met, perform the store and return 0. Otherwise, return 1.

Return Type
Boolean

Arguments
Bits<MXLEN> virtual_address, Bits<MXLEN> value, Bits<1> aq, Bits<1> rl,
Bits<INSTR_ENC_SIZE> encoding

Bits<PHYS_ADDR_WIDTH> physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write,
effective_ldst_mode(), encoding).paddr : virtual_address;
if (pma_applies?(PmaAttribute::RsrvNone, physical_address, N)) {
 raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
}
access_check(physical_address, N, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective_ldst_mode());
if (aq == 1) {
 memory_model_acquire();
}
if (rl == 1) {
 memory_model_release();
}
if (reservation_set_valid == false) {
 return false;
}
if (!contains?(reservation_set_address, reservation_set_size, physical_address, N)) {
 invalidate_reservation_set();
 return false;
}
if (LRSC_FAIL_ON_NON_EXACT_LRSC) {
 if (reservation_physical_address != physical_address || reservation_size != N) {
 invalidate_reservation_set();
 return false;
 }
}
if (LRSC_FAIL_ON_VA_SYNONYM) {
 if (reservation_virtual_address != virtual_address || reservation_size != N) {
 invalidate_reservation_set();
 return false;
 }
}
write_physical_memory<N>(physical_address, value);
return true;

E.184. amo
Atomically read-modify-write the location at virtual_address.

The value written to virtual_address will depend on op.

If aq is 1, then the amo also acts as a memory model acquire. If rl is 1, then the amo also acts as a memory model release.

Return Type
Bits<N>

Arguments
XReg virtual_address, Bits<N> value, AmoOperation op, Bits<1> aq, Bits<1> rl,
Bits<INSTR_ENC_SIZE> encoding

Boolean aligned = is_naturally_aligned<N>(virtual_address);
if (!aligned && MISALIGNED_LDST_EXCEPTION_PRIORITY == "high") {
 raise(ExceptionCode::StoreAmoAddressMisaligned, mode(), virtual_address);
}
Bits<PHYS_ADDR_WIDTH> physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::ReadModifyWrite,
effective_ldst_mode(), encoding).paddr : virtual_address;
if (pma_applies?(PmaAttribute::AmoNone, physical_address, N)) {
 raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
} else if (op == AmoOperation::Add || op == AmoOperation::Max || op == AmoOperation::Maxu || op == AmoOperation::Min || op ==
AmoOperation::Minu && !pma_applies?(PmaAttribute::AmoArithmetic, physical_address, N)) {
 raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
} else if (op == AmoOperation::And || op == AmoOperation::Or || op == AmoOperation::Xor && !pma_applies?(PmaAttribute::AmoLogical,

340

physical_address, N)) {
 raise(ExceptionCode::StoreAmoAccessFault, mode(), virtual_address);
} else {
 assert(pma_applies?(PmaAttribute::AmoSwap, physical_address, N) && op == AmoOperation::Swap, "Bad AMO operation");
}
if (!aligned && !misaligned_is_atomic?<N>(physical_address)) {
 raise(ExceptionCode::StoreAmoAddressMisaligned, mode(), virtual_address);
}
if (N == 32) {
 return atomic_read_modify_write_32(physical_address, value, op);
} else {
 return atomic_read_modify_write_64(physical_address, value, op);
}

E.185. write_memory_aligned
Write to virtual memory using a known aligned address.

Return Type
void

Arguments
XReg virtual_address, Bits<LEN> value, Bits<INSTR_ENC_SIZE> encoding

XReg physical_address;
physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(), encoding).paddr :
virtual_address;
access_check(physical_address, LEN, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective_ldst_mode());
write_physical_memory<LEN>(physical_address, value);

E.186. write_memory
Write to virtual memory

Return Type
void

Arguments
XReg virtual_address, Bits<LEN> value, Bits<INSTR_ENC_SIZE> encoding

Boolean aligned = is_naturally_aligned<LEN>(virtual_address);
XReg physical_address;
if (aligned) {
 write_memory_aligned<LEN>(virtual_address, value, encoding);
 return ;
}
if (MISALIGNED_MAX_ATOMICITY_GRANULE_SIZE > 0) {
 assert(MISALIGNED_LDST_EXCEPTION_PRIORITY == "low", "Invalid config: can't mix low-priority misaligned exceptions with large
atomicity granule");
 physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(), encoding).paddr
: virtual_address;
 if (misaligned_is_atomic?<LEN>(physical_address)) {
 access_check(physical_address, LEN, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective_ldst_mode());
 write_physical_memory<LEN>(physical_address, value);
 return ;
 }
}
if (!MISALIGNED_LDST) {
 if (MISALIGNED_LDST_EXCEPTION_PRIORITY == "low") {
 physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(),
encoding).paddr : virtual_address;
 access_check(physical_address, LEN, virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective_ldst_mode());
 }
 raise(ExceptionCode::StoreAmoAddressMisaligned, mode(), virtual_address);
} else {
 if (MISALIGNED_SPLIT_STRATEGY == "sequential_bytes") {
 for (U32 I = 0; I < (LEN / 8); I++) {

341

 write_memory_aligned<8>(virtual_address + I, (value >> (8 * I))[7:0], encoding);
 }
 } else if (MISALIGNED_SPLIT_STRATEGY == "custom") {
 unpredictable("An implementation is free to break a misaligned access any way, leading to unpredictable behavior when any part
of the misaligned access causes an exception");
 }
}

E.187. write_memory_xlen_aligned
Write to virtual memory XLEN bits (which may be runtime determined) using a known aligned address.

Return Type
void

Arguments
XReg virtual_address, Bits<MXLEN> value, Bits<INSTR_ENC_SIZE> encoding

XReg physical_address;
physical_address = (CSR[misa].S == 1) ? translate(virtual_address, MemoryOperation::Write, effective_ldst_mode(), encoding).paddr :
virtual_address;
access_check(physical_address, xlen(), virtual_address, MemoryOperation::Write, ExceptionCode::StoreAmoAccessFault,
effective_ldst_mode());
if (xlen() == 32) {
 write_physical_memory<32>(physical_address, value);
} else {
 write_physical_memory<64>(physical_address, value);
}

E.188. mstatus_sd_has_known_reset
Returns true if the mstatus.SD bit has a defined reset value, as determined by various parameters.

Return Type
Boolean

Arguments None

Boolean fs_has_single_value = !implemented?(ExtensionName::F || ($array_size(MSTATUS_FS_LEGAL_VALUES) == 1));
Boolean vs_has_single_value = !implemented?(ExtensionName::V || ($array_size(MSTATUS_VS_LEGAL_VALUES) == 1));
return fs_has_single_value && vs_has_single_value;

E.189. mstatus_sd_reset_value
Returns the reset value of mstatus.SD when known

Return Type
Bits①

Arguments None

assert(mstatus_sd_has_known_reset(), "mstatus_sd_reset_value is only defined when mstatus_sd_has_known_reset() == true");
Bits<2> fs_value, vs_value;
if ((!implemented?(ExtensionName::F)) || ($array_size(MSTATUS_FS_LEGAL_VALUES) == 1)) {
 fs_value = (!implemented?(ExtensionName::F)) ? 0 : MSTATUS_FS_LEGAL_VALUES[0];
}
if ((!implemented?(ExtensionName::V)) || ($array_size(MSTATUS_VS_LEGAL_VALUES) == 1)) {
 fs_value = (!implemented?(ExtensionName::V)) ? 0 : MSTATUS_VS_LEGAL_VALUES[0];
}
return fs_value == 3) || (vs_value == 3 ? 1 : 0;

E.190. check_zcmt_enabled
If the Smstateen extension is implemented, then bit 2 in mstateen0, sstateen0, and hstateen0 is implemented. If bit 2 of a controlling stateen0 CSR is
zero, then access to the jvt CSR and execution of a cm.jalt or cm.jt instruction by a lower privilege level results in an illegal-instruction trap (or, if
appropriate, a virtual-instruction trap).

342

Return Type
void

Arguments
Bits<INSTR_ENC_SIZE> encoding

if ((mode() != PrivilegeMode::M && implemented?(ExtensionName::Smstateen) && CSR[mstateen0].JVT == 1'b0) || (mode() ==
PrivilegeMode::U && implemented?(ExtensionName::Ssstateen) && CSR[sstateen0].JVT == 1'b0)) {
 raise(ExceptionCode::IllegalInstruction, mode(), encoding);
} else if ((mode() == PrivilegeMode::VS && implemented?(ExtensionName::Ssstateen) && CSR[hstateen0].JVT == 1'b0) || (mode() ==
PrivilegeMode::VU && implemented?(ExtensionName::Ssstateen) && (CSR[sstateen0].JVT == 1'b0 || CSR[hstateen0].JVT == 1'b0))) {
 raise(ExceptionCode::VirtualInstruction, mode(), encoding);
}

343

	RVI20 Profile Release
	Table of Contents
	Copyright and license information
	Acknowledgements
	1. RISC-V Profiles
	1.1. Profiles versus Platforms
	1.2. Components of a Profile
	1.2.1. Profile Family
	1.2.2. Profile Privilege Mode
	1.2.3. Profile ISA Features

	2. RVI Profile Family
	2.1. RVI Description
	2.2. RVI Naming Scheme
	2.3. RVI Profile Releases

	3. RVI20 Profile Release
	3.1. RVI20 Description
	3.2. RVI20U32 Profile
	3.2.1. Mandatory Extensions
	3.2.2. Optional Extensions
	3.2.3. Recommendations
	3.2.4. Implementation-dependencies

	3.3. RVI20U64 Profile
	3.3.1. Mandatory Extensions
	3.3.2. Optional Extensions
	3.3.3. Recommendations
	3.3.4. Implementation-dependencies

	Appendix A: Profile Comparisons
	A.1. Generic Unprivileged Profile Releases
	A.2. RVI Profile Releases
	A.3. RVI20 Profiles

	Appendix B: Extension Details
	B.1. Extension A
	B.1.1. Available Versions
	B.1.2. Synopsis
	B.1.3. Specifying Ordering of Atomic Instructions

	B.2. Extension C
	B.2.1. Available Versions
	B.2.2. Synopsis
	B.2.3. Overview
	B.2.4. Compressed Instruction Formats

	B.3. Extension D
	B.3.1. Available Versions
	B.3.2. Synopsis
	B.3.3. D Register State
	B.3.4. NaN Boxing of Narrower Values
	B.3.5. Instructions

	B.4. Extension F
	B.4.1. Available Versions
	B.4.2. Synopsis
	B.4.3. F Register State
	Floating-Point Control and Status Register

	B.4.4. NaN Generation and Propagation
	B.4.5. Subnormal Arithmetic
	B.4.6. Instructions
	B.4.7. CSRs

	B.5. Extension I
	B.5.1. Available Versions
	B.5.2. Synopsis
	B.5.3. Instructions

	B.6. Extension M
	B.6.1. Available Versions
	B.6.2. Synopsis
	B.6.3. Instructions

	B.7. Extension Zca
	B.7.1. Available Versions
	B.7.2. Synopsis
	B.7.3. Instructions

	B.8. Extension Zcd
	B.8.1. Available Versions
	B.8.2. Synopsis
	B.8.3. Instructions

	B.9. Extension Zcf
	B.9.1. Available Versions
	B.9.2. Synopsis
	B.9.3. Instructions

	B.10. Extension Zicntr
	B.10.1. Available Versions
	B.10.2. Synopsis
	B.10.3. CSRs
	B.10.4. Parameters

	B.11. Extension Zifencei
	B.11.1. Available Versions
	B.11.2. Synopsis
	B.11.3. Instructions

	B.12. Extension Zihpm
	B.12.1. Available Versions
	B.12.2. Synopsis
	B.12.3. CSRs

	Appendix C: Instruction Details
	C.1. add
	C.1.1. Encoding
	C.1.2. Description
	C.1.3. Access
	C.1.4. Decode Variables
	C.1.5. IDL Operation
	C.1.6. Sail Operation
	C.1.7. Exceptions

	C.2. addi
	C.2.1. Encoding
	C.2.2. Description
	C.2.3. Access
	C.2.4. Decode Variables
	C.2.5. IDL Operation
	C.2.6. Sail Operation
	C.2.7. Exceptions

	C.3. and
	C.3.1. Encoding
	C.3.2. Description
	C.3.3. Access
	C.3.4. Decode Variables
	C.3.5. IDL Operation
	C.3.6. Sail Operation
	C.3.7. Exceptions

	C.4. andi
	C.4.1. Encoding
	C.4.2. Description
	C.4.3. Access
	C.4.4. Decode Variables
	C.4.5. IDL Operation
	C.4.6. Sail Operation
	C.4.7. Exceptions

	C.5. auipc
	C.5.1. Encoding
	C.5.2. Description
	C.5.3. Access
	C.5.4. Decode Variables
	C.5.5. IDL Operation
	C.5.6. Sail Operation
	C.5.7. Exceptions

	C.6. beq
	C.6.1. Encoding
	C.6.2. Description
	C.6.3. Access
	C.6.4. Decode Variables
	C.6.5. IDL Operation
	C.6.6. Sail Operation
	C.6.7. Exceptions

	C.7. bge
	C.7.1. Encoding
	C.7.2. Description
	C.7.3. Access
	C.7.4. Decode Variables
	C.7.5. IDL Operation
	C.7.6. Sail Operation
	C.7.7. Exceptions

	C.8. bgeu
	C.8.1. Encoding
	C.8.2. Description
	C.8.3. Access
	C.8.4. Decode Variables
	C.8.5. IDL Operation
	C.8.6. Sail Operation
	C.8.7. Exceptions

	C.9. blt
	C.9.1. Encoding
	C.9.2. Description
	C.9.3. Access
	C.9.4. Decode Variables
	C.9.5. IDL Operation
	C.9.6. Sail Operation
	C.9.7. Exceptions

	C.10. bltu
	C.10.1. Encoding
	C.10.2. Description
	C.10.3. Access
	C.10.4. Decode Variables
	C.10.5. IDL Operation
	C.10.6. Sail Operation
	C.10.7. Exceptions

	C.11. bne
	C.11.1. Encoding
	C.11.2. Description
	C.11.3. Access
	C.11.4. Decode Variables
	C.11.5. IDL Operation
	C.11.6. Sail Operation
	C.11.7. Exceptions

	C.12. c.add
	C.12.1. Encoding
	C.12.2. Description
	C.12.3. Access
	C.12.4. Decode Variables
	C.12.5. IDL Operation
	C.12.6. Sail Operation
	C.12.7. Exceptions

	C.13. c.addi
	C.13.1. Encoding
	C.13.2. Description
	C.13.3. Access
	C.13.4. Decode Variables
	C.13.5. IDL Operation
	C.13.6. Exceptions

	C.14. c.addi16sp
	C.14.1. Encoding
	C.14.2. Description
	C.14.3. Access
	C.14.4. Decode Variables
	C.14.5. IDL Operation
	C.14.6. Exceptions

	C.15. c.addi4spn
	C.15.1. Encoding
	C.15.2. Description
	C.15.3. Access
	C.15.4. Decode Variables
	C.15.5. IDL Operation
	C.15.6. Exceptions

	C.16. c.and
	C.16.1. Encoding
	C.16.2. Description
	C.16.3. Access
	C.16.4. Decode Variables
	C.16.5. IDL Operation
	C.16.6. Sail Operation
	C.16.7. Exceptions

	C.17. c.andi
	C.17.1. Encoding
	C.17.2. Description
	C.17.3. Access
	C.17.4. Decode Variables
	C.17.5. IDL Operation
	C.17.6. Sail Operation
	C.17.7. Exceptions

	C.18. c.beqz
	C.18.1. Encoding
	C.18.2. Description
	C.18.3. Access
	C.18.4. Decode Variables
	C.18.5. IDL Operation
	C.18.6. Sail Operation
	C.18.7. Exceptions

	C.19. c.bnez
	C.19.1. Encoding
	C.19.2. Description
	C.19.3. Access
	C.19.4. Decode Variables
	C.19.5. IDL Operation
	C.19.6. Sail Operation
	C.19.7. Exceptions

	C.20. c.ebreak
	C.20.1. Encoding
	C.20.2. Description
	C.20.3. Access
	C.20.4. Decode Variables
	C.20.5. IDL Operation
	C.20.6. Sail Operation
	C.20.7. Exceptions

	C.21. c.fld
	C.21.1. Encoding
	C.21.2. Description
	C.21.3. Access
	C.21.4. Decode Variables
	C.21.5. IDL Operation
	C.21.6. Exceptions

	C.22. c.fldsp
	C.22.1. Encoding
	C.22.2. Description
	C.22.3. Access
	C.22.4. Decode Variables
	C.22.5. IDL Operation
	C.22.6. Exceptions

	C.23. c.flw
	C.23.1. Encoding
	C.23.2. Description
	C.23.3. Access
	C.23.4. Decode Variables
	C.23.5. IDL Operation
	C.23.6. Exceptions

	C.24. c.flwsp
	C.24.1. Encoding
	C.24.2. Description
	C.24.3. Access
	C.24.4. Decode Variables
	C.24.5. IDL Operation
	C.24.6. Exceptions

	C.25. c.fsd
	C.25.1. Encoding
	C.25.2. Description
	C.25.3. Access
	C.25.4. Decode Variables
	C.25.5. IDL Operation
	C.25.6. Exceptions

	C.26. c.fsdsp
	C.26.1. Encoding
	C.26.2. Description
	C.26.3. Access
	C.26.4. Decode Variables
	C.26.5. IDL Operation
	C.26.6. Exceptions

	C.27. c.fsw
	C.27.1. Encoding
	C.27.2. Description
	C.27.3. Access
	C.27.4. Decode Variables
	C.27.5. IDL Operation
	C.27.6. Exceptions

	C.28. c.fswsp
	C.28.1. Encoding
	C.28.2. Description
	C.28.3. Access
	C.28.4. Decode Variables
	C.28.5. IDL Operation
	C.28.6. Exceptions

	C.29. c.j
	C.29.1. Encoding
	C.29.2. Description
	C.29.3. Access
	C.29.4. Decode Variables
	C.29.5. IDL Operation
	C.29.6. Exceptions

	C.30. c.jalr
	C.30.1. Encoding
	C.30.2. Description
	C.30.3. Access
	C.30.4. Decode Variables
	C.30.5. IDL Operation
	C.30.6. Exceptions

	C.31. c.jr
	C.31.1. Encoding
	C.31.2. Description
	C.31.3. Access
	C.31.4. Decode Variables
	C.31.5. IDL Operation
	C.31.6. Exceptions

	C.32. c.li
	C.32.1. Encoding
	C.32.2. Description
	C.32.3. Access
	C.32.4. Decode Variables
	C.32.5. IDL Operation
	C.32.6. Exceptions

	C.33. c.lui
	C.33.1. Encoding
	C.33.2. Description
	C.33.3. Access
	C.33.4. Decode Variables
	C.33.5. IDL Operation
	C.33.6. Exceptions

	C.34. c.lw
	C.34.1. Encoding
	C.34.2. Description
	C.34.3. Access
	C.34.4. Decode Variables
	C.34.5. IDL Operation
	C.34.6. Sail Operation
	C.34.7. Exceptions

	C.35. c.lwsp
	C.35.1. Encoding
	C.35.2. Description
	C.35.3. Access
	C.35.4. Decode Variables
	C.35.5. IDL Operation
	C.35.6. Exceptions

	C.36. c.mv
	C.36.1. Encoding
	C.36.2. Description
	C.36.3. Access
	C.36.4. Decode Variables
	C.36.5. IDL Operation
	C.36.6. Sail Operation
	C.36.7. Exceptions

	C.37. c.nop
	C.37.1. Encoding
	C.37.2. Description
	C.37.3. Access
	C.37.4. Decode Variables
	C.37.5. IDL Operation
	C.37.6. Exceptions

	C.38. c.or
	C.38.1. Encoding
	C.38.2. Description
	C.38.3. Access
	C.38.4. Decode Variables
	C.38.5. IDL Operation
	C.38.6. Sail Operation
	C.38.7. Exceptions

	C.39. c.slli
	C.39.1. Encoding
	C.39.2. Description
	C.39.3. Access
	C.39.4. Decode Variables
	C.39.5. IDL Operation
	C.39.6. Sail Operation
	C.39.7. Exceptions

	C.40. c.srai
	C.40.1. Encoding
	C.40.2. Description
	C.40.3. Access
	C.40.4. Decode Variables
	C.40.5. IDL Operation
	C.40.6. Sail Operation
	C.40.7. Exceptions

	C.41. c.srli
	C.41.1. Encoding
	C.41.2. Description
	C.41.3. Access
	C.41.4. Decode Variables
	C.41.5. IDL Operation
	C.41.6. Sail Operation
	C.41.7. Exceptions

	C.42. c.sub
	C.42.1. Encoding
	C.42.2. Description
	C.42.3. Access
	C.42.4. Decode Variables
	C.42.5. IDL Operation
	C.42.6. Sail Operation
	C.42.7. Exceptions

	C.43. c.sw
	C.43.1. Encoding
	C.43.2. Description
	C.43.3. Access
	C.43.4. Decode Variables
	C.43.5. IDL Operation
	C.43.6. Exceptions

	C.44. c.swsp
	C.44.1. Encoding
	C.44.2. Description
	C.44.3. Access
	C.44.4. Decode Variables
	C.44.5. IDL Operation
	C.44.6. Exceptions

	C.45. c.xor
	C.45.1. Encoding
	C.45.2. Description
	C.45.3. Access
	C.45.4. Decode Variables
	C.45.5. IDL Operation
	C.45.6. Sail Operation
	C.45.7. Exceptions

	C.46. div
	C.46.1. Encoding
	C.46.2. Description
	C.46.3. Access
	C.46.4. Decode Variables
	C.46.5. IDL Operation
	C.46.6. Sail Operation
	C.46.7. Exceptions

	C.47. divu
	C.47.1. Encoding
	C.47.2. Description
	C.47.3. Access
	C.47.4. Decode Variables
	C.47.5. IDL Operation
	C.47.6. Sail Operation
	C.47.7. Exceptions

	C.48. ebreak
	C.48.1. Encoding
	C.48.2. Description
	C.48.3. Access
	C.48.4. Decode Variables
	C.48.5. IDL Operation
	C.48.6. Sail Operation
	C.48.7. Exceptions

	C.49. ecall
	C.49.1. Encoding
	C.49.2. Description
	C.49.3. Access
	C.49.4. Decode Variables
	C.49.5. IDL Operation
	C.49.6. Sail Operation
	C.49.7. Exceptions

	C.50. fadd.d
	C.50.1. Encoding
	C.50.2. Description
	C.50.3. Access
	C.50.4. Decode Variables
	C.50.5. IDL Operation
	C.50.6. Exceptions

	C.51. fadd.s
	C.51.1. Encoding
	C.51.2. Description
	C.51.3. Access
	C.51.4. Decode Variables
	C.51.5. IDL Operation
	C.51.6. Sail Operation
	C.51.7. Exceptions

	C.52. fclass.d
	C.52.1. Encoding
	C.52.2. Description
	C.52.3. Access
	C.52.4. Decode Variables
	C.52.5. IDL Operation
	C.52.6. Exceptions

	C.53. fclass.s
	C.53.1. Encoding
	C.53.2. Description
	C.53.3. Access
	C.53.4. Decode Variables
	C.53.5. IDL Operation
	C.53.6. Sail Operation
	C.53.7. Exceptions

	C.54. fcvt.d.s
	C.54.1. Encoding
	C.54.2. Description
	C.54.3. Access
	C.54.4. Decode Variables
	C.54.5. IDL Operation
	C.54.6. Exceptions

	C.55. fcvt.d.w
	C.55.1. Encoding
	C.55.2. Description
	C.55.3. Access
	C.55.4. Decode Variables
	C.55.5. IDL Operation
	C.55.6. Exceptions

	C.56. fcvt.d.wu
	C.56.1. Encoding
	C.56.2. Description
	C.56.3. Access
	C.56.4. Decode Variables
	C.56.5. IDL Operation
	C.56.6. Exceptions

	C.57. fcvt.s.d
	C.57.1. Encoding
	C.57.2. Description
	C.57.3. Access
	C.57.4. Decode Variables
	C.57.5. IDL Operation
	C.57.6. Exceptions

	C.58. fcvt.s.w
	C.58.1. Encoding
	C.58.2. Description
	C.58.3. Access
	C.58.4. Decode Variables
	C.58.5. IDL Operation
	C.58.6. Sail Operation
	C.58.7. Exceptions

	C.59. fcvt.s.wu
	C.59.1. Encoding
	C.59.2. Description
	C.59.3. Access
	C.59.4. Decode Variables
	C.59.5. IDL Operation
	C.59.6. Sail Operation
	C.59.7. Exceptions

	C.60. fcvt.w.d
	C.60.1. Encoding
	C.60.2. Description
	C.60.3. Access
	C.60.4. Decode Variables
	C.60.5. IDL Operation
	C.60.6. Exceptions

	C.61. fcvt.w.s
	C.61.1. Encoding
	C.61.2. Description
	C.61.3. Access
	C.61.4. Decode Variables
	C.61.5. IDL Operation
	C.61.6. Sail Operation
	C.61.7. Exceptions

	C.62. fcvt.wu.d
	C.62.1. Encoding
	C.62.2. Description
	C.62.3. Access
	C.62.4. Decode Variables
	C.62.5. IDL Operation
	C.62.6. Exceptions

	C.63. fcvt.wu.s
	C.63.1. Encoding
	C.63.2. Description
	C.63.3. Access
	C.63.4. Decode Variables
	C.63.5. IDL Operation
	C.63.6. Sail Operation
	C.63.7. Exceptions

	C.64. fdiv.d
	C.64.1. Encoding
	C.64.2. Description
	C.64.3. Access
	C.64.4. Decode Variables
	C.64.5. IDL Operation
	C.64.6. Exceptions

	C.65. fdiv.s
	C.65.1. Encoding
	C.65.2. Description
	C.65.3. Access
	C.65.4. Decode Variables
	C.65.5. IDL Operation
	C.65.6. Sail Operation
	C.65.7. Exceptions

	C.66. fence
	C.66.1. Encoding
	C.66.2. Description
	C.66.3. Access
	C.66.4. Decode Variables
	C.66.5. IDL Operation
	C.66.6. Sail Operation
	C.66.7. Exceptions

	C.67. fence.i
	C.67.1. Encoding
	C.67.2. Description
	C.67.3. Access
	C.67.4. Decode Variables
	C.67.5. IDL Operation
	C.67.6. Sail Operation
	C.67.7. Exceptions

	C.68. fence.tso
	C.68.1. Encoding
	C.68.2. Description
	C.68.3. Access
	C.68.4. Decode Variables
	C.68.5. IDL Operation
	C.68.6. Sail Operation
	C.68.7. Exceptions

	C.69. feq.d
	C.69.1. Encoding
	C.69.2. Description
	C.69.3. Access
	C.69.4. Decode Variables
	C.69.5. IDL Operation
	C.69.6. Exceptions

	C.70. feq.s
	C.70.1. Encoding
	C.70.2. Description
	C.70.3. Access
	C.70.4. Decode Variables
	C.70.5. IDL Operation
	C.70.6. Sail Operation
	C.70.7. Exceptions

	C.71. fld
	C.71.1. Encoding
	C.71.2. Description
	C.71.3. Access
	C.71.4. Decode Variables
	C.71.5. IDL Operation
	C.71.6. Exceptions

	C.72. fle.d
	C.72.1. Encoding
	C.72.2. Description
	C.72.3. Access
	C.72.4. Decode Variables
	C.72.5. IDL Operation
	C.72.6. Exceptions

	C.73. fle.s
	C.73.1. Encoding
	C.73.2. Description
	C.73.3. Access
	C.73.4. Decode Variables
	C.73.5. IDL Operation
	C.73.6. Sail Operation
	C.73.7. Exceptions

	C.74. flt.d
	C.74.1. Encoding
	C.74.2. Description
	C.74.3. Access
	C.74.4. Decode Variables
	C.74.5. IDL Operation
	C.74.6. Exceptions

	C.75. flt.s
	C.75.1. Encoding
	C.75.2. Description
	C.75.3. Access
	C.75.4. Decode Variables
	C.75.5. IDL Operation
	C.75.6. Sail Operation
	C.75.7. Exceptions

	C.76. flw
	C.76.1. Encoding
	C.76.2. Description
	C.76.3. Access
	C.76.4. Decode Variables
	C.76.5. IDL Operation
	C.76.6. Sail Operation
	C.76.7. Exceptions

	C.77. fmadd.d
	C.77.1. Encoding
	C.77.2. Description
	C.77.3. Access
	C.77.4. Decode Variables
	C.77.5. IDL Operation
	C.77.6. Exceptions

	C.78. fmadd.s
	C.78.1. Encoding
	C.78.2. Description
	C.78.3. Access
	C.78.4. Decode Variables
	C.78.5. IDL Operation
	C.78.6. Sail Operation
	C.78.7. Exceptions

	C.79. fmax.d
	C.79.1. Encoding
	C.79.2. Description
	C.79.3. Access
	C.79.4. Decode Variables
	C.79.5. IDL Operation
	C.79.6. Exceptions

	C.80. fmax.s
	C.80.1. Encoding
	C.80.2. Description
	C.80.3. Access
	C.80.4. Decode Variables
	C.80.5. IDL Operation
	C.80.6. Sail Operation
	C.80.7. Exceptions

	C.81. fmin.d
	C.81.1. Encoding
	C.81.2. Description
	C.81.3. Access
	C.81.4. Decode Variables
	C.81.5. IDL Operation
	C.81.6. Exceptions

	C.82. fmin.s
	C.82.1. Encoding
	C.82.2. Description
	C.82.3. Access
	C.82.4. Decode Variables
	C.82.5. IDL Operation
	C.82.6. Sail Operation
	C.82.7. Exceptions

	C.83. fmsub.d
	C.83.1. Encoding
	C.83.2. Description
	C.83.3. Access
	C.83.4. Decode Variables
	C.83.5. IDL Operation
	C.83.6. Exceptions

	C.84. fmsub.s
	C.84.1. Encoding
	C.84.2. Description
	C.84.3. Access
	C.84.4. Decode Variables
	C.84.5. IDL Operation
	C.84.6. Sail Operation
	C.84.7. Exceptions

	C.85. fmul.d
	C.85.1. Encoding
	C.85.2. Description
	C.85.3. Access
	C.85.4. Decode Variables
	C.85.5. IDL Operation
	C.85.6. Exceptions

	C.86. fmul.s
	C.86.1. Encoding
	C.86.2. Description
	C.86.3. Access
	C.86.4. Decode Variables
	C.86.5. IDL Operation
	C.86.6. Sail Operation
	C.86.7. Exceptions

	C.87. fmv.w.x
	C.87.1. Encoding
	C.87.2. Description
	C.87.3. Access
	C.87.4. Decode Variables
	C.87.5. IDL Operation
	C.87.6. Sail Operation
	C.87.7. Exceptions

	C.88. fmv.x.w
	C.88.1. Encoding
	C.88.2. Description
	C.88.3. Access
	C.88.4. Decode Variables
	C.88.5. IDL Operation
	C.88.6. Sail Operation
	C.88.7. Exceptions

	C.89. fnmadd.d
	C.89.1. Encoding
	C.89.2. Description
	C.89.3. Access
	C.89.4. Decode Variables
	C.89.5. IDL Operation
	C.89.6. Exceptions

	C.90. fnmadd.s
	C.90.1. Encoding
	C.90.2. Description
	C.90.3. Access
	C.90.4. Decode Variables
	C.90.5. IDL Operation
	C.90.6. Sail Operation
	C.90.7. Exceptions

	C.91. fnmsub.d
	C.91.1. Encoding
	C.91.2. Description
	C.91.3. Access
	C.91.4. Decode Variables
	C.91.5. IDL Operation
	C.91.6. Exceptions

	C.92. fnmsub.s
	C.92.1. Encoding
	C.92.2. Description
	C.92.3. Access
	C.92.4. Decode Variables
	C.92.5. IDL Operation
	C.92.6. Sail Operation
	C.92.7. Exceptions

	C.93. fsd
	C.93.1. Encoding
	C.93.2. Description
	C.93.3. Access
	C.93.4. Decode Variables
	C.93.5. IDL Operation
	C.93.6. Exceptions

	C.94. fsgnj.d
	C.94.1. Encoding
	C.94.2. Description
	C.94.3. Access
	C.94.4. Decode Variables
	C.94.5. IDL Operation
	C.94.6. Exceptions

	C.95. fsgnj.s
	C.95.1. Encoding
	C.95.2. Description
	C.95.3. Access
	C.95.4. Decode Variables
	C.95.5. IDL Operation
	C.95.6. Sail Operation
	C.95.7. Exceptions

	C.96. fsgnjn.d
	C.96.1. Encoding
	C.96.2. Description
	C.96.3. Access
	C.96.4. Decode Variables
	C.96.5. IDL Operation
	C.96.6. Exceptions

	C.97. fsgnjn.s
	C.97.1. Encoding
	C.97.2. Description
	C.97.3. Access
	C.97.4. Decode Variables
	C.97.5. IDL Operation
	C.97.6. Sail Operation
	C.97.7. Exceptions

	C.98. fsgnjx.d
	C.98.1. Encoding
	C.98.2. Description
	C.98.3. Access
	C.98.4. Decode Variables
	C.98.5. IDL Operation
	C.98.6. Exceptions

	C.99. fsgnjx.s
	C.99.1. Encoding
	C.99.2. Description
	C.99.3. Access
	C.99.4. Decode Variables
	C.99.5. IDL Operation
	C.99.6. Sail Operation
	C.99.7. Exceptions

	C.100. fsqrt.d
	C.100.1. Encoding
	C.100.2. Description
	C.100.3. Access
	C.100.4. Decode Variables
	C.100.5. IDL Operation
	C.100.6. Exceptions

	C.101. fsqrt.s
	C.101.1. Encoding
	C.101.2. Description
	C.101.3. Access
	C.101.4. Decode Variables
	C.101.5. IDL Operation
	C.101.6. Sail Operation
	C.101.7. Exceptions

	C.102. fsub.d
	C.102.1. Encoding
	C.102.2. Description
	C.102.3. Access
	C.102.4. Decode Variables
	C.102.5. IDL Operation
	C.102.6. Exceptions

	C.103. fsub.s
	C.103.1. Encoding
	C.103.2. Description
	C.103.3. Access
	C.103.4. Decode Variables
	C.103.5. IDL Operation
	C.103.6. Sail Operation
	C.103.7. Exceptions

	C.104. fsw
	C.104.1. Encoding
	C.104.2. Description
	C.104.3. Access
	C.104.4. Decode Variables
	C.104.5. IDL Operation
	C.104.6. Sail Operation
	C.104.7. Exceptions

	C.105. jal
	C.105.1. Encoding
	C.105.2. Description
	C.105.3. Access
	C.105.4. Decode Variables
	C.105.5. IDL Operation
	C.105.6. Sail Operation
	C.105.7. Exceptions

	C.106. jalr
	C.106.1. Encoding
	C.106.2. Description
	C.106.3. Access
	C.106.4. Decode Variables
	C.106.5. IDL Operation
	C.106.6. Sail Operation
	C.106.7. Exceptions

	C.107. lb
	C.107.1. Encoding
	C.107.2. Description
	C.107.3. Access
	C.107.4. Decode Variables
	C.107.5. IDL Operation
	C.107.6. Sail Operation
	C.107.7. Exceptions

	C.108. lbu
	C.108.1. Encoding
	C.108.2. Description
	C.108.3. Access
	C.108.4. Decode Variables
	C.108.5. IDL Operation
	C.108.6. Sail Operation
	C.108.7. Exceptions

	C.109. ld
	C.109.1. Encoding
	C.109.2. Description
	C.109.3. Access
	C.109.4. Decode Variables
	C.109.5. IDL Operation
	C.109.6. Sail Operation
	C.109.7. Exceptions

	C.110. lh
	C.110.1. Encoding
	C.110.2. Description
	C.110.3. Access
	C.110.4. Decode Variables
	C.110.5. IDL Operation
	C.110.6. Sail Operation
	C.110.7. Exceptions

	C.111. lhu
	C.111.1. Encoding
	C.111.2. Description
	C.111.3. Access
	C.111.4. Decode Variables
	C.111.5. IDL Operation
	C.111.6. Sail Operation
	C.111.7. Exceptions

	C.112. lui
	C.112.1. Encoding
	C.112.2. Description
	C.112.3. Access
	C.112.4. Decode Variables
	C.112.5. IDL Operation
	C.112.6. Sail Operation
	C.112.7. Exceptions

	C.113. lw
	C.113.1. Encoding
	C.113.2. Description
	C.113.3. Access
	C.113.4. Decode Variables
	C.113.5. IDL Operation
	C.113.6. Sail Operation
	C.113.7. Exceptions

	C.114. mul
	C.114.1. Encoding
	C.114.2. Description
	C.114.3. Access
	C.114.4. Decode Variables
	C.114.5. IDL Operation
	C.114.6. Sail Operation
	C.114.7. Exceptions

	C.115. mulh
	C.115.1. Encoding
	C.115.2. Description
	C.115.3. Access
	C.115.4. Decode Variables
	C.115.5. IDL Operation
	C.115.6. Sail Operation
	C.115.7. Exceptions

	C.116. mulhsu
	C.116.1. Encoding
	C.116.2. Description
	C.116.3. Access
	C.116.4. Decode Variables
	C.116.5. IDL Operation
	C.116.6. Sail Operation
	C.116.7. Exceptions

	C.117. mulhu
	C.117.1. Encoding
	C.117.2. Description
	C.117.3. Access
	C.117.4. Decode Variables
	C.117.5. IDL Operation
	C.117.6. Sail Operation
	C.117.7. Exceptions

	C.118. or
	C.118.1. Encoding
	C.118.2. Description
	C.118.3. Access
	C.118.4. Decode Variables
	C.118.5. IDL Operation
	C.118.6. Sail Operation
	C.118.7. Exceptions

	C.119. ori
	C.119.1. Encoding
	C.119.2. Description
	C.119.3. Access
	C.119.4. Decode Variables
	C.119.5. IDL Operation
	C.119.6. Sail Operation
	C.119.7. Exceptions

	C.120. rem
	C.120.1. Encoding
	C.120.2. Description
	C.120.3. Access
	C.120.4. Decode Variables
	C.120.5. IDL Operation
	C.120.6. Sail Operation
	C.120.7. Exceptions

	C.121. remu
	C.121.1. Encoding
	C.121.2. Description
	C.121.3. Access
	C.121.4. Decode Variables
	C.121.5. IDL Operation
	C.121.6. Sail Operation
	C.121.7. Exceptions

	C.122. sb
	C.122.1. Encoding
	C.122.2. Description
	C.122.3. Access
	C.122.4. Decode Variables
	C.122.5. IDL Operation
	C.122.6. Sail Operation
	C.122.7. Exceptions

	C.123. sd
	C.123.1. Encoding
	C.123.2. Description
	C.123.3. Access
	C.123.4. Decode Variables
	C.123.5. IDL Operation
	C.123.6. Sail Operation
	C.123.7. Exceptions

	C.124. sh
	C.124.1. Encoding
	C.124.2. Description
	C.124.3. Access
	C.124.4. Decode Variables
	C.124.5. IDL Operation
	C.124.6. Sail Operation
	C.124.7. Exceptions

	C.125. sll
	C.125.1. Encoding
	C.125.2. Description
	C.125.3. Access
	C.125.4. Decode Variables
	C.125.5. IDL Operation
	C.125.6. Sail Operation
	C.125.7. Exceptions

	C.126. slli
	C.126.1. Encoding
	C.126.2. Description
	C.126.3. Access
	C.126.4. Decode Variables
	C.126.5. IDL Operation
	C.126.6. Sail Operation
	C.126.7. Exceptions

	C.127. slt
	C.127.1. Encoding
	C.127.2. Description
	C.127.3. Access
	C.127.4. Decode Variables
	C.127.5. IDL Operation
	C.127.6. Sail Operation
	C.127.7. Exceptions

	C.128. slti
	C.128.1. Encoding
	C.128.2. Description
	C.128.3. Access
	C.128.4. Decode Variables
	C.128.5. IDL Operation
	C.128.6. Sail Operation
	C.128.7. Exceptions

	C.129. sltiu
	C.129.1. Encoding
	C.129.2. Description
	C.129.3. Access
	C.129.4. Decode Variables
	C.129.5. IDL Operation
	C.129.6. Sail Operation
	C.129.7. Exceptions

	C.130. sltu
	C.130.1. Encoding
	C.130.2. Description
	C.130.3. Access
	C.130.4. Decode Variables
	C.130.5. IDL Operation
	C.130.6. Sail Operation
	C.130.7. Exceptions

	C.131. sra
	C.131.1. Encoding
	C.131.2. Description
	C.131.3. Access
	C.131.4. Decode Variables
	C.131.5. IDL Operation
	C.131.6. Sail Operation
	C.131.7. Exceptions

	C.132. srai
	C.132.1. Encoding
	C.132.2. Description
	C.132.3. Access
	C.132.4. Decode Variables
	C.132.5. IDL Operation
	C.132.6. Sail Operation
	C.132.7. Exceptions

	C.133. srl
	C.133.1. Encoding
	C.133.2. Description
	C.133.3. Access
	C.133.4. Decode Variables
	C.133.5. IDL Operation
	C.133.6. Sail Operation
	C.133.7. Exceptions

	C.134. srli
	C.134.1. Encoding
	C.134.2. Description
	C.134.3. Access
	C.134.4. Decode Variables
	C.134.5. IDL Operation
	C.134.6. Sail Operation
	C.134.7. Exceptions

	C.135. sub
	C.135.1. Encoding
	C.135.2. Description
	C.135.3. Access
	C.135.4. Decode Variables
	C.135.5. IDL Operation
	C.135.6. Sail Operation
	C.135.7. Exceptions

	C.136. sw
	C.136.1. Encoding
	C.136.2. Description
	C.136.3. Access
	C.136.4. Decode Variables
	C.136.5. IDL Operation
	C.136.6. Sail Operation
	C.136.7. Exceptions

	C.137. xor
	C.137.1. Encoding
	C.137.2. Description
	C.137.3. Access
	C.137.4. Decode Variables
	C.137.5. IDL Operation
	C.137.6. Sail Operation
	C.137.7. Exceptions

	C.138. xori
	C.138.1. Encoding
	C.138.2. Description
	C.138.3. Access
	C.138.4. Decode Variables
	C.138.5. IDL Operation
	C.138.6. Sail Operation
	C.138.7. Exceptions

	Appendix D: CSR Details
	D.1. cycle
	D.1.1. Attributes
	D.1.2. Format
	D.1.3. Field Summary
	D.1.4. Fields
	cycle.COUNT Field

	D.1.5. Software read

	D.2. fcsr
	D.2.1. Attributes
	D.2.2. Format
	D.2.3. Field Summary
	D.2.4. Fields
	fcsr.FRM Field
	fcsr.NV Field
	fcsr.DZ Field
	fcsr.OF Field
	fcsr.UF Field
	fcsr.NX Field

	D.3. fflags
	D.3.1. Attributes
	D.3.2. Format
	D.3.3. Field Summary
	D.3.4. Fields
	fflags.NV Field
	fflags.DZ Field
	fflags.OF Field
	fflags.UF Field
	fflags.NX Field

	D.3.5. Software write
	D.3.6. Software read

	D.4. frm
	D.4.1. Attributes
	D.4.2. Format
	D.4.3. Field Summary
	D.4.4. Fields
	frm.ROUNDINGMODE Field

	D.4.5. Software write
	D.4.6. Software read

	D.5. hpmcounter10
	D.5.1. Attributes
	D.5.2. Format
	D.5.3. Field Summary
	D.5.4. Fields
	hpmcounter10.COUNT Field

	D.5.5. Software read

	D.6. hpmcounter11
	D.6.1. Attributes
	D.6.2. Format
	D.6.3. Field Summary
	D.6.4. Fields
	hpmcounter11.COUNT Field

	D.6.5. Software read

	D.7. hpmcounter12
	D.7.1. Attributes
	D.7.2. Format
	D.7.3. Field Summary
	D.7.4. Fields
	hpmcounter12.COUNT Field

	D.7.5. Software read

	D.8. hpmcounter13
	D.8.1. Attributes
	D.8.2. Format
	D.8.3. Field Summary
	D.8.4. Fields
	hpmcounter13.COUNT Field

	D.8.5. Software read

	D.9. hpmcounter14
	D.9.1. Attributes
	D.9.2. Format
	D.9.3. Field Summary
	D.9.4. Fields
	hpmcounter14.COUNT Field

	D.9.5. Software read

	D.10. hpmcounter15
	D.10.1. Attributes
	D.10.2. Format
	D.10.3. Field Summary
	D.10.4. Fields
	hpmcounter15.COUNT Field

	D.10.5. Software read

	D.11. hpmcounter16
	D.11.1. Attributes
	D.11.2. Format
	D.11.3. Field Summary
	D.11.4. Fields
	hpmcounter16.COUNT Field

	D.11.5. Software read

	D.12. hpmcounter17
	D.12.1. Attributes
	D.12.2. Format
	D.12.3. Field Summary
	D.12.4. Fields
	hpmcounter17.COUNT Field

	D.12.5. Software read

	D.13. hpmcounter18
	D.13.1. Attributes
	D.13.2. Format
	D.13.3. Field Summary
	D.13.4. Fields
	hpmcounter18.COUNT Field

	D.13.5. Software read

	D.14. hpmcounter19
	D.14.1. Attributes
	D.14.2. Format
	D.14.3. Field Summary
	D.14.4. Fields
	hpmcounter19.COUNT Field

	D.14.5. Software read

	D.15. hpmcounter20
	D.15.1. Attributes
	D.15.2. Format
	D.15.3. Field Summary
	D.15.4. Fields
	hpmcounter20.COUNT Field

	D.15.5. Software read

	D.16. hpmcounter21
	D.16.1. Attributes
	D.16.2. Format
	D.16.3. Field Summary
	D.16.4. Fields
	hpmcounter21.COUNT Field

	D.16.5. Software read

	D.17. hpmcounter22
	D.17.1. Attributes
	D.17.2. Format
	D.17.3. Field Summary
	D.17.4. Fields
	hpmcounter22.COUNT Field

	D.17.5. Software read

	D.18. hpmcounter23
	D.18.1. Attributes
	D.18.2. Format
	D.18.3. Field Summary
	D.18.4. Fields
	hpmcounter23.COUNT Field

	D.18.5. Software read

	D.19. hpmcounter24
	D.19.1. Attributes
	D.19.2. Format
	D.19.3. Field Summary
	D.19.4. Fields
	hpmcounter24.COUNT Field

	D.19.5. Software read

	D.20. hpmcounter25
	D.20.1. Attributes
	D.20.2. Format
	D.20.3. Field Summary
	D.20.4. Fields
	hpmcounter25.COUNT Field

	D.20.5. Software read

	D.21. hpmcounter26
	D.21.1. Attributes
	D.21.2. Format
	D.21.3. Field Summary
	D.21.4. Fields
	hpmcounter26.COUNT Field

	D.21.5. Software read

	D.22. hpmcounter27
	D.22.1. Attributes
	D.22.2. Format
	D.22.3. Field Summary
	D.22.4. Fields
	hpmcounter27.COUNT Field

	D.22.5. Software read

	D.23. hpmcounter28
	D.23.1. Attributes
	D.23.2. Format
	D.23.3. Field Summary
	D.23.4. Fields
	hpmcounter28.COUNT Field

	D.23.5. Software read

	D.24. hpmcounter29
	D.24.1. Attributes
	D.24.2. Format
	D.24.3. Field Summary
	D.24.4. Fields
	hpmcounter29.COUNT Field

	D.24.5. Software read

	D.25. hpmcounter3
	D.25.1. Attributes
	D.25.2. Format
	D.25.3. Field Summary
	D.25.4. Fields
	hpmcounter3.COUNT Field

	D.25.5. Software read

	D.26. hpmcounter30
	D.26.1. Attributes
	D.26.2. Format
	D.26.3. Field Summary
	D.26.4. Fields
	hpmcounter30.COUNT Field

	D.26.5. Software read

	D.27. hpmcounter31
	D.27.1. Attributes
	D.27.2. Format
	D.27.3. Field Summary
	D.27.4. Fields
	hpmcounter31.COUNT Field

	D.27.5. Software read

	D.28. hpmcounter4
	D.28.1. Attributes
	D.28.2. Format
	D.28.3. Field Summary
	D.28.4. Fields
	hpmcounter4.COUNT Field

	D.28.5. Software read

	D.29. hpmcounter5
	D.29.1. Attributes
	D.29.2. Format
	D.29.3. Field Summary
	D.29.4. Fields
	hpmcounter5.COUNT Field

	D.29.5. Software read

	D.30. hpmcounter6
	D.30.1. Attributes
	D.30.2. Format
	D.30.3. Field Summary
	D.30.4. Fields
	hpmcounter6.COUNT Field

	D.30.5. Software read

	D.31. hpmcounter7
	D.31.1. Attributes
	D.31.2. Format
	D.31.3. Field Summary
	D.31.4. Fields
	hpmcounter7.COUNT Field

	D.31.5. Software read

	D.32. hpmcounter8
	D.32.1. Attributes
	D.32.2. Format
	D.32.3. Field Summary
	D.32.4. Fields
	hpmcounter8.COUNT Field

	D.32.5. Software read

	D.33. hpmcounter9
	D.33.1. Attributes
	D.33.2. Format
	D.33.3. Field Summary
	D.33.4. Fields
	hpmcounter9.COUNT Field

	D.33.5. Software read

	D.34. instret
	D.34.1. Attributes
	D.34.2. Format
	D.34.3. Field Summary
	D.34.4. Fields
	instret.COUNT Field

	D.34.5. Software read

	D.35. time
	D.35.1. Attributes
	D.35.2. Format
	D.35.3. Field Summary
	D.35.4. Fields
	time.COUNT Field

	D.35.5. Software read

	Appendix E: IDL Function Details
	E.1. implemented? (generated)
	E.2. implemented_version? (generated)
	E.3. implemented_csr? (generated)
	E.4. direct_csr_lookup (generated)
	E.5. indirect_csr_lookup (generated)
	E.6. csr_hw_read (generated)
	E.7. csr_sw_read (generated)
	E.8. csr_sw_write (generated)
	E.9. unpredictable (builtin)
	E.10. unreachable (builtin)
	E.11. read_hpm_counter (builtin)
	E.12. hartid (builtin)
	E.13. read_mcycle (builtin)
	E.14. read_mtime (builtin)
	E.15. sw_write_mcycle (builtin)
	E.16. cache_block_zero (builtin)
	E.17. eei_ecall_from_m (builtin)
	E.18. eei_ecall_from_s (builtin)
	E.19. eei_ecall_from_u (builtin)
	E.20. eei_ecall_from_vs (builtin)
	E.21. eei_ebreak (builtin)
	E.22. memory_model_acquire (builtin)
	E.23. memory_model_release (builtin)
	E.24. assert (builtin)
	E.25. notify_mode_change (builtin)
	E.26. abort_current_instruction (builtin)
	E.27. ebreak (builtin)
	E.28. prefetch_instruction (builtin)
	E.29. prefetch_read (builtin)
	E.30. prefetch_write (builtin)
	E.31. fence (builtin)
	E.32. fence_tso (builtin)
	E.33. ifence (builtin)
	E.34. pause (builtin)
	E.35. pow (generated)
	E.36. maybe_cache_translation (generated)
	E.37. cached_translation (generated)
	E.38. order_pgtbl_writes_before_vmafence (builtin)
	E.39. order_pgtbl_reads_after_vmafence (builtin)
	E.40. invalidate_translations (generated)
	E.41. read_physical_memory
	E.42. read_physical_memory_8 (builtin)
	E.43. read_physical_memory_16 (builtin)
	E.44. read_physical_memory_32 (builtin)
	E.45. read_physical_memory_64 (builtin)
	E.46. write_physical_memory
	E.47. write_physical_memory_8 (builtin)
	E.48. write_physical_memory_16 (builtin)
	E.49. write_physical_memory_32 (builtin)
	E.50. write_physical_memory_64 (builtin)
	E.51. wfi (builtin)
	E.52. pma_applies? (builtin)
	E.53. atomic_check_then_write_32 (builtin)
	E.54. atomic_check_then_write_64 (builtin)
	E.55. atomically_set_pte_a (builtin)
	E.56. atomically_set_pte_a_d (builtin)
	E.57. atomic_read_modify_write_32 (builtin)
	E.58. atomic_read_modify_write_64 (builtin)
	E.59. set_external_interrupt
	E.60. clear_external_interrupt
	E.61. set_software_interrupt
	E.62. clear_software_interrupt
	E.63. set_timer_interrupt
	E.64. clear_timer_interrupt
	E.65. refresh_pending_interrupts
	E.66. highest_priority_interrupt
	E.67. choose_interrupt
	E.68. take_interrupt
	E.69. fetch_memory_aligned_16
	E.70. fetch_memory_aligned_32
	E.71. power_of_2?
	E.72. has_virt_mem?
	E.73. max_va_size
	E.74. highest_set_bit
	E.75. lowest_set_bit
	E.76. bit_length
	E.77. count_leading_zeros
	E.78. sext
	E.79. is_naturally_aligned
	E.80. in_naturally_aligned_region?
	E.81. contains?
	E.82. set_fp_flag
	E.83. rm_to_mode
	E.84. mark_f_state_dirty
	E.85. nan_box
	E.86. check_f_ok
	E.87. is_sp_neg_inf?
	E.88. is_sp_pos_inf?
	E.89. is_sp_neg_norm?
	E.90. is_sp_pos_norm?
	E.91. is_sp_neg_subnorm?
	E.92. is_sp_pos_subnorm?
	E.93. is_sp_neg_zero?
	E.94. is_sp_pos_zero?
	E.95. is_sp_nan?
	E.96. is_sp_signaling_nan?
	E.97. is_sp_quiet_nan?
	E.98. softfloat_shiftRightJam32
	E.99. softfloat_shiftRightJam64
	E.100. softfloat_roundToI32
	E.101. softfloat_roundToUI32
	E.102. packToF32UI
	E.103. packToF16UI
	E.104. softfloat_normSubnormalF16Sig
	E.105. softfloat_roundPackToF32
	E.106. softfloat_normRoundPackToF32
	E.107. signF32UI
	E.108. expF32UI
	E.109. fracF32UI
	E.110. returnNonSignalingNaN
	E.111. returnMag
	E.112. returnLargerMag
	E.113. softfloat_propagateNaNF32UI
	E.114. softfloat_addMagsF32
	E.115. softfloat_subMagsF32
	E.116. f32_add
	E.117. f32_sub
	E.118. i32_to_f32
	E.119. ui32_to_f32
	E.120. f32_to_i32
	E.121. f32_to_ui32
	E.122. softfloat_roundPackToF32_no_flag
	E.123. softfloat_normRoundPackToF32_no_flag
	E.124. i32_to_f32_no_flag
	E.125. softfloat_roundToI32_no_flag
	E.126. f32_to_i32_no_flag
	E.127. round_f32_to_integral
	E.128. vector_state
	E.129. mode
	E.130. set_mode_no_refresh
	E.131. set_mode
	E.132. compatible_mode?
	E.133. exception_handling_mode
	E.134. creg2reg
	E.135. unimplemented_csr
	E.136. mtval_readonly?
	E.137. stval_readonly?
	E.138. vstval_readonly?
	E.139. mtval_for
	E.140. stval_for
	E.141. vstval_for
	E.142. raise_guest_page_fault
	E.143. raise
	E.144. raise_precise
	E.145. ialign
	E.146. jump
	E.147. jump_halfword
	E.148. valid_interrupt_code?
	E.149. valid_exception_code?
	E.150. xlen
	E.151. virtual_mode?
	E.152. mask_eaddr
	E.153. pmp_match_64
	E.154. pmp_match_32
	E.155. pmp_match
	E.156. mpv
	E.157. effective_ldst_mode
	E.158. pmp_check
	E.159. access_check
	E.160. base32?
	E.161. base64?
	E.162. current_translation_mode
	E.163. current_gstage_translation_mode
	E.164. translate_gstage
	E.165. tinst_value_for_guest_page_fault
	E.166. tinst_transform
	E.167. transformed_standard_instruction_for_tinst
	E.168. tinst_value
	E.169. gstage_page_walk
	E.170. stage1_page_walk
	E.171. translate
	E.172. canonical_vaddr?
	E.173. canonical_gpaddr?
	E.174. misaligned_is_atomic?
	E.175. read_memory_aligned
	E.176. read_memory
	E.177. read_memory_xlen
	E.178. write_memory_xlen
	E.179. read_memory_xlen_aligned
	E.180. invalidate_reservation_set
	E.181. register_reservation_set
	E.182. load_reserved
	E.183. store_conditional
	E.184. amo
	E.185. write_memory_aligned
	E.186. write_memory
	E.187. write_memory_xlen_aligned
	E.188. mstatus_sd_has_known_reset
	E.189. mstatus_sd_reset_value
	E.190. check_zcmt_enabled

